
Characterization and Avoidance of Critical Pipeline Structures in

Aggressive Superscalar Processors

A Thesis
Presented to

The Academic Faculty

by

Peter G. Sassone

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

August 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4677435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Characterization and Avoidance of Critical Pipeline Structures in

Aggressive Superscalar Processors

Approved by:

Professor D. Scott Wills, Adviser

Professor Hsien-Hsin Lee

Professor David Schimmel

Professor Yorai Wardi

Professor Gabriel Loh
(College of Computing)

Date Approved: April 11, 2005



ACKNOWLEDGEMENTS

Men are often defined by the relationships they keep, and I am no exception. I have been blessed with

wonderful family, friends, and colleagues who have sustained me throughout graduate school and life.

I have grown intellectually, emotionally, and spirituallythrough the companions who have walked with

me in this journey, and I wish I had space to thank them all.

I wish to especially thank my mother Charlotte and my late father Peter for their tireless encour-

agement and love. I extend my greatest love and appreciationto them and the rest of my family. My

friends, both past and present, have also sustained me tremendously. I extend my heartfelt appreciation

to Erich, Chris, Karen, Amanda, Heather, Teresa, Lisa, Megan, and the many others for their support

and friendship over the years.

Professionally I have been surrounded by some of the most amazing professors and colleagues.

I thank my advisor, Prof. D. Scott Wills, for the flexibility to find my own research direction while

keeping me grounded in the big picture of graduate study. I thank Prof. Gabriel Loh for challenging

me to elevate the quality of my work and tackle harder and harder problems. Prof. Hsien-Hsin Lee

has also been invaluable in my studies here, unselfishly providing me with advice and favors without

delay. I also wish to thank the other members of my thesis committee, Prof. David Schimmel and

Prof. Yorai Wardi, for the advice they brought and the laughsthey provided during my defense process.

Additionally I would like to recognize the rest of my research group, both alumni and current members:

Lewis, Cameron, Murat, Chris, Tarek, Mark, Nidhi, Soojung,Jongmyon, Hongkyu, Cory, Brett, and

Senyo. Everyone in this group has given me advice and friendship that I truly have appreciated.

Perhaps the most influential group in my graduate research has been the architecture reading group,

more commonly known as arch-beer. Josh, Chad, Ivan, Austen,Kiran, Ripal, Rodric, Milos, Ken, and

the many other regulars have strengthened every aspect of myprofessional persona. Every researcher

needs someone to tell them their work is flawed and should be fixed – I was lucky enough to have a

whole room of those people every week. I thank everyone of them for their brutal honesty, their wise

recommendations, and not using the buzzer on me too often.

Finally, I would like to thank God for giving me the gifts to come this far. I can only pray that I

iii



can continue to use the gifts He has granted me to serve His will in whatever is next in my life. “Each

one should use whatever gift he has received to serve others,faithfully administering God’s grace in its

various forms.” 1st Peter 4:10 [1]

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I POPULAR COMMUNICATION PATTERNS . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3

1.3 Pattern Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 4

1.4 Pattern Experiments and Results . . . . . . . . . . . . . . . . . . . .. . . . . . . . 8

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13

II DYNAMIC STRANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16

2.3 Transient Operands and Strands . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 19

2.4 Hardware and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 20

2.5 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 28

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 37

III STATIC STRANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 38

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40

3.3 Transient Operands and Strands . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 42

3.4 Static Strand Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 43

3.5 Hardware Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 49

3.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 51

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 61

IV PIPELINING ATOMIC STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63

4.2 Issue and Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 65

4.3 Cycle Time Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 71

v



4.4 IPC Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73

4.5 Execution Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 75

4.6 Power and Power Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 76

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 82

V SCHEDULE PREDICTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 87

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 89

5.3 Schedules and Wakeup Vectors . . . . . . . . . . . . . . . . . . . . . . .. . . . . 90

5.4 Accessing and Applying Schedules . . . . . . . . . . . . . . . . . . .. . . . . . . 91

5.5 Schedule Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 98

5.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 102

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 107

VI RAPID FLOORPLANNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 109

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 110

6.3 Connectivity Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 111

6.4 Physical Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 115

6.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 122

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 124

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 132

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

vi



LIST OF TABLES

1 The fourteen instruction types recognized, though only the first five appear in the most
popular patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 8

2 Pattern statistics for each of the benchmarks studied including runtime for each CPX
pass (in hours), the total number of patterns enumerated (inbillions), and the number of
unique patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 9

3 Example entries in the operand table. . . . . . . . . . . . . . . . . . .. . . . . . . . . 20

4 Architectural parameters used for all simulations. . . . . .. . . . . . . . . . . . . . . 29

5 Data structure used to detect static transient operands with example values. . . . . . . 44

6 Architectural parameters used for all simulations. . . . . .. . . . . . . . . . . . . . . 52

7 Delays for different blocks of pipelining logic in 180nm with a 32-slot issue queue [86, 87]. 67

8 Approximate ALU and bypass network delays at 180nm and 90nm. . . . . . . . . . . 69

9 Architectural parameters used for all simulations. . . . . .. . . . . . . . . . . . . . . 74

10 Sim-Panalyzer parameters used for all simulations. . . . .. . . . . . . . . . . . . . . 80

11 Detailed IPC Results at 180nm. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 84

12 Detailed IPC Results at 90nm. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 85

13 Architectural parameters used for all simulations. . . . .. . . . . . . . . . . . . . . . 103

14 Breakdown of issue energy for the default ESP model. Totalcounts and energies are
across the duration of our benchmark execution–500M instructions. . . . . . . . . . . 104

15 Block and net counts for GSRC circuits. . . . . . . . . . . . . . . . .. . . . . . . . . 122

16 Statistics for ISPD and MCNC circuits before and after partitioning into 300 and 1000
blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

17 Area minimization comparison. Data for Traffic and Simulated Annealing run-time (in
seconds) and white-space (as floorplan percent) is given. . .. . . . . . . . . . . . . . 125

18 Fixed outline comparison. Data for average Traffic and Simulated Annealing run-time
(in seconds) to achieve various aspect ratios with 10% white-space is given. . . . . . . 126

19 Wire minimization comparison. Data for Traffic, Simulated Annealing, and Cooperative
Floorplanning run-time (in seconds) and HP wire estimation(in mm.) is given. . . . . 128

20 Effect of Traffic wire optimizations. Data for HP wire estimation (in mm.) is given for
best-area mode and best wire-length mode with no, local, global, and both optimizations
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 131

vii



LIST OF FIGURES

1 Enumeration of 5 instructions into 25 unique dataflow patterns. The number of pat-
terns grows linearly with the total number of instructions and exponentially with the
maximum pattern size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 2

2 Illustration of dataflow graph (DFG) plotted over time. Thegraph height is limited by
the number of architectural registers in the ISA. . . . . . . . . .. . . . . . . . . . . . 3

3 CPX algorithm illustration. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 6

4 Cumulative distribution functions for how the 100 most popular patterns cover all bench-
mark instructions with various sampling rates. . . . . . . . . . .. . . . . . . . . . . . 10

5 Ten most popular patterns across Spec2000int applications, from most to least popular. 11

6 Ten most popular patterns across MediaBench applications, from most to least popular. 11

7 Ten most popular patterns across all applications, from most to least popular. . . . . . 12

8 Common compilation of four-way addition into accumulation dataflow. . . . . . . . . 18

9 Overview of hardware requirements for supporting strands. New additions are shaded. 20

10 The strand cache stores bookkeeping data, the component instruction information, and
previous reader data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 22

11 Example of strand execution and fine-grain recovery. . . . .. . . . . . . . . . . . . . 23

12 Detailed diagram of ALU and issue queue modifications. . . .. . . . . . . . . . . . . 27

13 Percent of dynamic operands which were transient, and howmany of those which were
incorporated into strands with various strand cache sizes.. . . . . . . . . . . . . . . . 30

14 Average (a) activity level changes in affected pipeline operations and (b) subsequent
energy level reductions in related resources. . . . . . . . . . . .. . . . . . . . . . . . 31

15 IPC speedup as the dispatch engine delay is varied from zero to three cycles. . . . . . . 33

16 Harmonic mean of IPC speedup for each of the three benchmark suites and the overall
mean as the maximum strand size and maximum strand inputs is varied. . . . . . . . . 34

17 IPC speedup as the issue queue size is varied. . . . . . . . . . . .. . . . . . . . . . . 36

18 Common compilation of four-way addition into strand dataflow. . . . . . . . . . . . . 41

19 Percent of all dynamic operands which are transients, andhow many were eventually
grouped by our detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 41

20 Example of static strand discovery, creation, and antidependence-dependence correction. 43

21 Illustration of the three primary hardware changes presented for static strand optimiza-
tion: strand accumulation buffer (top left), closed-loop ALUs (bottom left), and issue-
queue entry modifications (right) . Changes from a traditional design are shaded. . . . 47

viii



22 Percent of dynamic instructions which were incorporatedin strands with various max-
imum strand sizes and maximum inputs. Each bar is broken downby instruction type,
and the average size of executed strands is shown at the top. .. . . . . . . . . . . . . 53

23 Average activity level changes from the baseline in affected pipeline operations for the
(a) PowerPC 750 model and (b) Renesas SH4a model. . . . . . . . . . .. . . . . . . 55

24 Average energy changes from the baseline in related pipeline resources for the (a) Pow-
erPC 750 model and (b) Renesas SH4a model. The Strand Accumulation Buffer, not
shown, requires less than 4% of the baseline register file energy. . . . . . . . . . . . . 57

25 Maximum, harmonic mean, and minimum IPC speedup across all evaluated benchmarks
on the (a) PowerPC 750 model and (b) SuperH SH4a model. . . . . . .. . . . . . . . 58

26 Overview of issue on a sample issue slot with (a) no pipelining, (b) two stages, (c) three
stages, and (d) four stages. Dashed lines indicated the boundary of stages where latches
must be placed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

27 Overview of the execution stage with (a) no pipelining, (b) two stages, (c) three stages,
and (d) four stages. Cycle numbers are from the perspective of the top ALU. Dashed
lines indicated the boundary of stages where latches must beplaced. . . . . . . . . . . 68

28 The four different pipelining models studied with varying degrees of atomic structure
pipelining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 71

29 Estimated processor cycle-times for various processor widths, technology levels, and
pipelining models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 72

30 Average simulated IPC results across different processor widths and pipelining. Error
bars indicate sensitivity to three fewer or three more front-end stages. . . . . . . . . . 74

31 Estimated instruction throughput across technology, processor widths, and pipelining.
Error bars indicate sensitivity to three fewer or three morefront-end stages. . . . . . . 76

32 Average activity rates (accesses per second, orα · f ) of various processor resources for
each of the evaluated models. Results are normalized to the baseline machine for each
width and technology level. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 78

33 Power and power efficiency metrics for all evaluated models. Error bars indicate sensi-
tivity to three fewer or three more front-end stages. . . . . . .. . . . . . . . . . . . . 86

34 Dynamic instruction schedule example. Synchronizationinstruction 1 begins a valid
ESP schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

35 Overview of hardware requirements for the ESP mechanism.New additions are shaded. 91

36 Detailed diagram for Wakeup Tag Array and Wakeup Vector Buffer. . . . . . . . . . . 91

37 Overview of Group Control and changes to the issue queue entries. New items are
shaded, and dashed boxes indicate newly power-gated logic.. . . . . . . . . . . . . . 94

38 Illustration of the dI/dt noise for instantaneous and gradual power gating. . . . . . . . 96

39 Overview of schedule detection algorithm. . . . . . . . . . . . .. . . . . . . . . . . . 98

40 Average number of instructions between syncronization instructions, inset with the av-
erage size of detected schedules. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 99

ix



41 IPC Speedup for default ESP model, ESP with replay, and ESPwithout I-cache hint bits. 103

42 Percent energy change for default ESP model (equal to ESP with Replay), ESP without
I-cache hint bits, and ESP on a machine with large out-of-order queues. . . . . . . . . 104

43 Traffic algorithm pseudocode. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 112

44 Global grouping pseudocode. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 112

45 Illustration of connectivity phase. (a) global grouping, where the linear arrangement of
the partitions depicts our linear placement result, (b) local grouping. . . . . . . . . . . 114

46 Traffic physical phase illustration. (a) buckets, (b) rows, (c) layout for one partition, (d)
all partitions stacked together. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 116

47 Initial placement algorithm pseudocode. . . . . . . . . . . . . .. . . . . . . . . . . . 117

48 Initial placement of a Traffic partition. . . . . . . . . . . . . . .. . . . . . . . . . . . 117

49 Mutation algorithms pseudocode. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 120

50 Squeezing algorithm pseudocode. . . . . . . . . . . . . . . . . . . . .. . . . . . . . 121

51 Sample Traffic partition after mutations and squeezing. .. . . . . . . . . . . . . . . . 121

52 (a) Traffic-generated initial floorplanning, (b) after Simulated Annealing-based refinement.129

x



SUMMARY

In recent years, with only small fractions of modern processors now accessible in a single cycle,

computer architects constantly fight against propagation issues across the die. Unfortunately this trend

continues to shift inward, and now the even most internal features of the pipeline are designed around

communication, not computation. To address the inward creep of this constraint, this work focuses

on the characterization of communication within the pipeline itself, architectural techniques to avoid it

when possible, and layout co-design for early detection of problems.

Chapter 1 presents work in creating a novel detection tool for common case operand movement

which can rapidly characterize an applications dataflow patterns. Unlike all previous work which has

focused on detecting repeated instruction idioms or collecting circumstantial statistics such as operand

lifetime, I focus on extracting and exploiting the most common functional unit communication patterns.

The results produced are suitable for exploitation as a small number of patterns can describe a significant

portion of modern applications.

Chapter 2 on dynamic dependence collapsing takes the observations from the previous chapter and

shows how certain groups of operations can be dynamically grouped, avoiding unnecessary commu-

nication between individual instructions. This techniquealso amplifies the efficiency of pipeline data

structures such as the reorder buffer, increasing both IPC and frequency. Importantly, this technique is

accomplished without affecting binary compatibility or processor power demands.

Chapter 3 identifies the same sets of collapsible instructions at compile time, producing the same

benefits with minimal hardware complexity. This technique is also done in a backward compatible

manner as the groups are exposed by simple reordering of the binarys instructions. Though a static

implementation does not produce the performance benefits ofa dynamic implementation, the power

savings are greatly improved.

Chapter 4 presents aggressive pipelining approaches for these resources which avoids the critical

timing often presumed necessary in aggressive superscalarprocessors. As these structures are designed

for the worst case, pipelining them can produce greater frequency benefit than IPC loss. Importantly,

as the stages are carefully selected, this aggressive pipelining does not significantly affect the power

xi



efficiency of the chip.

Chapter 5 uses the observation that the dynamic issue order for instructions in aggressive superscalar

processors is predictable. Thus, a hardware mechanism is introduced for caching the wakeup order

for groups of instructions efficiently. These wakeup vectors are then used to speculatively schedule

instructions, avoiding the dynamic scheduling when it is not necessary.

Chapter 6 presents a novel approach to fast and high-qualitychip layout. Given the tight timing

constraints within the pipeline, the interdependence between high- and low-level design has never been

more important. Layout issues must be addressed at the earliest stages of design, even for fine-grain

processor resources. By allowing architects to quickly evaluate what if scenarios during early high-level

design, chip designs are less likely to encounter implementation problems later in the process.

xii



CHAPTER I

POPULAR COMMUNICATION PATTERNS

Summary

The complexity-effectiveness of modern wire-dominated architectures is heavily influenced by operand

movement patterns within workloads. Unfortunately, the study of these common patterns is burdensome

given the NP-completeness of the problem and the size of the dataflow graphs in modern applications.

In response we present CPX, a fast and memory-efficient tool for the extraction of common dataflow

subgraphs from application binaries. Using this tool and a practical metric of pattern popularity, we

analyze MediaBench and Spec2000int benchmarks and presenttheir most frequent communication pat-

terns. Results confirm the intuition of prior research that dependence chains dominate integer code, but

more importantly demonstrate that dataflow communication is restricted to a tractable set of templates.

A set of only ten small patterns characterizes over 90% of Spec2000int and over 75% of MediaBench

dynamic instructions. These common dataflow idioms are amenable to dynamic optimization, more

efficient code representations, and reducing the broadcastnature of micro-architectural resources.

1.1 Introduction

Compiler researchers have long observed common instruction patterns, termed idioms by Aho et al. [4],

in the assembly output. These dataflow subgraphs often perform an operation considered by the pro-

grammer to be atomic (i.e., increment an element in an array), but are reduced into multiple operations

based on the instruction set architecture (ISA) being targeted. Due to source-level repetition and the

iterative nature of integer code, the dynamic frequency of these assembly-level patterns can be quite

high. For instance, Spadini et al. have shown that over 25% ofdynamic instructions in Spec2000int can

be replaced with 10 trivial idioms per benchmark [107].

Despite the applicability of idiom extraction to ISA designand code compression, it is difficult

to perceive broader trends in dataflow with this information. To address this shortcoming, our work

extracts general instruction communication patterns rather than the operation-specific idioms studied by

1



Figure 1: Enumeration of 5 instructions into 25 unique dataflow patterns. The number of patterns
grows linearly with the total number of instructions and exponentially with the maximum pattern size.

Aho and Spadini. In other words, we are interested in idioms at the granularity of instruction types (i.e.,

loads, floating point multiplies, integer ALU instructions) without the restrictive objective of dividing

the program up into disjoint macro-instructions. This broader characterization allows insight into the

hardware implications of instruction communication, an important topic of study in the modern era of

wire-dominated architectures [87]. For instance, our results show the ‘stringiness’ of modern dataflow,

confirming the intuition behind research in collapsing dependence chains [67, 99].

Unfortunately, any algorithm for extracting the most common patterns reduces to subgraph isomorphism–

an NP-complete problem [50]. Additionally, this extraction process commonly requires loading the ap-

plication’s complete dataflow graph (DFG) into memory and performing subgraph analysis afterward.

Both of these requirements make an exhaustive search for common dataflow idioms burdensome, espe-

cially on non-trivial applications. As an illustration, Figure 1 shows a trivial DFG and the large number

of possible pattern enumerations present. The number of patterns present increases linearly as the total

number of instructions increases and exponentially as the maximum size of a pattern increases. As a

result of this complexity, architects are often left to using more circumstantial evidence of instruction

communication patterns–operand use rates, basic block frequencies, performance counters, etc.

To address this issue we introduce CPX (Communication Pattern eXtractor), a novel on-the-fly

pattern miner which maintains only the ‘front wave’ of the DFG and analyzes it for common subgraphs.

With the use of a graph library which converts graphs into hash-codes unique to it and its isomorphs,

this tool is rapid (about 100,000 subgraphs analyzed per second on our test platform) while keeping

a very low memory footprint (less than 10MB). The output is a complete library of dataflow patterns
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Figure 2: Illustration of dataflow graph (DFG) plotted over time. The graph height is limited by the
number of architectural registers in the ISA.

from a set of benchmarks. A second pass with CPX through the application, augmented with the pattern

library, rapidly produces coverage results–what fractionof dynamic instructions can be included in at

least one of these patterns.

For this work, we also present the most frequent pattern results for Spec2000int and MediaBench,

two common integer benchmark suites. Interestingly, the vast majority of instructions in all simu-

lated benchmarks can be described by just a handful of patterns. Modern processors, however, are

not designed to accommodate this limited set of average-case operand movement patterns. Rather, the

worst-case broadcast-based design of microarchitecturalresources such as the issue queue and bypass

path often create bottlenecks in the pipeline [87, 100]. Ourresults help quantify the motivation behind

proposals focusing on common-case performance in these structures [67, 69].

The sections are organized as follows. Section 1.2 discusses related work in dataflow pattern analy-

sis. CPX, our rapid pattern extraction tool, is then introduced in Section 1.3. Section 1.4 presents the

results of CPX, including performance, common operand communication patterns, and their coverage.

Finally, Section 1.5 concludes with a discussion of the implications of dataflow patterns and future work.

1.2 Related Work

Though our work observes operand communication patterns, not specific instances of these patterns

with specific operations, the approach and analysis is very similar. Aho et al. [4] first introduced these

patterns, termed idioms, as the result of source code repetition, the iterative nature of integer code, and

limited instruction sets. Later work showed that by slicinga program into a tractable collection of these

idioms, designers can achieve code compression, cluster steering heuristics, and optimal ISA extensions.
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For instance, Arrujo et al. [6] convert applications into collections of tree-patterns (op codes) and

operand patterns (registers and immediates). By removing the entropy of the individual instructions, the

size of Spec95 binaries is reduced by over 40%. Spadini et al.[107] expand this work by allowing pat-

terns to span basic blocks. Their analysis tool uses heuristics to find a disjoint set of macro-instructions

which cover a significant portion of the instruction stream,but no runtime or memory footprint numbers

are presented. Their pattern results show that, on average,over a quarter of any Spec2000int bench-

mark’s dynamic instructions can be covered by a small set of ten idioms of five instructions each. Clark

et al. [27], pointing out the practicality of customized instructions for many application domains, use

dataflow pattern analysis to discover instruction set extensions automatically. As with prior work, no

analysis of runtime is presented, though heuristics are similarly used to intelligently divide the DFG.

Our work has a broader scope, however, as we wish to observe trends like ALU fan-in rather than the

frequency of instruction combinations (i.e., xor-multiply-subtract).

More generally, work in collapsing dependent instructionsrecognizes broad patterns in operand

communication such as trees and chains. Smith [67] introduces instruction strands, linear dependence

chains, as a means of exposing wire-delay to the compiler. The intuition, confirmed by his results,

is that modern integer dataflow is filled with dependence chains which need not require a broadcast

bypass or individual wakeup. Previously, we have identifiedthese linear instruction chains dynamically,

and developed optimized ALUs for their execution [99]. Yehia and Temam [121] describe instruction

functions, tree-shaped dataflow subgraphs with a single output, which are executed atomically on a

specialized functional unit. As with our work, these functions can overlap but only cover an average

of 65% of the dynamic instructions in Spec2000int and other benchmarks. Our work aims to quantify

the motivation behind these and other research directions by showing what communication patterns are

actually prevalent in modern integer code.

1.3 Pattern Extraction

Despite the intuitiveness of extracting common patterns from a graph, this problem reduces to a classical

NP-complete problem, subgraph isomorphism [50]. Though all possible subgraphs of a graph can be

enumerated in polynomial time, determining which graphs are identical (or isomorphic) cannot. Prior

work in instruction pattern analysis [6, 27, 107] does not detail the runtime or memory requirements

of their tools, but the extensive use of heuristics indicates the difficulty of this problem. Additionally,
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choosing the proper metric for pattern frequency is complexas every graph has subgraphs which are

at least as frequent. Thankfully, there are several insights into this particular instance of the subgraph

isomorphism problem which reduces the difficulty immensely.

1.3.1 Extraction Insights

First is that an application’s dataflow graph is not arbitrarily connected. In fact, it is quite narrow as

the number of values live at any point in time is limited to thenumber of architectural registers in the

ISA. Figure 2 shows a high level view of a typical DFG plotted against an axis of time illustrating its

thinness. Secondly, to draw conclusions about the instruction communication, the patterns produced

must be small–ten or fewer nodes. Large patterns are too unwieldy to perceive ‘stringiness’, wide fan-

outs, and other communication characteristics. It is thesetwo observations which allow CPX to perform

analysis as the program executes (similar to a profiling tool) without storing the entire graph in memory.

For all but the rarest cases, storing only the most recent portion of the DFG (the last 10,000 nodes or so)

is sufficient to detect all desired subgraphs. Figure 2 depicts this front wave as the far-right portion of

the graph. This feature keeps the memory footprint of CPX at very reasonable levels–under 10MB.

A third observation is that small graphs can be reduced into hash-codes unique to it and its iso-

morphs. In other words, if two graphs are isomorphs they willproduce the same code, but otherwise

will produce distinct codes [77]. Though this hash-code generation is as time consuming as check-

ing for the isomorphism of two graphs, the use of binary codesfor comparison prevents a problematic

matching issue: instead of having to compare every new pattern against every known one, only one

time-consuming activity is required per pattern, and a trivial hash-table handles the binning. As hash

generation will be the dominant factor in our performance, we employ the NAUTY graph library [78],

one of the fastest graph libraries available [46]. On our 2.4GHz Intel Xeon test platform, NAUTY

generates about 100,000 pattern hash-codes per second.

Another insight is that looking for frequent patterns is statistical, and thus sampling can be effective

in speeding up processing. Though the exact frequency of each pattern is no longer available, the relative

frequencies should be the same given a sufficiently long execution. The speedup due to sampling is very

close to linear: sampling 1% of patterns speeds execution byapproximately 100 fold. An analysis of

the accuracy of sampling is shown in later results.
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Figure 3: CPX algorithm illustration.

Finally, we observe that the optimal metric for gauging patterns is not frequency. Since each sub-

graph contains smaller subgraphs inside which occur at least as frequently as the parent (and probably

more often elsewhere), the most frequent patterns would always be the most trivial ones. Rather, we

propose a metric ofpattern popularity, defined as the frequency of a pattern multiplied by the number

of instructions in the pattern. In other words, the most popular patterns are those which instructions are

most likely to be a part of. Thus, a pattern twice as large but half as frequent as another pattern have

the same popularity. This metric provides a fair balance between frequency and size while still being

meaningful.

1.3.2 Extraction Algorithm

Our CPX tool is based on the SimpleScalar 3.0c toolset [19], acycle-accurate simulator for a MIPS-like

ISA. Figure 3 shows an overview of how CPX is used to produce the most popular patterns and the

coverage results. The first pass profiles the application andcreates a complete library of patterns found,

while the second pass takes the library to determine the coverage curves. Technically, the first pass

could also create coverage information by recording which patterns each dynamic instruction was a part

of. However, each of the billions of instructions simulatedis contained in several hundred patterns. This

would require a significant amount of temporary storage and still requires a tool to process this data into

a coverage distribution. For designers wishing to trade storage space for speed, though, this option is
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available.

For the initial profiling pass, each instruction is appendedto a dataflow graph as it is simulated.

Rather than simply using the last set of instructions as the front wave (see Figure 2), CPX keeps limited-

size queues for each register. Each instruction is placed inthe queue of its destination register, dequeuing

the oldest instruction simultaneously. Instructions without register destinations (i.e., control instructions

and stores) are placed in miscellaneous queues. The front wave of the dataflow graph is then the set of

arcs between all instructions in these queues. This allows global values (such as the stack pointer) to

remain within the front wave as long as they are not overwritten.

After an instruction is appended to the DFG, all subgraphs are enumerated which:

• Include the instruction just added

• Have less than a maximum number of instructions

• Do not span basic blocks

The first requirement is essential and guarantees that we don’t double-count the same pattern–no

previously checked pattern included the node just added, and patterns checked in the future will defi-

nitely include nodes not yet added. The last two requirements are optional but convenient. Setting a

maximum pattern size dramatically decreases the number of enumerated patterns, and smaller patterns

are exponentially faster to generate hash-codes for. Finally, the basic block requirement is useful in

moderating the effect of stack references. When allowing patterns to span blocks, all top patterns in-

volved combinations of stack pushes and pops. Though these communication patterns are important and

should be represented, we wish to observe other patterns besides stack access. It is important to note

that this restriction is easily removed for more pure results.

On average, the addition of each new instruction produces between 50 and 250 patterns of eight

or fewer instructions. The sampling rate and a random numbergenerator determine which of these

patterns will be analyzed. For instance, a sampling rate of 10% would mean an average of 5 to 25

of these patterns would be checked. For each pattern to analyze, NAUTY is used to produce a 64-bit

hash-code as discussed earlier. The pattern is then stored in a hash-table using this as the key. If the key

already exists, the frequency of that stored pattern is incremented. The final output of this first pass is a

text file describing all discovered patterns and their frequencies, termed the pattern library.
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Table 1: The fourteen instruction types recognized, though only thefirst five appear in the most popular
patterns.

Type Description

iALU Integer ALU instruction
EA Effective address computation (subset of iALU)

branch Branch predicate computation (subset of iALU)
load Memory load (without EA computation)
store Memory store (without EA computation)
iMult Integer multiply
iDiv Integer division

fpAdd Floating point addition
fpMult Floating point multiplication
fpDiv Floating point division
fpSqrt Floating point square root

fpComp Floating point comparison
fpConv Floating point / integer conversion
jump Control jump

For the second pass to determine coverage, the pattern library becomes an input. As before, CPX

executes the program, maintains the front wave of the DFG, and generates a hash-code for each pattern

enumerated. The key is then compared to each pattern in the library, from most frequent to least frequent,

to find the match. That instruction is then marked as covered,and we record which pattern was used

to cover. As we sampled on the first pass, it is possible that a pattern does not match anywhere in the

library. This turns out to be statistically infrequent and does not affect results presented.

It is important to note that more than one pattern can cover aninstruction. This is a key difference

between our work and most previous work in idiom discovery [6, 27, 107]. As our objective is to observe

communication patterns, not divide up the operations into macro-instructions, this choice is reasonable.

It also proves to be convenient as determining the optimal configuration of patterns for coverage is also

NP-complete [50] and would require complex heuristics.

1.4 Pattern Experiments and Results

Using CPX, we analyze the Spec2000int and MediaBench suitesfor dataflow communication patterns.

We classify instructions into the 14 different categories shown in Table 1, though only a few of these

types show up in the most popular patterns. It is important tonote that effective address and branch

predicate computations are merely addition operations andthus are often calculated on the integer ALU.

As over 70% of dynamic instructions are executed there in ourexperiments, we separate these from other

integer ALU instructions to gain a more specific view of thesecomputations.

A detailed list of the benchmarks used is shown in Table 2. Anybenchmark omitted from these
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Table 2: Pattern statistics for each of the benchmarks studied including runtime for each CPX pass (in
hours), the total number of patterns enumerated (in billions), and the number of unique patterns.

CPU Total Unique
Benchmark Hours Patterns Patterns

S
pe

c2
00

0i
nt

164.gzip 5.0 74B 1066
175.vpr 4.1 70B 4617
176.gcc 10.2 254B 4333
181.mcf 2.9 46B 3319
197.parser 6.2 120B 3089
255.vortex 20.5 528B 3484
256.bzip2 2.9 54B 867
Total 51.8 1145B 6371

M
ed

ia
B

en
ch

adpcm-decode 8.5 88B 1874
adpcm-encode 15.9 170B 1007
jpeg-decode 7.9 100B 2891
jpeg-encode 6.9 104B 2524
epic-decode 3.1 38B 3497
epic-encode 5.2 92B 770
g721-decode 4.1 54B 1678
g721-encode 5.3 74B 1968
mpeg2-decode 9.5 84B 2448
mpeg2-encode 13.1 132B 5298
pegwit-decode 16.2 284B 1242
pegwit-encode 21.9 314B 2779
Total 117.6 1534B 7376

All Total 169.4 2679B 8615

suites did not compile cleanly under gcc 2.95.3 with O2 optimizations. Spec2000 inputs come from

the test dataset, and the default MediaBench inputs were enlarged to lengthen their execution. We

execute each benchmark for one billion instructions (or until the end of the program) after skipping the

first 100 million. The sampling rate is set to 1% and the maximum pattern size is set to eight for all

experiments. Though some new popular patterns do appear with higher maximums, the general shapes

and conclusions we draw are the same.

Table 2 also shows the runtime required for one pass on our test system, an Intel Xeon 2.4GHz

with 512MB memory running Redhat Linux. Though these runtimes might not seem remarkably fast,

they are on the same order of speed as a common cycle-accurateout-of-order simulator, SimpleScalar’s

sim-outorder [19]. In other words, the execution time is in arange considered acceptable by processor

architects. This is significant given we are tackling an NP-complete problem on a very large dataset (un-

like cycle-accurate simulation). The size of the problem isevidenced by the large number of enumerated

subgraphs per benchmark in Table 2–an average of 141 billionper benchmark.
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Figure 4: Cumulative distribution functions for how the 100 most popular patterns cover all benchmark
instructions with various sampling rates.

1.4.1 Pattern Coverage

Figure 4 shows how the most popular patterns cover the dynamic instructions from all of the analyzed

benchmarks. The results are shown as a cumulative distribution function (CDF) versus the 100 most

popular patterns (ordered most to least popular). The graphshows that 90.4% of Spec2000int and 77.7%

of MediaBench dynamic instructions are covered by the top 10most popular patterns. Unfortunately, as

overlap between patterns is allowed, this does not imply that this portion of the program can be sliced

into 10 communication templates. However, this does show that most popular patterns shown in the

next subsection do describe a vast majority of all instructions encountered.

Figure 4 also shows the effect of sampling on coverage accuracy. As would be expected, the more

aggressively sampling is used, the more results deviate from the accurate curve. Our sampling algo-

rithm assumes that patterns randomly overlap with each other, but patterns which resemble each other

will be highly correlated and affect the actual coverage distribution. The first pass is unaffected by this

phenomenon, however, and the 10 most popular patterns do notchange between no sampling, 10% sam-

pling, and 1% sampling. The sampling results on the second pass are also reasonable for our purposes

considering that a 1% sampling rate produces a 100-fold decrease in runtime.

Given the immense number of possible dataflow communicationgraphs with eight or fewer nodes

of fourteen different types, the number of patternsneverobserved is also notable. From Table 2, each

benchmark produces an average of only 2690 unique patterns,and across all benchmarks only 8615
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Figure 5: Ten most popular patterns across Spec2000int applications, from most to least popular.

Figure 6: Ten most popular patterns across MediaBench applications,from most to least popular.

unique patterns were found. Sampling was found not to be the cause of this phenomenon, but rather the

repetitive nature of code and the compiler’s limited code-to-assembly mapping algorithm. This small

set of used patterns lends credence to architecture research which focuses on average-case instead of

worst-case performance [67, 69, 121].

1.4.2 Most Popular Patterns

Figures 5 and 6 show the ten most popular dataflow patterns in Spec2000int and MediaBench appli-

cations respectively, and 7 shows the most popular patternsacross all benchmarks. As sampling was

used to speed execution, the number of occurrences of each pattern is not given; however, the relative
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Figure 7: Ten most popular patterns across all applications, from most to least popular.

frequencies of these patterns are the first 10 data-points inFigure 4. There is no ordering to the edges

in these patterns, so inputs and outputs could have occurredin any program order for the patterns to be

considered isomorphic. Unfortunately, as patterns can overlap, some patterns may be slight variants of

other patterns.

We observe several interesting trends in this data, though we recognize that our architectural back-

ground likely biases what we see. Researchers in other fieldswill likely draw complimentary conclu-

sions from these results. The first such observation is that the metric of popularity appears useful as

the patterns range in size from two to eight instructions, demonstrating a balance between size and fre-

quency. This metric also gives insight into the slight-variant patterns mentioned earlier. For instance, in

Figure 7 pattern 2 is a subgraph of pattern 3, but to be more popular must have occurred at least 15%

more frequently than pattern 3. Thus even variant-patternsprovide useful information.

It is also evident that the ten most popular patterns across all benchmarks in Figure 7 are not in the

ten most popular patterns for Spec2000int and MediaBench separately. The only exception is pattern

6, which is identical to pattern 9 in the MediaBench results.Though many of the graphs have similar

shapes and subgraphs, there is little overlap between the top patterns of these parallel media applications

and the more sequential Spec applications. Table 2 shows, however, that less than 20% of the patterns

seen in these suites are not present in the other suite.

The predominance of dependence chains is clear,especiallywhen looking at the MediaBench pat-

terns. Smith [67] termed these chains instruction strands,and several proposals suggest their collapse

into atomic macro-instructions [67, 99]. Though the specific instances of our strand patterns may have
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been subgraphs of a wider graph, the popularity of the linearshapes indicates generally linear dataflow.

For architecture researchers, this is another reminder of the limited instruction level parallelism (ILP)

present in integer code. Interestingly, our results indicate these strands are less dominant in Spec2000int,

a suite with generally low ILP.

Next we observe that the first and fourth most popular patterns for all benchmarks include a direct

load-to-store communication. This memory copy operation indicates movement in or between data

structures (copying one primitive to another in C results ina register-copy, not a memory-copy). Though

beyond the scope of this work, we hypothesize that noticeable code-compression could be obtained by

adding memory-copy instructions to the ISA rather than using a load-store pair.

1.5 Conclusion

As architectures become more dominated by wire-delay, the importance of instruction communication

versus instruction computation only stands to increase. Assuch, the fast and accurate characterization

of application communication can provide architects and compiler researchers with important data for

their work.

Without explicit knowledge of dataflow patterns, this work had previously been based on statistics

related to register usage. For instance, after showing the infrequency of instructions with two-live inputs,

Kim and Lapasti introduced an architecture with only half ofthe register ports and wakeup signals [69].

Clustered processors such as the Alpha 21364 dynamically detect instruction communication to steer

instructions to different groups of execution resources [53]. Noting the dataflow trends in static binaries,

Smith proposes a new accumulator-based ISA which operates on compiler-identified dependence-chains

[67]. The dataflow patterns shown earlier quantitatively confirm the intuition behind these and other

proposals, while still leaving room for future research.

Our future work is focused on a study of compiler effects on dataflow patterns. We wish to confirm

our hypothesis that each compiler is limited and deterministic in its generation of dataflow, but that

between compilers, interesting differences in communication patterns might be found. Additionally, the

most popular patterns among all compilers might represent application dataflow more authentically, as

some compiler-specific effects have been muted.

As a broader goal, the high coverage of the top ten patterns might indicate a level of predictability.

By anticipating and reacting to these common data movements, architects might be able to create new
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dynamic optimization techniques to reduce the impact of wire-delay. Additionally, compilers might

be able to annotate binaries with such communication information to assist these hardware optimiz-

ers. Combined with work on specific instruction idioms [6, 27, 107], the problem of compactly and

comprehensively describing the control and dataflow of a program appears tractable.
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CHAPTER II

DYNAMIC STRANDS

Summary

In the modern era of wire-dominated architectures, specificeffort must be made to reduce needless com-

munication within out-of-order pipelines while still maintaining binary compatibility. To ease pressure

on highly-connected elements such as the issue logic and bypass network, we propose the dynamic de-

tection and speculative execution of instructionstrands–linear chains of dependent instructions without

intermediate fan-out. The hardware required for detectingthese chains is simple and resides off the

critical path of the pipeline, and the execution targets arethe normal ALUs with a self-bypass mode.

By collapsing these strings of dependencies into atomic macro-instructions, the efficiency of the issue

queue and reorder buffer can be increased. Our results show that 20% of all dynamic operands can

be incorporated in strands, increasing the effective instruction window and reducing activity in many

pipeline resources. Additionally, these strands have several properties which make them amenable to

simple performance optimizations. Our experiments show average IPC increases of 15% on an aggres-

sive four-wide machine in Spec2000int, Spec2000FP, and Mediabench applications. Finally, strands

ease the IPC penalties of multicycle issue and bypass by reducing dependency pressures, providing

opportunity for clock frequency gains as well.

2.1 Introduction

As architects strive for faster pipelines with decreasing silicon feature size, they are faced with in-

evitable communication issues. Minimum latency through critical path code often requires dependent

instructions execute on subsequent clock cycles. Forwarding path delays, however, do not scale with

technology [87] and modern CPUs already spend as much time bypassing the ALU result as computing

it [45]. Additionally, instruction scheduling (wakeup andselect) gets substantially slower as pipelines

get wider [87], leading some architects to consider sacrificing back-to-back issue of dependent instruc-

tions. In the end, the scalability of modern architectures is hampered by the communication between
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dependent instructions, not the actual computation.

The key insight of this work is that many dependent instructions produce operands which aretran-

sient; that is, they have a single consumer of their value. Transient operands allow RISC instruction

set architectures (ISAs) to overcome their dyadic nature. For instance, it is impossible to sum three

numbers in RISC assembly without using a temporary register, which is probably only consumed by the

second addition. CISC proponents might use this opportunity to argue for more complex instructions,

yet a dyadic ISA can effectively describe any program. In fact, the processor is free to construct more

efficient, complex operations from these simple instructions. We propose such a method.

To address the issue of dependent instruction communication, our mechanism identifies repetitive

chains of instructions connected by transient operands. These are cached and issued atomically in re-

placement of the original instructions which are removed from the stream. Since a chain’s result is

computable as soon as its sources are ready, they are issued speculatively before all of the original in-

structions have been seen. Due to the special properties of these chains, this light-weight speculation is

easily maintained and recovered from in the case of a mis-speculation. Small logic engines and a cache,

all of which lie off the critical path of the pipeline, provide the hardware support for this mechanism.

These units prepare strands for execution on closed-loop functional units-traditional arithmetic-logic

units (ALUs) with a self-bypass mode. These ALUs can operateat double frequency because the in-

termediate values are not bypassed. The end result is a significant reduction in the number of in-flight

instructions and evident performance improvements (visible as simple IPC increases or a reduction in

the IPC penalty of multicycle issue [70, 109] and multicyclebypass [90]).

The sections are organized as follows. Section 2.2 reviews previous research in related areas. Sec-

tion 2.3 introduces transient operands, their grouping, and their relation to interconnect issues. Section

2.4 describes the hardware and algorithm for our grouping mechanism. Section 2.5 details the experi-

mental setup, coverage results, and performance results. Finally, Section 2.6 concludes and describes

future work.

2.2 Related Work

Previous work has addressed functional unit clustering, large-scale hyperblock enhancement, small-

scale dependence collapsing, and speculative data-drivenmicrothread creation. Our work gathers from
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all proposals, dynamically creating and speculatively executing groups which can span beyond the in-

struction window yet are small enough to construct and manage easily.

The termstrand was first introduced by Marquez in [76], defined as an atomic group of instruc-

tions identified at compile time. Kim and Smith later refined this definition to an atomic dependence

chain to illustrate the accumulation nature of modern integer applications [67]. This corresponds to his

and others’ observation [69] that well over half of dynamic RISC instructions in modern benchmarks

only require one or zero register inputs. Though Kim and Smith proposed a new ISA and architecture

to expose such chains, and their proposed accumulator architecture reduces communication costs by

collapsing them.

The most commonly suggested method of communication-awareexecution is clustering–dividing a

processor’s resources into logical groups and steering theinstructions between them based on depen-

dencies. This technique is implemented commercially on theAlpha 21264 and 21364 processors, which

have two identical pipelines with distinct register files, bypass networks, and issue logic [53]. Imple-

mentations with more clever steering techniques can be found in academic research, such as Multicluster

[44] and CTCP [11]. Parcerisa et al. [90] and Baniasadi et al.[8] study various clustering techniques to

conclude that performance is very dependent on cluster interconnection and steering logic. Our proposal

achieves a similar effect as clustering, but moves the steering burden off the critical path and into a fill

unit.

Many researchers have proposed using the trace cache fill unit for this and other dynamic opti-

mizations [48, 64]. RePLay [92] forms hyperblock regions (called frames) in a similar fashion, but

guarantees atomicity in its frames. Though no firm estimatesare made of fill unit latency, the authors

assume between 100 and 10,000 cycles are needed. However, performance is not sensitive to this delay

as up to 10,000 cycles produces a similar speedup [43]. The mechanism we propose is far less complex

than these proposals, focusing only on grouping chains of dependent instructions to be collapsed later

on a closed-loop ALU.

Other researchers have studied dynamic collapsing on a multi-input execution unit. Sazeides et

al. [102] explore the potential of instruction-dependencecollapsing on 3-1 and 4-1 (three or four inputs

respectively, one output) ALUs. Speedups of 1.35 on Spec95int for an eight-wide machine are stated as

possible with collapsed ALUs, which were proposed in [74] and [94] adding negligible latency over two-

input devices. Macro-op scheduling [70] uses no special ALUs, but does issue dependent instruction
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Figure 8: Common compilation of four-way addition into accumulationdataflow.

pairs into a single reorder buffer entry. Similarly, the Intel Pentium M combines some dependent pairs of

micro-ops which derived from the same x86 instruction [51].These approaches allow paired instructions

to be scheduled atomically, but the intermediate value is not quashed as with our mechanism. Macro-op

scheduling achieves roughly similar instruction coverageas our strands, but does not produce speedup

unless pipelined scheduling is assumed.

To address more than a single dependency, Yehia and Temam [121] propose using the rePLay frame-

work to create instruction “functions” which are collapsedon a 10-input bit-sliced ALU. Unlike our

mechanism, these groups are tree-shaped, non-speculative, and not limited to transient operands; thus it

must duplicate instructions between functions to satisfy fan-out. Similarly, Clark et al. [26] use rePLay

to compose up to 22 instructions into a seven-high upside-down triangle shape. Our dynamic collapsing

mechanism, though addressing fewer instructions per group, detects these shapes far more efficiently

than do mechanisms based on the complex and cumbersome rePLay engine.

In other ways, our work resembles that of data-driven multithreading. Chappell et al. first introduced

subordinate microthreads in [25], which Collins et al. [28]and Roth et al. [98] use for speculatively

computing specific critical values such as load addresses and branch predicates. These mechanisms

are effective value prefetchers, but assume a machine with simultaneous multithreading support. Slice-

Processors [74, 80] create microthreads for similar data-driven purposes but require no multithreading

support. Our strand execution also speculatively executesdataflow paths to produce a single result, but

picks the value for opportunity, not criticality.
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2.3 Transient Operands and Strands

Transient operands, produced values with only one consumer, form the building blocks of our instruction

groups. We restrict the grouping algorithm to these values because, once passed to the consumer, these

operands need not be committed to the architectural state ofthe machine. These values often connect

critical dependent instructions; in other words, this producer-consumer communication is on the critical

path of the application.

Figure 8 shows an example of transient operands generated from four-input addition. In the top box,

a simple C function returning the sum of the four inputs is shown. We used several modern compilers on

this code with various optimization levels and all returnedpractically the same assembly code, which is

shown in the lower box with its dataflow representation. Eachinstruction has a true data dependence on

the previous, creating a critical path of three instructions. In this example, the intermediate R1’ and R1”

values are transient operands–they are produced, consumedonce, and discarded. The communication

betweenadd instructions is also on the critical path of the computation, which in a traditional design

would require the use of the bypass path and back-to-back issue.

The arrangement in Figure 8 is what we term astrand. A strand is a string of integer ALU instruc-

tions that are joined by transient operands (thus have no fan-out). This definition is slightly different

than the one introduced by Kim and Smith [67] who did not preclude fan-out in their strands. This re-

striction somewhat limits the number of instructions eligible for incorporation in our strands, but allows

us to safely discard intermediate results. For our work, thecomponent instructions do not have to be

subsequent, can span basic block boundaries, and for this work have a maximum length of three instruc-

tions. Though the instructions in a strand are stored in their original encoding, they can be expressed as

macro-instructions for convenience:

R9 = ( ( R1 + R2 ) + R3 ) + R4

To cover as many instructions as possible in strands, our mechanism separates the predicate eval-

uation from branch instructions and the effective address computation from memory instructions. The

predicate and effective address computations become simple ALU operations and are thus includable

within strands. In Section 2.5.2 we will show that the percent of transient operands across Spec2000 and

MediaBench is about 66%, showing a high potential for exploitation. As transient operands have such

short lifetimes–on average less than four instructions separate producer and consumer–they are more

19



Figure 9: Overview of hardware requirements for supporting strands.New additions are shaded.

Table 3: Example entries in the operand table.
Last Producer Last Consumer Consumer

Reg Instruction Instruction Count

R5 PC 1440 - 0
R6 PC 1404 PC 1412 1
R7 PC 1408 PC 1480 8

likely to be communication-critical. Thus strands should also have this property, and thus avoiding their

internal communication should provide energy and performance benefits.

2.4 Hardware and Algorithms

The basic organization of our dynamic optimization mechanism is similar to trace-cache techniques

[43, 48, 64, 92] except for our use of a custom cache for grouped instructions. It should be noted there is

nothing mutually exclusive between our cache and a trace cache as they are accessed in different stages

and store somewhat different information. Figure 9 shows our mechanism’s relation to a traditional

OOO pipeline. There are five main components added or changed: the fill unit, the strand cache, the

dispatch engine, changes to the issue queue entries, and closed-loop ALUs. We discuss each in turn.

2.4.1 Strand Cache Fill Unit

The strand cache fill unit is similar in purpose to a trace cache fill unit: to observe the instructions

being committed and update a decoded cache. This unit finds transient operands, connects them, and
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caches them for future use. Results demonstrating the latency tolerance of the strand cache fill unit (not

shown for to brevity) closely resemble that of other fill-unit-based dynamic optimization techniques

[43]. These results show that the iterative nature of integer code allows a great deal of slack in optimizing

instructions. Thousands of cycles of fill unit delay shows noappreciable performance effect in our

mechanism as well.

Transient detection is achieved with a small structure in the fill unit called theoperand table. This

structure has one entry per architectural register, detailing the last committed producer, last committed

consumer, and the number of consumers of this value. Table 3 shows example entries in an operand

table. In this example, R5 was produced by program counter (PC) 1440 but not yet read, R6 was

produced by PC 1404 and read only once by PC 1412, and R7 was produced by PC 1408 and has been

read eight times, most recently by PC 1480. An operand is guaranteed dead when it is overwritten, so

the fill unit is assured that any instruction writing to R6 makes the previous R6 value (the one currently

shown in Table 3) dead. This operand has a consumer count of one, so if the producer and consumer are

both integer ALU operations, this table entry (producer andconsumer) has been identified as transient.

This transient is then checked to see if it connects to an existing strand. If it does, the fill unit appends

the transient to that strand; otherwise, a new strand is begun. However, to prevent the cache from

overflowing with small strands, we prohibit transients ending in branch predicate or effective address

computations from beginning a new strand–they must wait to be attached to an existing strand. It is

important to note that strands are stored using architectural registers, not renamed physical registers.

This means that the renaming algorithm will not affect the detection of these instructions in future

iterations.

The strand cache fill unit also watches committing strands tolook for source value-prediction op-

portunities. If a source strides predictably after a threshold number of strand executions (we use four,

though this choice has negligible effect on performance), the predicted next value will be computed

and stored in the strand cache. If the predicted stride is zero, this value is a predicted constant and is

treated in the same way. Since only high-confidence strides are detected, value prediction correctness is

very high–over 99%–but the limited use only increases performance by 1 to 2%. It is important to note

that the typical hazards of value-prediction are already covered by other strand hazards, adding little

complexity to handling value mispredictions. This is discussed in more detail in Section 2.4.3.
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Figure 10: The strand cache stores bookkeeping data, the component instruction information, and
previous reader data.

2.4.2 Strand Cache

The strand cache is a small content-addressable memory (CAM) which stores connected transients as

strands. Figure 10 shows its major contents. Each entry usesapproximately 175 bytes and holds four

sets of information–the operation information, the sourceinformation, the destination information, and

bookkeeping bits. Though each line is large, our results show that very few entries are needed for

effectiveness.

The first set of data in a strand cache entry holds data on the strand’s operations, one for each of the

possible instructions in the arrangement. For each operation, we store the PC, op code, and whether it

has been seen by the dispatch engine. The next set of data stores information on the strand’s sources. For

each possible source, we save the architectural register number, the PC, the current physical tag or value

of the architectural register, and whether this source PC has been seen. Next, for the destination we also

store the architectural register number along with the previous reader information, which is updated by

the fill unit. This includes the PC of the instruction which (we predict) reads the strand output register

before the strand writes to it. It also stores the value that was previously there, so it can be recovered if

a strand is executed prematurely. This algorithm is furtherdiscussed in the next subsection.

Finally, as with many architectural caches, the strand cache has basic bookkeeping information such

as a valid bit and counters. These keep track of basic strand statistics such as the number of times this

strand’s instructions have been seen. There is also a solid flag to indicate if this strand can be issued
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Figure 11: Example of strand execution and fine-grain recovery.

by the dispatch engine and a least-recently used (LRU) counter which is biased to keep taller strands

longer. This bias forces the most-significant bit of the counter low for strands with three instructions,

making it less likely to be the highest value in the table (theentry to be replaced).

As with an instruction cache, the strand cache references architectural registers, not the physical reg-

isters assigned by the renamer. Though the strand cache duplicates some information in the instruction

cache, the strand cache more importantly stores the metadata describing how operations relate and the

state of their sources. This replicated data does not bloat the cache significantly as the strand cache can

be quite small for significant effect. Section 2.5.2 detailsthe sensitivity of our mechanism to the strand

cache size.

2.4.3 Dispatch Engine

Each instruction, after being decoded, is sent to the dispatch engine in parallel with the renamer. This

component’s purpose is to insert strands into the instruction stream and remove the individual instruc-

tions from the stream. This is hazardous if assumptions about the strands are incorrect, so the dispatch

engine is also responsible for maintaining a correct machine state with the architectural registers. To this

end, there are six basic tasks which need to be completed, thefirst three of which are done in parallel.

These major tasks are illustrated in Figure 11, which shows asimple strand being triggered for execution

and a recovery strand being needed afterward.
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Setting theseenflags. The first tasks is setting theseenflag in the strand instruction entries. This

CAM lookup compares all instruction PCs in all valid strandsto the PC about to be renamed. This

should only result in zero or one hit as an instruction can only exist in one strand at once. If all the

instructionseenflags for a strand are set, the strand has completed a pass and theseenflags are reset.

After a threshold number of passes (we use four), the strand is labeled assolid. If the seenflag is already

set, this indicates that the strand did not complete its lastpass, and all seen flags are reset.

Updating the source seenflags. This lookup on all source PCs can result in multiple hits as the

same instruction can be a source for multiple strands. Thesource seenflag is also set if the input is

an immediate, an input from another instruction in the strand, the zero register, or has already been

value-predicted by the fill unit.

Updating the previous reader seenflags. As strands replace instructions outside of the safety of

renamed registers, the third task of the dispatch engine updates theprevious reader seenflag to prevent

anti-dependence violations. A quintessential example is astrand of the following macro-instruction:

R1 = ( ( R0 + 0x42 ) + 0x43 ) + 0x44

If R0 is the zero register, it is evident that this strand can be executed at any time and produce the

correct result as it has no variable inputs. Speculative renaming of this strand, however, could cause a

write-after-read (WAR) hazard if another consumer of the current R1 is later fetched. It might also cause

a write-after-write (WAW) hazard in a similar manner. To prevent these anti-dependencies between

architectural registers, the strand cache fill unit notes the previous reader PC for each strand, which is

the program counter of the last instruction that reads the value overwritten by the strand’s output. Only

the bottom output has a previous reader as it is the only valuewritten out to the register file. Strands

terminating in branch predicate or effective address computations overwrite no architectural register, so

no previous reader information is stored for these strands.

Removing instructions. If the dispatching instruction is found in a solid strand, the pipeline is

signaled to quash this instruction. To assure recoverability, when an instruction is removed, thedirty

table is updated. The dirty table has a pointer per register indicating the strand cache instruction that

creates it.

Determine strand readiness.The dispatch engine also checks the following conditions todeter-

mine which of the strands in the cache are ready:
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• Theprevious reader seenflag is set, so the strand’s output should not overwrite a livevalue.

• Each instruction in the strand must have itsseenflag set or both of itssource seenflags set. This

assures all values needed to compute the output have been seen.

• The strand must be solid.

• The strand is not already executing.

Any strands meeting the above conditions are queued for dispatch in theready strand queue. This

queue is multiplexed with the decode-to-dispatch queue with higher priority, so on the next cycle the

strand(s) will be dispatched before any normal instructions. The output register is marked as dirty

(pointing to the strand bottom) until all of the instructions in this strand are seen. Thus, strands can

execute before some and after other component instructions–it is only important that all component

instructions are eventually seen and removed before the strand executes again. For example, the strand

in Figure 8 is ready to dispatch as soon as the inputsa, b, c, andd have been seen as well as the previous

reader of R9. As these inputs are often immediates or highly predictable register values, strands usually

dispatch many cycles before all of their instructions have been seen. Once in the dispatch stage, the

strand will be allocated one reorder buffer entry as if it were a single instruction. Of course, since a

strand is atomic, the whole strand must be quashed if some of its instructions are quashed by a branch

misprediction. This is a rare occurrence, however, as strands usually exist within a single basic block.

Anti-dependence checking.The final task of the dispatch engine is to detect consumptionof dirty

values. If the dispatching instruction reads a register with a dirty table entry pointing to a strand’s

bottom instruction, this is a previous reader violation–the previous value is being read but a strand has

overwritten it (write-after-write hazard). In this case, the dispatch engine puts the offending instruction

back into the decode-to-dispatch queue and dispatches a load-immediate instruction in theready strand

queueto replace the previous value. As this queue has a higher dispatch priority than the decode-

to-dispatch queue, the strand will replace the proper register value before the offending instruction

dispatches again.

Conveniently, this anti-dependence detection also coversall value-prediction errors. For instance,

if an incorrect source value is used in a speculative strand producing R7, that register now has a cor-

rupt value. However, the corrupt value cannot be read beforethe entire strand is seen and any value
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mispredictions are evident. Any attempt to read R7 before all the strand’s instruction have been seen is

previous reader violation, and a value recovery is initiated. And, by the time all of the strand’s instruc-

tions have been seen, the value prediction can be checked by the dispatch engine. If it was erroneous,

then the strand is re-inserted with the correct inputs.

If the dispatching instruction reads from a register with a valid dirty table entry not pointing to a

strand bottom, this triggers arecovery strand. The offending instruction is put back into the decode-

to-dispatch queue and a sub-strand consisting only of the instructions that produce the dirty value is

queued. Depending on the flags of each instruction, the source values from the last strand execution

might be used for execution instead of the current register values. An example recovery is shown in

Figure 11, where the read of R2 would result in an incorrect value. The dispatch engine also notes when

instructions write to a dirty register, meaning it is no longer dirty thus the table entry is cleared.

Recovery strands are also triggered at strand modificationsand traps. The first keeps the dirty table

consistent with the strand cache by flushing any values dependent on a strand about to grow or be

evicted. Recovery strands are issued at system calls and interrupts as they are assumed to access all

registers, thus any values marked as dirty must be flushed to return the system to a consistent state.

Since these events are statistically infrequent and there are only a handful of dirty registers at any time,

recoveries are not a significant source of slowdown. On the whole, recoveries are not common–only

about one per hundred strand executions.

It is important to note that recovery strands are dispatchedin a lazy manner; that is, they are only

inserted into the instruction stream on-demand. For instance, if a strand crosses a branch boundary

but the branch mispredicts, the whole strand is quashed and no recovery strand is dispatched. Though

the instructions before the branch are now effectively missing from current instruction stream, the like-

lihood that these results will be needed on the new path turnsout to be quite small. Thus, only if a

future instruction requests these dirty values will they berecovered. This property of transients prevents

excessive recoveries from impeding speedup.

2.4.4 Issue Queue Entries

In order to correctly issue strands, the issue queue entriesmust be slightly modified as shown in the

right portion of Figure 12. The first trivial change is the addition of extra op-code fields and immediate

fields for each of the component instructions. The number of needed fields is the maximum number of
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Figure 12: Detailed diagram of ALU and issue queue modifications.

instructions allowed per strand.

Secondly, we add anoper-counterto store which operation is currently being considered for issue.

This is only necessary for mixed-strands which contain operations other than integer ALU instructions.

These groups will be issued one instruction at a time to the appropriate functional unit, as opposed to

the ALU strands which issue atomically to the closed-loop ALUs. Thus, we must keep track in the issue

queue entry which is the current contained operation.

Next we addoper-id tags to identify which instructions the sources apply to. Inthis manner, the two

wakeup comparators assigned to the two sources can be sharedfor the entire strand regardless of the

number of contained operations in the strand. A couple of OR gates and small comparators assure that

the readiness of a source is only applicable when theoper-countermatches theoper-idof the source.

A more straight-forward solution would haveN − 1 comparators, one for each possible input to a

strand of sizeN . The Intel Pentium M, for instance, incorporates three to support the three possible

inputs to a fused pair of operations [51]. To a lesser extent,we can add a third wakeup comparator and

share it using the counters above amongst any reasonable number of instructions in a strand. Section

2.5.5 evaluates the benefits of adding a third shared comparator. In the end, we feel the hardware cost

of supporting the third input is too substantial. This is acceptable, however, as most identified strands

need very few inputs (about 1.7 on average). This conclusioncould have been predicted from the the

preponderance of zero- and one-input instructions in integer applications [41, 67], which combine into
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strands with few external inputs.

A final modification to the issue entries allows tag broadcastto be avoided for internal results. As we

have guaranteed that there are no other consumers that will be interested in these intermediate results,

there is no need to broadcast their availability. The tag busis set of long, wide, high-capacitance wires,

and by avoiding unnecessary driving of these lines, we can conserve additional power. A single tran-

sistor per issue entry accomplishes this effect, reducing tag broadcasts by about 5-10% and subsequent

wakeups by 15-30% in our experiments.

2.4.5 Closed-Loop ALUs

The execution target for strands are closed-loop ALUs, shown in the right of Figure 12. These functional

units are normal integer ALUs with the addition of a self-forwarding mode. In this mode, output values

are sent directly back to the inputs of that ALU and not written to the result bus. Thus the intermediate

value is lost upon usage and never committed to the architectural state. As modern processors spend

half of the execution cycle on ALU execution and half on full bypass [45], an ALU spinning on its

own results can compute two internal values per cycle. This closed-loop operation is similar to the

low-latency ALUs of the Intel Pentium 4 [57], which perform two dependent integer instructions in the

two halves of a cycle. However, the Pentium 4 cycle time is relatively short and there are two ALUs are

on the double-speed bypass, so these half-cycle operationsare limited to 16 bits. Our closed-loop ALU

only bypasses to itself, and thus can complete two full ‘single-cycle’ operations in one cycle.

A strand is issued two-way-piecewise (two instructions percycle) to a closed-loop ALU the issue

queue. It then spins for0.5 · H cycles to compute the final output of the strand, whereH is the height

of the strand. Of course, the final result from a closed-loop operation must be bypassed (which takes

half a cycle), so the latency for the result to be ready is⌈0.5 · H + 0.5⌉ cycles. For example, a two-high

strand requires one cycle for execution plus half a cycle to bypass the result. As the broadcast bypass

does not operate at this double-frequency, this rounds up toa two-cycle latency. During this time, the

ALU is busy and not available for issue.

2.5 Experimental Setup and Results

To determine the effect of dynamically created instructionstrands, we implemented our structures and

algorithms on the cycle-accurate SimpleScalar 3.0 simulator with the PISA instruction set [19]. We

28



Table 4: Architectural parameters used for all simulations.
Feature Value

Integer ALUs 4 units
Integer Multipliers 2 units
Fetch Queue 32 entries
Reorder Buffer 128 entries
Issue Queue 32 entries
Load/Store Queue 32 entries
Memory Ports 2 ports
L1 I-cache 64 KB (2 way), 3 cycles
L1 D-cache 64 KB (2 way), 3 cycles
L2 Unified 1024 KB (16 way), 8 cycles
Memory infinite size, 160 cycles
Branch Predictor combining bimodal/gshare
Branch History Table 4096 entries
Branch Target Buffer 2048 entries (4 way)
Branch Penalty 10 cycles

focus on measuring the two benefits of our work: the effectiveness of grouping instructions into atomic

entities, and the IPC gains from the speculative and double-speed execution of strands. We also evaluate

performance sensitivity to the dispatch engine delay, confirming that a strand-mechanism is latency

tolerant.

2.5.1 Experimental Parameters

Table 4 enumerates the parameters common to all designs evaluated in this section. Most of the bench-

marks from Spec2000int, Spec2000FP and MediaBench [73] areused for analysis. Any benchmark

omitted from these suites did not compile cleanly using gcc 2.95.3 with O2 optimizations. Spec2000

inputs come from thetestdata set, and the default MediaBench inputs were enlarged tolengthen their

execution.

For each simulation, we execute 500 million effective committed instructions after skipping the first

100 million. By using effective commits, we avoid the discrepancy in number of committed instructions

between the strand and baseline models. To assure both are measuring the exact same piece of the

application, we also verify by hand that the number of loads,stores, and branches committed is identical

between models.

2.5.2 Operand Coverage

As stated earlier, as more operands are encapsulated withinstrands, unnecessary activity within the issue

queue, bypass path, register file, and other resources are reduced and the effective size of these structures

is increased. Additionally, as strands are completed eagerly in dataflow order rather than control flow, a

29



Figure 13: Percent of dynamic operands which were transient, and how many of those which were
incorporated into strands with various strand cache sizes.

reduction in load and branch penalties should create IPC gains with larger coverage.

The full height of the bars in Figure 13 show the percent of dynamic operands in our benchmarks

which were transient operands. It is clear from the average 66% transience rate that there is high

potential for exploitation and modern broadcast-based pipelines are overdesigned. The breakdown of

these bars represents the portion of transients which were covered with a 16-entry strand cache (2.8KB),

32-entry strand cache (5.6KB), 64-entry strand cache (11.2KB), 128-entry strand cache (22.4KB), and

those which were unincorporated. Though operands do not correspond 1-to-1 with instructions, the

coverage numbers for instructions are very similar.

On average, about 10% of dynamic operands are covered with the smallest strand cache, 16 entries.

Doubling the size to 32 adds 4% of coverage, then doubling to 64 adds 3%, and then doubling to

128 adds 2%. Though this diminishing return indicates, thatthere are only small gains beyond 128

entries, that is interestingly false. MediaBench’s pegwit-encode and pegwit-decode both require over

400 strand cache entries before any instructions can be covered. This is due to the high transience of

operands within the main loop, which overflow the strand cache before any strands can be solidified.

With a large cache, however, the strand mechanism can cover over 40% of the transients in these two

benchmarks.

As such, the benchmarks with the highest opportunities for exploitation sometimes end up being

the hardest to affect. For the highest transient coverage onall benchmarks, an infinite-sized cache is
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(a)

(b)

Figure 14: Average (a) activity level changes in affected pipeline operations and (b) subsequent energy
level reductions in related resources.

required. As this is impractical to build, static detectionof strands [101] might be a more practical

approach to maximize coverage at the cost of eager execution.

2.5.3 Energy Changes

As stated in the previous subsection, the incorporation of operands within strands prevents unnecessary

communication within the pipeline. Figure 14(a) shows five important such communications and their

reduction as strand cache size changes.Tag wakeupsandtag broadcastsrefer to the comparisons and

broadcasts of result tags in the issue queue. As we are confident that no other instructions are interested

in the intermediate output of a strand, there is no need to announce its availability on the high load

tag bus or make the subsequent comparison when that tag reaches each issue queue entry. As such tag

wakeups are reduced between 15-30% and tag broadcasts by 5-10%. Select cyclesrefers to the number
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of cycles that the select logic is selecting instructions. As strands compress the instruction stream, the

odds of having an empty issue queue at any particular cycle rises slightly, reducing the need for select

activity.

If we make the simplifying assumption that the energy of the issue mechanism is represented by the

sum of the wakeup energy, broadcast energy, and select energy (which is constant per cycle as long as it

is active), we can compute issue energy change with Equation1. In this equation,Ewkp, Ebcst, andEsel

are the energy of one wakeup comparison, one tag broadcast, and one active select cycle respectively.

Similarly, Nwkp, Nbcst, andNsel are the number of wakeup comparisons, tag broadcasts, and active

select cycles during the benchmark execution.

Eissue = (Ewkp · Nwkp) + (Ebcst · Nbcst) + (Esel · Nsel) (1)

To determine the energy for each operation, we use SPICE to model the issue logic using a predictive

70 nm technology transistor model provided by the Device Group at UC Berkeley [23, 117]. Our

analysis shows that each wakeup comparison expends 5.10 pJ,each broadcast 27.6 pJ of energy, and

each select cycle 0.18 pJ. It should be noted our model provides energy data with more significant digits

than are being shown here. Figure 14(b) plots the resultant energy reduction of the issue logic using

these constants and Equation 1. Decreases from 12% with a 16-entry strand cache to 24% with a 128-

entry strand cache are shown. As issue logic often represents a hot-spot for power and heat within a

processor, any reduction of these in this resource is welcome.

Figure 14(a) also plots the reduction of writebacks which isequivalent to the uses of the full bypass

network. Though this 4-8% reduction is less dramatic than the reductions in the issue logic, it is signif-

icant given the power expense of the bypass network’s large result buses and large input multiplexers.

As the dynamic energy of bypass is roughly a function of it’s activity, Figure 14(b) copies these points

as the reduction in bypass energy.

Finally, 14(a) plots the reduction in physical register filereads. Though it is only 1-2%, this reduc-

tion is combinable with that for writebacks which also represents physical register file writes. If we

assume that the dynamic energy for the register file consistsof only the read and write energies, we can

represent it with Equation 2. In this equationEread andEwrite are the energy on one register read and
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Figure 15: IPC speedup as the dispatch engine delay is varied from zero to three cycles.

one register write, respectively. Similarly,Nread andNwrite are the number of reads and writes to the

register file during the execution.

Eregfile = (Eread · Nread) + (Ewrite · Nwrite) (2)

To determine the per-read and per-write energy, we use eCACTI [75] to model a 64-entry 64-bit

register file with 8 read ports and 4 write ports at 70nm. This results in a read energy of 262 pJ and

a write energy of 260 pJ. Combining those constants with Equation 2 produces the register file energy

reduction curve shown in Figure 14. Depending on the size of the strand cache, energy is reduced

between 4 and 8% in this resource when using strands.

2.5.4 Dispatch Engine Delay Sensitivity

Of course, whether strands are an overall positive or negative addition to a processor in terms of energy

depends greatly on the strand creation and detection hardware. Though a physical model of this logic

is beyond the scope of this work, we can observe how sensitivethe pipeline is to running this logic at

a low frequency. If the strand hardware can be pipelined intomultiple stages, it’s bandwidth can be

maintained while consuming less power than a monolithic logic block.

There are two possible opportunities for pipelining in the strand hardware–the strand cache fill-unit

and the dispatch engine. Related work in fill-unit dynamic optimization has shown that performance is
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Figure 16: Harmonic mean of IPC speedup for each of the three benchmark suites and the overall
mean as the maximum strand size and maximum strand inputs is varied.

insensitive to thousands of cycles of fill-unit delay [43]. Our experiments confirm this, as strand cache

fill unit delays of thousands of cycles show no appreciable effect on coverage or performance either. As

our fill unit is far simpler than that proposed in [43], we feelthis range is more than sufficient to cover

possible design delays.

The latency of the dispatch engine is less predictable, however. To analyze the performance sensi-

tivity to this delay, we vary the latency of the unit from zeroto three cycles, within the expected range

considering the parallel nature of the tasks to be performed. Figure 15 shows these results as the IPC

speedup of the strand-enabled machine for each of these conditions. For this experiment the strand

model uses 32 strand cache entries, thus the zero-cycle speedup is identical to the 32-entry bar in Figure

16.

Despite the additional latency required by the dispatch engine, the average IPC speedup changes

little. This is primarily due to the aggressive nature of theunit, which eagerly inserts strands into the

stream many cycles before the component instructions wouldbe dispatched, and thus often sooner than

the result is needed. Extending the delay of this unit servesonly to lessen the aggressiveness, producing

slightly less speedup and very little effect on coverage. Inmany cases, performance actually increases

with longer delays due to errant strands being canceled before insertion, thus avoiding wasted pipeline

resources and costly recovery penalties.
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2.5.5 Strand Size Sensitivity

Within the strand cache fill unit, it is possible to constrainthe strands to a maximum number of opera-

tions and external inputs. As strands become longer, they increase the overall instruction-compression

effect within the pipeline, decreasing needed entries in resources to maintain an baseline instruction

window. Supporting longer strands has a cost, though. More operations per strands requires adding ad-

ditional fields in resources that hold the strand (issue queue, reorder buffer, etc.). Supporting more inputs

also requires extra fields and additional wakeup comparitors in the issue logic as all possible inputs may

become ready in one cycle. These effects diminish the resource compression effect of strands–resource

entries become larger despite there being fewer of them.

To analyze whether supporting longer strands or more inputsis useful from a performance perspec-

tive, we plot the harmonic mean of speedup for our three benchmark suites for maximum strand sizes

of two, three, four, and five and maximum inputs of two and three in Figure 16. It should be noted that

inputsrefers to live register inputs, not immediates or the zero register.

In general,performance is not very sensitive to strand sizeor inputs. Overall IPC increases 12-15%

regardless of the strand size chosen. This insensitivity isdue to the rarity of strands longer than three

instructions and strands with more than two inputs. Also, most of the IPC speedup is from the aggres-

sive speculative execution of strands, not the compressioneffect in resources or the double-speed ALUs.

When executing strands on traditional 1-cycle ALUs, average speedup drops by only 3%. Though indi-

vidual instructions could also be cached and speculativelyexecuted in the same manner, the atomicity

and limited fan-out of strands makes them more amenable to this type of precomputation.

These IPC increases can directly translate to an instructions per second (IPS) improvement as a

strand mechanism does nothing to lengthen cycle time. Alternatively, these IPC gains can be used to

offset the penalties of multicycle issue [70, 109] and multicycle bypass [90] which affect dependent

instructions most severely. Though we do not quantify cycletime benefits in this work, previous re-

search has shown that fused dual-instructions are effective at recouping the IPC costs of multicycle

issue [51, 70]. We would expect better results for strand execution which collapses up to three depen-

dent instructions, not just two. The more contention there is for each issue queue slot, the more benefit

can be achieved from instruction grouping.

The figure also shows that floating point applications are farless amenable to strands than integer
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Figure 17: IPC speedup as the issue queue size is varied.

applications. The most obvious reason for this is that the current dynamic strand implementation only

collapses integer ALU instructions. Additionally, the Spec2000FP applications tend to be highly dom-

inated by execution bandwidth (high IPC) or memory latency (very low IPC), and strands have limited

effects in these cases. The MediaBench suite, however, shows high speedups of 19% on average. These

applications are far more sensitive to branch penalties andinteger dataflow restrictions, and strands can

allievate both of these hazards. Interestingly, most of these applications also have little sensitivity to

instruction window size, so increasing the maximum strand length or inputs has a negligible effect on

performance.

2.5.6 Issue Queue Sensitivity

However some applications are more sensitive to instruction window size. Generally the instruction-

stream compression effects of strands increases as resources become more scarce. This is analogous to

the value of compression in low bandwidth network devices (such as modems) where every bit must

be carefully utilized to deliver acceptable performance. Similarly, turning a 4-entry issue queue into an

effective 16-entry one has far higher value than turning a 128-entry into a 512-entry one.

To demonstrate this effect, Figure 17 shows our the IPC speedups on our benchmarks change as the

issue queue size is varied between 4 and 128 entries in powersof two. The 32-entry model is our baseline

strand configuration and thus these bars are identical to those of the 0-cycle delay configuration in Figure

15. As stated in the previous subsection, the MediaBench applications are insensitive to instruction
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window size due to their high branch misprediction rates andhigh cache hit rates. Spec2000int and

Spec2000FP applications, however, are highly sensitive due to the frequency of load misses and far-

flung ILP.

Overall, the harmonic mean of IPC speedup increases from 15%to 23% when the issue queue size is

reduced to 4 entries, and reduces to 11% when the issue queue size is increased to 128 entries. In the 128

entry case, the remaining speedup is mostly what is providedby the eager execution and double-speed

ALUs.

2.6 Conclusion

We have shown that linear chains of dependent instructions are common in integer application code,

requiring unnecessary communication traffic within issue and bypass. In a conventional machine, these

communication-intensive resources are designed for the worst case, reside within the critical path, and

must operate atomically for full performance. As a result, they are often primary determiners of proces-

sor cycle time [87]. Additionally, managing an increasingly large number of in-flight instructions in-

creases power and delay for out-of-order pipelines, possibly protracting cycle time as well.

However, our dynamic mechanism effectively collapses dependence chains into atomic entities,

reducing the need for fast issue, quick bypass, and large instruction windows. The key to its success

lies exploiting the characteristics of transient operands, the plentiful temporary register values needed

in RISC instruction sets. These transients form strands with only a small number of unpredictable live

inputs, which are easily speculated upon to generate noticeable IPC speedup.

On-going strand research focuses on the content-addressednature of the strand cache and devising

more efficient methods of addressing this structure. A related goal is to quantify the power effects of

a strand mechanism–whether the decreased communication traffic and number of in-flight instructions

offsets the power demands of strand cache lookups. We also continue to refine the replacement algorithm

for the strand cache, as previous refinements yielded significant efficiency improvements.
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CHAPTER III

STATIC STRANDS

Summary

Modern embedded processors are designed to maximize execution efficiency–the amount of perfor-

mance achieved per unit of energy dissipated while meeting minimum performance levels. To increase

this efficiency we propose utilizingstatic strands, dependence chains without fan-out which are exposed

by a compiler pass. These dependent instructions are resequenced to be sequential and annotated to com-

municate their location to the hardware. Importantly, thismodified application is binary compatible and

functionally identical to the original, allowing transparent execution on a baseline processor. However,

these static strands can be easily collapsed and optimized by simple processor modifications, signif-

icantly reducing the workload energy. Results show that over 30% of MediaBench and Spec2000int

dynamic instructions can be collapsed, reducing issue logic energy by 16 to 24%, bypass energy 17 to

20%, and register file energy 13 to 14%. Additionally, by increasing the effective capactity of pipeline

resources by almost a third, average IPC can be improved up to15%. This performance gain can then

be traded in for a lower clock frequency to maintain a baslinelevel of performance, reducing energy

further.

3.1 Introduction

Over the past decades, instruction sets have become far moreaggressive in exposing application par-

allelism. Very-long instruction word (VLIW) sets rely on identifying instruction-level parallelism–

operations safe for simultaneous execution. Similarly, instruction set extensions such as Wireless

MMX TMexplicitly describe which data can be processed simultaneously, and aggressive compilers even

identify such data-level parallelism automatically without programmer assistance [12, 32]. Despite

these efforts, little attention has been placed on exposingsequentiality. This orthogonal characteristic is

represented far more frequently in modern integer workloads [67, 99], and thus Amdahl’s Law suggests

it might affect performance more significantly.
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In this work, we focus on the sequentiality produced bytransient operands[99]. These results

feed one and only one dependent instruction. The instructions producing and consuming these tran-

sient operands commonly form chains, or strands, of computation. This form is sequentiality is quite

prevalent in integer workloads and lends itself to several energy-reduction opportunities.

Identifying and collapsing dependence chains is an active area of research and has generated several

approaches, dividable into two distinct classes. Dynamic techniques [51, 70, 99, 121] are effective at

optimizing existing binaries, but come at a high complexityand power cost, making embedded imple-

mentation impractical. Static techniques [15, 67] reduce the hardware cost, but sacrifice binary compat-

ibility in the process. Instead, we propose a hybrid technique for identifying these strands statically and

optimizing them dynamically. Thus our technique incorporates the best of both worlds–minimal hard-

ware complexity from static identification and binary compatibility from dynamic optimization–while

producing significant energy reductions.

For strand detection, we utilize a compiler optimization pass to identify chains of dependent in-

structions connected by transient operands. These instructions are then rearranged in the binary to be

subsequent, and annotations are made identifying the startand length of these strands. It is important to

note this subtle reorganization of the binary’s instructions produces an application that is functionally

identical to the original, and the annotations are made in a completely transparent manner. Thus this

altered binary is completely and correctly executable on unmodified hardware.

With the addition of very little additional logic, however,processor optimization of these strands

produces several significant benefits. For strands comprised only of integer ALU instructions (about

90% of all strands), intermediate values never leave the ALU. This reduces bypass path and register

file energy significantly. Additionally, strands avoid expensive uses of the wakeup and broadcast during

issue, reducing wakeup comparisons and result tag broadcasts. Finally, by compacting multiple opera-

tions into single reorder buffer and issue queue slots, the effective size of these structures is increased.

As performance is usually secondary to power in the embeddeddomain, some or all of this IPC gain

can be exchanged for frequency reductions (and thus energy).

The sections are organized as follows. Section 3.2 introduces related work in static and dynamic

dependence chain optimizations. Next, Section 3.3 provides background on transient operands and

strands. Our process of detecting static strands is described in Section 3.4, and our simple hardware

optimizations are described in Section 3.5. Section 3.6 details the experimental setup and analyzes the

39



energy and performance effects of our approach. Finally, Section 3.7 concludes with a description of

future work.

3.2 Related Work

The termstrand was first introduced by Marquez in [76], defined as an atomic group of instructions

identified at compile time. Kim and Smith later refined this definition to an atomic dependence chain

when proposing a new architecture, Instruction-Level Distributed Processing [67]. In their design, the

compiler divides the program into dependence chains (strands), which are allocated to a distributed set

of accumulator functional units at run-time. The sequential nature of integer applications is thus suc-

cessfully exposed to the hardware. This observation of sequentiality corresponds to other observations

that a majority of dynamic RISC instructions in modern benchmarks only require one or zero register in-

puts [21, 41, 69]. Later work by Kim and Smith added dynamic binary translation, allowing unmodified

binaries to execute on the new architecture with the cost of translation overhead [68].

Clark et al. [26] propose to statically collapse macro-instructions for execution on an efficient cus-

tom functional unit. Like our mechanism, groups of collapsible instructions are identified with trans-

parent marker instructions, though the subgraphs being collapsed in that work are far more complex.

Bracy et al. [15] also use the compiler to collapse dataflow subgraphs, but with the restriction that the

macro-instructions satisfy the interface of a single instruction (two sources, one destination, one mem-

ory reference, one control change). This proposal, however, sacrifice binary compatibility to support

the annotations. For this work, we also use the notion of interfaces to minimize the additional hardware

complexity, but binary compatibility is maintained.

To maintain application compatibility, other researchersuse dynamic dependence chain detection.

Sassone and Wills [99] use a modified fill unit to identify chains of transient operands dynamically

which are stored in a small cache. IPC speedup is achieved viaavoidance of broadcast bypass dur-

ing execution and the aggressive insertion of chains based on data-dependence conditions. Yehia and

Temam [121] propose a similar approach, but collapse more complex dependence graphs dynamically

and execute them non-speculatively on a bit-sliced ALU. Raasch et al. [95] propose a front-end detec-

tion of chains which permits a chain-based issue mechanism.Despite the evolutionary nature of these

schemes, significant hardware additions are required to achieve instruction coverage and speedup on
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Figure 18: Common compilation of four-way addition into strand dataflow.

Figure 19: Percent of all dynamic operands which are transients, and how many were eventually
grouped by our detection.

these designs. Any power or complexity moved away from issuelogic or bypass is replaced with (prob-

ably greater) complexity elsewhere on the chip. Our proposed approach, however, does the complex

detection at compile-time, removing the need for strand detection and insertion hardware.

Based on the same principle of dynamic collapsing, Kim and Lipasti [70] introduce macro-op fusion

to dynamically detect dependent pairs of instructions and place them in the same issue queue entry.

Similarly, the Intel Pentium M [51] combines some dependentpairs of micro-ops which derive from the

same x86 instruction. Both of these proposals, however, arelimited to two-instruction groups, do not

avoid broadcasts of intermediate results and tags, and require non-trivial detection hardware.
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3.3 Transient Operands and Strands

Transient operands, register values with only one consumer, form the building blocks of our instruction

groups. We restrict the grouping algorithm to these values because, once passed to the single consumer,

these operands need not be committed to the architectural state of the machine. Figure 18 shows an

example of transient operands generated from four-way addition. In the top box, a simple C function

returning the sum of the four inputs is shown. We used severalmodern compilers on this code with

various optimization levels and all returned practically the same assembly code, which is shown in the

lower box with its dataflow representation. Each instruction has a true data dependence on the previous,

creating a critical path of three instructions. In this example, the intermediate R1’ and R1” values are

transient operands–they are produced, consumed once, and discarded.

Transient operands are quite prevalent modern integer applications. Figure 19 shows the percent

of dynamic integer operands (integer results) in Spec2000int and MediaBench benchmarks which are

transient (experimental parameters defined in Section 3.6.1). Across these applications about 72% are

transient, showing a high potential for exploitation. The graph also shows the percent of these operands

which were eventually grouped by our mechanism; on average,about half of them are. The other half,

as will be explained in more detail later, cannot provide us with the execution advantages we seek.

There are three primary causes for the prevalence of transient operands in modern integer appli-

cations. Figure 18 is an example of the first: language semantics. In the figure, the addition must be

evaluated from left to right according to the rules of C, requiring an accumulation of the final value.

Adding two pairs of parentheses arounda+ b andc+d forces tree-form addition instead. Tree addition,

however, still uses two transient operands for the second primary cause: dyadic (two-input) ISAs. With

only two source inputs to the addition operation, there is noway to avoid using at least two temporary

registers in adding four numbers. The final cause is compilerheuristics, which are often focused on

conserving architectural registers. Accumulating a valuerequires the fewest number of registers (one),

but each intermediate value of the output is a transient operand.

Often instructions producing and consuming transient operands connect and form chains of compu-

tation, as in Figure 18. This arrangement is what we term astrand. A strand is a string of instructions

that are joined by transient operands (thus have no internalfan-out). This definition is slightly different

than the one introduced by Kim and Smith [67] who did not preclude fan-out in their strands. This
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Figure 20: Example of static strand discovery, creation, and antidependence-dependence correction.

restriction reduces the number of instructions eligible for incorporation in our strands, but allows us to

safely discard intermediate results. We also restrict transient operands to integer registers. Though there

is nothing inherent about strands which is restricted to integer instructions, collapsing floating point

instructions is of less importance in an embedded domain.

We also differentiate between strands composed entirely ofinteger ALU instructions (as in the ex-

ample) and those composed of a mixture of instruction types.Interestingly, the former are far more com-

mon in applications and are also easier to optimize, as we will discuss later. Mixed strands containing

loads and stores, even chained together, are rarer but stillpresent interesting power-saving opportunities.

3.4 Static Strand Creation

Previous work has shown that dependence chains can be effectively detected dynamically [51, 70, 99,

121] but incur micro-architectural overheads of transistors, power, complexity, and design time. For the

embedded domain, we require a static technique which imposes minimal hardware cost. We choose a

compiler approach to expose our sequentiality, analogous to methods for exposing data-level parallelism

(DLP) at compile time [12, 32]. The reader should note this isperformed as the last compiler stage, after

register allocation, to avoid interfering with other optimizations.

An overview of our algorithm on a small code segment is illustrated in Figure 20. We explain the

four primary phases in turn.
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Table 5: Data structure used to detect static transient operands with example values.
Last Producer Last Consumer Consumer

Reg Instruction Instruction Count

...
R4 - - -
R5 inst 1 - 0
R6 inst 2 inst 4 1
R7 inst 3 inst 11 5
...

3.4.1 Transient Identification

As stated previously, transient operands are register values consumed only once. As hardware opti-

mizations will not commit these transient results to the architectural state, no false positives can be per-

mitted. Thus, all possible control paths from a producer instruction must be enumerated to assure that

there is always one and only one consumer of this value. We have performed experiments with allowing

probabilistic transients–operands which only on rare occasions have more than one consumer–and have

concluded it does not significantly improve coverage. This is due to the nature of register access patterns

within and between blocks.

It is important to note that we allow transients to cross basic block boundaries, but to make the

control path enumeration tractable, we do not permit crossing superblock1 boundaries. Thus the analysis

can proceed one superblock at a time.

To discover static transients, the compiler steps through each superblock and uses the data structure

shown in Table 5 to keep track of live operands. This structure has one entry per architectural register,

detailing the last producer instruction, last consumer instruction, and the number of consumers. We

start at the top of each superblock and, for each instruction, update the table’s data. A separate bit

vector notes which register values have been written to, making themlive. When a branch instruction is

encountered we must determine all live values which can be read down this taken path. Thus all paths

are recursively followed from this taken branch, updating the last consumerandconsumer countof the

live values as if the original branch itself had read the value. This recursion ends when all registers live

at the time of the initial branch have been overwritten. Thisenumeration of all control-paths is also done

at the fall-through of the superblock to assure that all future consumers of live values are recorded.

When an instruction overwrites a live register, the previous operand with that name is now dead

1A superblock is defined as a collection of basic blocks with one or more output arcs but only one input arc [60].
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and we can clear the last consumer and consumer count for thatentry. However, if the consumer count

was one, the compiler first records that a transient operand exists between the producer and consumer

instructions. This check for transients is also performed on all live table entries at the end of the su-

perblock step-through. The result is a collection of instruction-pairs indicating which instructions are

joined by transient operands, illustrated in Figure 20(a).

3.4.2 Strand Identification

Next the compiler discovers chains of candidate transient operands, otherwise known as static strands.

As the processor will collapse a strand’s instructions intoan atomic macro-instruction, longer strands

seem ideal. Unfortunately, most current processors are only designed to internally handle instructions

with one op-code, two inputs, and one output. The number of op-codes and inputs, however, will

rise with each additional instruction collapsed. Section 3.5 details the hardware costs and Section 3.6

presents the energy and performance effects of longer strands.

This creates two options for handling long strands: detect and identify strands of any length and

let the hardware cut down strands into the maximum length it supports, or set a reasonable maximum

which the static detection and hardware optimization share. As strands longer than five instructions are

infrequent and we wish to require minimal hardware changes,we choose the latter. Thus, we choose a

maximum op-code count and maximum external inputs (resultswill evaluate maximum strand sizes be-

tween two and five instructions, and maximum inputs of two andthree) that both compiler and hardware

are aware of.

In order to maximize coverage of transients with strands, weevaluated several complex heuristics

but concluded that a simple greedy approach is equally effective. As such, we iteratively search for the

longest chain of unincorporated transients, mark them as covered, search for the next largest, and so on.

Unfortunately, unincorporated transients are inevitablewith this approach. For example, a dependence-

chain of length four with a maximum strand size of three will result in a leftover instruction. Had

the maximum length been two, all four instructions would have been covered by two strands, but a

dependence chain of three would then produce a leftover. In general, a maximum strand length ofN

will produce a left over instruction with a chain of lengthN + 1 with a greedy approach. Later results

show, however, that total coverage is very weakly affected by maximum strand size (see Figure 22).

Far more dominant factors in coverage are unrelated to strand-size. The most important is the safety
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of the detection algorithm, which considers jump-registerand system-call operations to be potential

consumers of all live registers. As only safe transients canbe incorporated, this restriction sacrifices a

significant number of possible transients. Additionally, any transients which cross superblock bound-

aries are not detected, and any that are not sequentially placeable are avoided (explained in the next

subsection). Finally, many transients share a consumer, forming a “V” dataflow shape. As strands are

atomic and cannot share instructions, one of these transient operands will not be covered in the end. We

currently investigating strategic instruction duplication to remove this hazard [84] and creating a more

thorough breakdown of ungroupable transients to help with the others.

3.4.3 Instruction Resequencing

This step rearranges the instructions in a strand to be subsequent. Although this property of static

strands could be relaxed, we wish to move as much of the strandformation overhead from hardware.

Non-sequential strands would require more complex annotation techniques and decoding hardware.

Reorganizing the instructions is done with the restrictionthat the altered program is computationally

equivalent to the original code. In other words, the binary must produce the same result whether hard-

ware optimizations are used or not.

A full enumeration of all true dependencies (read-after-write) and antidependencies (write-after-

read and write-after-write) must be done first to assure thatthe program outcome is not altered during

reorganization. This is guaranteed by identifying the instructions which must come before the strand

(prerequisites) and after the strand (postrequisites) forthe outputs to still be correct. The component

instructions can then safely be removed from the superblockand replaced with the atomic strand, as-

sembled anywhere between the last prerequisite and the firstpostrequisite. The remaining instructions

are kept in the same relative order.

Unfortunately, sometimes the last prerequisite instruction is the same as or is after the first postreq-

uisite instruction. The most common cause of this is shown inFigure 20(b). Here, the second instruction

must occur in the middle of our candidate strand for the outcome to be correct. If the strand is put en-

tirely before this instruction, the R1 consumed in the first instruction will be incorrect. If the strand is

placed afterward, the R1 consumed in the third instruction will be incorrect. We term this situation an

antidependence-dependence hazard. Instruction 2 overwrites the source of instruction 1, and instruc-

tion 3 reads the results of instruction 2. However, by assigning a free register (a register assured to be
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Figure 21: Illustration of the three primary hardware changes presented for static strand optimization:
strand accumulation buffer (top left), closed-loop ALUs (bottom left), and issue-queue entry modifica-
tions (right) . Changes from a traditional design are shaded.

dead) to the true dependency, we remove the antidependence and allow a placement of the static strand

after the second instruction. This renaming is shown in Figure 20(c), where the register name R11 is

used to break the chain. If there are no free registers then this strand is considered unplaceable, and the

strand identification algorithm is told to look for a different grouping for these instructions. It should

be noted thatantidependence-antidependence hazardscan similarly occur in strands, butdependence-

antidependenceanddependence-dependence hazardscannot due to the nature of transient operands.

Often a gap between prerequisite and postrequisite instructions creates opportunities for moving

strands higher or lower within the superblock. For instance, the static strand in Figure 20(c) could

go above or below the fourth instruction. In general this movement has little perceivable effect on

performance, but a minor deleterious effect is observed by hoisting strands above loads and another

for sinking strands which contain a load. Both of these movements reduce the producer-consumer

distance after the load, possibly creating stalls. As a ruleof thumb, moving strands up or down reduces

performance more often than not, so we choose to leave staticstrands as close to the location of the first

collapsed instruction as possible.
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3.4.4 Binary Annotation

The final step communicates the identified strands to the hardware. We consider two common methods

of annotation: instruction flags and prefix instructions. Instruction flags are the easier option, assuming

there is flag space built into the ISA. Unused bits are rare in modern ISA encodings, but if this space

exists, one bit can be allocated as astrand-nextflag. If this bit is set for an instruction, it tells the

hardware that the subsequent instruction is part of the samestrand. This is superior to a simplestrand

flag, which would require logic to detect if two strands were placed subsequently. Interestingly, the

strand-nextflag also supports jumping into the middle of a strand as the hardware would never construct

a one-instruction strand (unlike with a simplerstrandflag). If control-path analysis has been correct,

though, this situation should never occur.

If there is no unused flag space in the ISA, the remaining option is a prefix instruction. These are

instructions that do not affect the control- or data-flow (i.e., no-ops), but which can hold additional

information in their empty fields. A processor not designed to utilize these additional fields should

ignore them, but future generations of processors can be told to look for this hidden data. For example,

the ARMv6 ISA has a flag for “never execute”, converting that instruction into a prefix instruction [16].

This approach provides additional functionality to modernARM cores while guaranteeing previous

generations of processors do not attempt to access information they cannot process. As with thestrand-

nextflag, this annotation also supports jumping into the middle of a strand though this feature is not

utilized.

For this work, we assume a simple prefix instruction placed before the strand which encodes the

length of the strand to follow in the unused fields. An exampleis shown in Figure 20(d), where the

prefix no-op indicates there is a three-long strand to follow. Though this increases code size somewhat,

performance is rarely affected by the additional null instructions. In fact, compilers such as the DEC

Alpha compiler purposefully insert no-ops to align branch boundaries on cache lines for performance

increase [62]. For most modern processors, these no-ops disappear from the pipeline after they are de-

coded, so only fetch bandwidth, decode bandwidth, and a small amount of instruction cache are wasted.

Results show that code footprint increases only 6-7% depending on the maximum allowable strand

length. As longer strands amortize this overhead cost over more instructions, the more instructions

allowed per strand, the lower this overhead rate is.
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3.5 Hardware Optimizations

After static strand processing, the new binary is functionally identical to the original. As instructions

have only been slightly rearranged, performance of the new binary on unmodified hardware is within

2% of the original (this includes the prefix instruction overhead). In this section, though, we propose

a small hardware enhancement which uses the additional information embedded in the new application

to reduce pipeline energy. An overview of the additional hardware for this enhancement is shown in

Figure 21. There are three primary modifications, which we discuss in turn.

3.5.1 Strand Accumulation Buffer

The first addition is in the dispatch stage. Here, after observing a strand flag or prefix instruction,

the individual instructions will be combined in thestrand accumulation buffer, or STAB. The required

storage and logic is quite small, only enough to store the maximum instructions per strand. As strands

accumulate a single register output, intermediate register numbers are irrelevant and do not need to

be recorded. The external sources and destination, as well as the op-code and immediates from each

instruction, do need to be saved though.

Once the entire strand has been accumulated into the STAB, itis allocated the resources of a single

instruction (i.e., reorder buffer slot, issue queue slot, etc.). This allows several instructions to oper-

ate as one within the pipeline, greatly increasing the effective capacity of the reorder buffer and issue

queue. This is especially advantageous in embedded out-of-order designs, which have far smaller re-

order buffers and issue queues than desktop processors.

A consequence of atomic allocation is that strands must be quashed atomically at branch mis-

predictions. However, since the compiler guarantees that strands cannot be split by branches, this is

not a concern. The only scenarios that could benefit from partial strand quashing are interrupts and

exceptions, but experiments show that these events are too rare to justify complicating the quashing

logic.

3.5.2 Closed-Loop ALUs

Closed-loop ALUs are the execution target for strands that are comprised of only ALU instructions

(about 90% of all strands executed across our benchmark suite). These units consist of a traditional

integer ALU with the addition of a self-bypass mode. When this mode is active, the outputs of the ALU
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are only forwarded back to the inputs and not bypassed or written back to the register file. The design

in Figure 21 illustrates the layout, and shows that no additional inputs to the complex input multiplexers

are required. Only one set of pass-gates and a few input buffers permit this behavior.

Self-bypass is one of the reasons why transience must be guaranteed by the static detection: any

intermediate values are lost upon usage and are thus unavailable for any later consumers. When a strand

is issued to an ALU in closed-loop mode, it is provided with all necessary inputs and op-codes. It then

spins on its internal results and produces a single output. During this time, the ALU is busy and not

available for issue.

The use of closed-loop ALUs for collapsed-instruction execution was first introduced in [99]. These

were implemented on wide out-of-order processors and were “double-pumped” for performance benefit.

Considering how much faster a self-bypass mode can be clocked than a wide bypass network [87, 99],

this double-speed operation is reasonable in the desktop processor domain. In embedded processors,

however, bypass delays are not so imposing and performance gain is not so critical. For these reasons

the ambitious double-speed execution would not be applicable here, so we assume single-cycle ALU

operation in this work.

That being said, the resultant reduction in writebacks fromclosed-loop operation carries a significant

energy benefit. For one, intermediate values no longer use the bypass network. Bypass wires are long,

wide, drive large multiplexers at the functional unit inputs, and require significant drive power or re-

peater power [87]. Additionally, closed-loop operation means that intermediate values avoid the register

file completely. As register accesses also incur a significant power cost [91], it is clearly advantageous to

avoid unnecessary accesses. Section 3.6.4 evaluates both of these energy benefits of closed-loop ALUs.

3.5.3 Issue Queue Entries

In order to correctly issue strands, the issue queue entriesmust be slightly modified. This change is

needed for both in-order and out-of-order machines, thoughin-order machines have effectively only

oneW issue slots, whereW is the width of the issue stage. The first trivial change is theaddition of

extra op-code fields and immediate fields for each of the component instructions. The number of needed

fields is the maximum number of instructions allowed per strand.

Secondly, we add anoper-counterto store which operation is currently being considered for issue.

This is only necessary for mixed-strands which contain operations other than integer ALU instructions.
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These groups will be issued one instruction at a time to the appropriate functional unit, as opposed to

the ALU strands which issue atomically to the closed-loop ALUs. Thus, we must keep track in the issue

queue entry which is the current contained operation.

Next we addoper-id tags to identify which instructions the sources apply to. Inthis manner, the two

wakeup comparators assigned to the two sources can be sharedfor the entire strand regardless of the

number of contained operations in the strand. A couple of OR gates and small comparators assure that

the readiness of a source is only applicable when theoper-countermatches theoper-idof the source.

A more straight-forward solution would haveN − 1 comparators, one for each possible input to a

strand of sizeN . The Intel Pentium M, for instance, incorporates three to support the three possible

inputs to a fused pair of operations [51]. To a lesser extent,we can add a third wakeup comparator and

share it using the counters above amongst any reasonable number of instructions in a strand. Section 3.6

evaluates the benefits of adding a third shared comparator. In the end, the hardware cost of supporting

the third input in the register file makes it difficult to justify supporting it in the issue queue. This is

acceptable, however, as most identified strands need very few inputs. This conclusion could have been

predicted from the the preponderance of zero- and one-inputinstructions in integer applications [41, 67],

which combine into strands with few external inputs.

A final modification to the issue entries allows tag broadcastto be avoided for internal results. As we

have guaranteed that there are no other consumers that will be interested in these intermediate results,

there is no need to broadcast their availability. The tag busis set of long, wide, high-capacitance wires,

and by avoiding unnecessary driving of these lines, we can conserve additional power. A single transistor

per issue entry accomplishes this effect, reducing tag broadcasts by about 20% in our experiments.

3.6 Experiments and Results

To measure the effect of static strands on performance, coverage, and sensitivity, we implemented static

strand detection and modeled the hardware enhancements. This section presents the experimental setup,

results, and sensitivity to key parameters.

3.6.1 Experimental Setup

For simplicity, we perform strand detection with static binary translation augmented with profiled indi-

rect jump targets. However, a commercial implementation must be implemented with a compiler pass
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Table 6: Architectural parameters used for all simulations.
Feature SH4a PPC750FX

Fetch Width 2 wide 4 wide
Dispatch Width 2 wide 2 wide
Integer ALUs 1 unit 2 units
Integer Multipliers 1 unit 1 unit
FP Mult/Div 1 unit 1 unit
Issue order in-order out-of-order
Physical Registers 64 64
Reorder Buffer - 6 entries
Issue Queue - 6 entries
Load/Store Queue - 8 entries
Memory Ports 1 port 2 ports
L1 I-cache 16 KB (2 way) 64 KB (2 way)
L1 D-cache 32 KB (2 way) 64 KB (2 way)
L2 Unified - 512 KB (32 way)
Branch Predictor gshare gshare
Branch History Table 128 entries 512 entries
Branch Target Buffer 64 entries 128 entries
Pipeline Length 5 stages 4 stages

as profiling cannot discover all possible indirect control targets. Though jumping into the middle of

a strand has correct behavior, the unforeseen code might read operands which were not written to the

architectural state (i.e., an operand deemed transient is consumed more than once). Thus, all control

paths must be known for static strands to be safe.

For extra safety, our binary translator is conservative when scanning for transient operands. Most

importantly, we assume that indirect jumps and system callsread all registers; that is, no operand can

be transient if it could be read past an indirect jump or system call. As all possible destinations of

indirect jumps or system calls should be known by the compiler, presented coverage numbers should

be significantly improved when moving to a compiler-pass implementation. Additionally, as adding

instructions (and thus relocating code blocks) via binary translation is unsafe due to indirect references,

we do not insert the prefix instructions into the binary. Instead, the simulator is modified to model the

front-end effects of the prefix instructions. We also separately evaluate the effect of increasing code

size by the 6% to 8% on the instruction caches and find the performance effects to be negligble (<1%

slowdown).

The hardware implementation is modeled on the cycle-accurate SimpleScalar 3.0 simulator with the

PISA instruction set [19]. We evaluate our enhancement on two hardware models–one based on the

Renesas (formerly Hitachi) SuperH SH4a embedded microprocessor [97], and one based on the IBM

PowerPC 750FX embedded microprocessor [61]. Table 6 enumerates the key architectural parameters
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Figure 22: Percent of dynamic instructions which were incorporated instrands with various maximum
strand sizes and maximum inputs. Each bar is broken down by instruction type, and the average size of
executed strands is shown at the top.

used for these models.

The SuperH in-order processor represents more low-power embedded designs, while the out-of-

order PowerPC represents higher-performance parts. Both processors, though, have far fewer pipeline

resources than modern desktop and server processors, making them ideal candidates for the resource-

conservation effects of static strands.

Most of the benchmarks from Spec2000int and MediaBench [73]are used for analysis. Any bench-

mark omitted from these suites did not compile cleanly usinggcc 2.95.3 with O2 optimizations. For

brevity, results are presented as the average of these benchmarks. Spec2000 inputs come from the

testdata set, and the default MediaBench inputs were enlarged tolengthen their execution. For each

simulation, we execute 500 million committed instructionsafter skipping the first 100 million.

3.6.2 Coverage Results

A common metric used in evaluating any dependence-collapsing technique is instruction coverage. Fig-

ure 22 shows the dynamic instruction coverage of static strands, averaged across all evaluated Media-

bench and Spec2000int benchmarks. Instruction coverage rates are not architecture dependent, so these

results apply to both hardware models.

The total heights of the bars indicate the percent of dynamicinstructions which were replaced by

strands. These bars are shown for each of the ten combinations of maximum strand size and inputs

evaluated. It should be noted that these numbers are similar, but not identical, to the coverage of tran-

sient operands presented in Figure 19. This is due to the lackof one-to-one correspondance between
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instructions and operands. On average, between 30% and 35% of the dynamic instructions are replaced

with static strands with little variation due to maximum strand size or inputs.

The stacked sections of each bar indicate which types of instructions were replaced, either single-

input ALU instructions, two-input ALU instructions, loads, stores, or branches. The category of single-

input ALU instructions also includes any instructions which have the zero register as a input. It can

be seen that a majority of the instructions are ALU instructions, which corresponds with the rate of

ALU-only strands (about 90%).

The final data in Figure 22 are the values at the top of the bars,indicating the average size of

executed strands. It is clear that supporting long strands does not increase coverage or average strand

size significantly. As would be expected, though, allowing three inputs instead of two does permit a

noticeable boost in average strand size.

3.6.3 Activity Changes

The primary goal of this work is reducing unnecessary communication between dependent instructions

in the pipeline. This communication can take the form of various activities within the pipeline. This sub-

section presents the average reduction in activity levels for five such operations–tag broadcasts, wakeup

comparisons, select cycles, register reads, and writebacks. Of course, there are other resources which

have changed activity. For instance, the occupancy of the reorder buffer in the PowerPC 750 model

decreases with static strands by about 30%, reducing its activity level. A discussion of these and other

resources is omitted, however, to focus on larger energy effects elsewhere.

It should also be noted that that Section 3.6.5 will show IPC increases of 5% to 15% with static

strands. Though such increases in per-cycle efficiency willincrease switching activity throughout the

processor, this IPC increase can be easily traded in for a frequency decrease. As such, the average

activity of the chip can be reduced while maintaining a baseline level of performance.

Thebroadcastsline in Figure 23 indicates the average reduction of tag broadcasts. The left graph

in the figure shows the average activity reduction across allbenchmarks for the PowerPC 750 model

and the right graph for the Renesas SH4a model. Tag broadcasts are traditionally performed to notify

all waiting instructions in the issue queue upon selection of an instruction for execution. This requires

sending the result tag of the selected instruction down the result tag bus of widthlog2(numregs) bits. As

we have assured during static strand detection that no otherinstruction is interested in the intermediate
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(a)

(b)

Figure 23: Average activity level changes from the baseline in affected pipeline operations for the (a)
PowerPC 750 model and (b) Renesas SH4a model.

results (transient operands have only one consumer–the next instruction in the strand), we defer tag

broadcast in these cases. On average, broadcast activity isreduced between 16% and 22%, depending

on the processor model and static strand size.

For each active issue queue entry, each of the possible inputs (two or three, depending on the maxi-

mum number of inptus per strand) must then compare its tag against the tags being broadcasted. These

log2(numregs)-bit comparisons (XNORs) are plotted on thewakeupsline in the graphs. For the two-

wide in-order Renesas SH4a model which does not have a traditional issue queue, we assume an imple-

mentation similar to a two-entry issue queue with the restriction of in-order dequeuing. Thus at most

two instructions, each with two or three inputs, perform comparisons on the broadcasted tags. Regard-

less of the model, static strands avoid the need for wakeup comparisons for intermediate results. On
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average, wakeups are reduced 20% to 30% on the PowerPC 750 model, and 30% to 40% on the Renesas

SH4a model.

When the issue queue is empty, there are obviously no instructions to select for execution. When

there are instructions present, however, the select logic performs an arbitration to match ready operations

and idle functional units. As static strands compress several instructions into one issue queue entry, it is

more likely that the issue queue will be empty on any particular cycle. The average reduction in active

select cycles is plotted in theselect cyclesdata-points in Figure 23. On the whole, active select cycles

are reduced about 14% on the PowerPC model and between 3% and 11% on the SH4.

As instructions leave the issue queue, they pick up needed inputs in the register file before proceed-

ing to a functional unit. Though strands still pick up their exterior inputs in this manner, the intermediate

operands of ALU-only strands will never need to be. It is important to note that mixed-strands still pick

up their values from the register file or bypass network because intermediate results must be passed

between functional units. The relative reduction in reads of the register file is shown in theregister

readsline of Figure 23–on average, static strands reduce register reads by about 6% regardless of the

processor model or strand size. The next subsection, however, shows that register reads are far more

expensive on pipelines supporting three-input strands.

Finally, as the intermediate values within ALU-only strands never leave the closed-loop ALUs,

the number of result writebacks is significantly reduced. Each writeback consists of broadcasting the

computed result on the full bypass network and writing the result back to the register file. Each is a

significant energy burden, so their reductions are important to total processor power. Thewritebacks

lines in Figure 23 shows their average reduction–about 18% for both processor models.

3.6.4 Energy Changes

To evaluate the energy effects of the activity reductions shown in the previous subsection, we now

quantify the energy costs of the register file, issue queue, bypass network, and Strand Accumulation

Buffer.

Register File. For the register file, we express the total dynamic energy during the execution of a

benchmark using Equation 3. In this equationEread andEwrite are the energy on one register read and

one register write, respectively. Similarly,Nread andNwrite are the number of reads and writes to the

register file during the execution.

56



(a)

(b)

Figure 24: Average energy changes from the baseline in related pipeline resources for the (a) PowerPC
750 model and (b) Renesas SH4a model. The Strand Accumulation Buffer, not shown, requires less than
4% of the baseline register file energy.

Eregfile = (Eread · Nread) + (Ewrite · Nwrite) (3)

To determine the per-read and per-write energy, we use eCACTI [75] to model the register file. For

both processors, we model a 64-entry2 register file at 70nm. As both models can writeback up to two

values per cycle, we model two write ports. By default, both models can also issue two instructions per

cycle, requiring four read ports for all possible inputs. This results in a read energy of 77 pJ and a write

2The documentation for the PowerPC 750 [61] and Renesas SH4a [97] specifies 32 integer and 32 floating point physical
registers in addition to several control registers. For this analysis, however, we assume these control registers reside outside
the central physical register file.
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(a)

(b)

Figure 25: Maximum, harmonic mean, and minimum IPC speedup across all evaluated benchmarks
on the (a) PowerPC 750 model and (b) SuperH SH4a model.

energy of 81 pJ. However, models supporting three-input strands are required to support three reads per

instruction–for a total of six read ports. This increases both the read and write energies to 130 pJ and

134 pJ, respectively.

The average energy change of the register file across all benchmarks is shown in theregister filelines

in Figure 24. As with Figure 23, the left graph is for the PowerPC 750 model and the right for the SH4a

model. It is clear that the per-read and per-write energies on the six-port register file are critical. Despite

reducing register file access by 10% to 20%, models supporting three-input strands increase register file

power by 40% to 45%. Restricting to two-input strands, however, reduces register file power by about

14%. As other energy results in this subsection and performance results in the next subsection show

little advantage to supporting three-input strands, it is evident that a maximum of two inputs should be
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used.

Issue. For the issue logic, we express the total dynamic energy during the execution of a benchmark

using Equation 4. In this equation,Ewkp, Ebcst, andEsel are the energy of one wakeup comparison, one

tag broadcast, and one active select cycle respectively. Similarly, Nwkp, Nbcst, andNsel are the number

of wakeup comparisons, tag broadcasts, and active select cycles during the benchmark execution.

Eissue = (Ewkp · Nwkp) + (Ebcst · Nbcst) + (Esel · Nsel) (4)

To determine the energy for each operation, we use SPICE to model the issue logic using a predic-

tive 70 nm technology transistor model provided by the Device Group at UC Berkeley [23, 117]. Our

analysis shows that each wakeup comparison expends 5.10 pJ and each broadcast 27.6 pJ of energy re-

gardless of the processor model being used. The select logicis highly dependent on the model, however.

Our analysis shows that the PowerPC 750 uses 0.18 pJ per active select cycle, while the the SH4a uses

only 0.01 pJ. It should be noted our model provides energy data with more significant digits than are

being shown here.

The average change in the issue energy total across all benchmarks is shown in theissuelines in

Figure 24. The data shows that issue energy is reduced between 16% and 24% for both models, with

greater reductions for larger strands. Regardless, the reduction of issue energy by approximately one

fifth provides significant savings.

Bypass. For the bypass network, we express the total dynamic energy during the execution of a bench-

mark using Equation 5. In this equation,Ebyp is the energy per bypassed value andNbyp is the number

of bypassed values during the benchmark execution.

Ebypass = Ebyp · Nbyp (5)

As there is only one term in this equation, we can factor out the energy per bypassEbyp when

computing the average change in energy. In other words, there is no need to determine the energy of

a single bypass to determine the change in total bypass energy. Thus, the energy reduction plotted as

bypassin Figure 24 is equal to the reduction in writebacks shown in Figure 23. On average, the dynamic
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energy of the bypass network is reduced 17% to 20%, with little sensitivity to processor model or strand

size.

Strand Accumulation Buffer. It is important to also consider the energy required by the Strand Accu-

mulation Buffer (STAB). As it is not part of the baseline models, this creates a purely punitive change

in energy for models with static strand hardware. We expressthe total dynamic energy of the STAB

during the execution of a benchmark using Equation 6. In thisequationEstab is the energy per access

of the STAB andNstab is the number of STAB accesses during the benchmark execution.

ESTAB = Estab · Nstab (6)

To estimate the energy per access, we use eCACTI to model the STAB as an 8-entry direct mapped

cache with one read port and one write port at 70nm fabrication. Though the STAB needs only to be

as large as the maximum number of instructions per strand, weprefer to err toward overestimating this

cost. Results show a read energy of 11 pJ and a write energy of 12 pJ. Combined with access rates

about half that of the register file, this results in total STAB dynamic energy of about 3.4% that of the

baseline register file. In other words, this structure creates a noticable energy cost, but it is of much

lower magnitude than the savings to even just one pipeline resource, let alone the issue logic and bypass

network.

3.6.5 IPC Speedup Results

As the capacity of the issue queue and reorder buffers are increased with strands, the effective issue

window on out-of-order processors is increased dramatically. As such, we expect to see an increase in

the amount of instruction-level parallelism (ILP) exploitable by the PowerPC 750 model. Indeed, Figure

25(a) shows that the average number of instructions which can be completed per cycle (IPC) increases

an average of 17% on this design. It is clear that maximum strand size and maximum inputs have little

effect on average speedup. An anamoly is also clear in the maximum speedup for the PowerPC 750

model. This maximum benchmark is MediaBench’s pegwit-encode, which spends a vast majority of its

execution in a single superblock. The variation in the strands created in this superblock has a dramatic

effect on coverage and performance.
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Figure 25(b) shows the speedup for the in-order SuperH SH4a model. Despite the use of in-order

issue, there are also performance advantages to static strands in this processor because of its 2-wide

superscalar nature. By being able to issue a single group of instructions to a closed-loop ALU, the

issue unit is then allowed to issue the subsequent instruction in the same cycle. Thus, the processor was

able to effectively issue more than the specified two instructions per cycle. This performance advantage

(about 8%) is less than that for the out-of-order processor,but still significant.

The narrow front end of the SuperH amplifies an interesting interplay with strand length. Longer

strands reduce the number of total prefix instructions needed, which adversely affects the narrower SH4a

front end. However, longer strands must accumulate for a cycle or two in the STAB when they otherwise

would be able to continue through the pipeline. Thus longer strands create more bubbles in a pipeline,

and the narrow in-order SH4a is more sensitive to these effects than the PowerPC 750. Regardless, it

should be noted that despite this effect, average speedup isstill close to 10% and maximum speedups of

over 20% are observed. This per-cycle performance can be passed along as is or can be exchanged for

frequency reduction (and thus power reduction) while maintaining a baseline performance level.

3.7 Conclusion

Given the activity and performance results presented in theprevious section, it is evident that most of

the benefit of static strands can be achieved with even the minimal design point–two instructions with

a maximum of two inputs. Certainly the register file costs of allowing three inputs is difficult to justify.

However, given the small hardware impact of supporting additional strand length (within the bound

of two inputs), thethree/two or four/two sizes might be more optimal. In the end, designers must

balance the trade-off between the power benefits of allowinglonger strands and the marginal hardware

cost of such.

Of course, other methods of dependency collapsing can achieve some of the same compression

and activity reduction effects. Static strands, however, introduce a novel hybrid of static detection and

dynamic optimization which maintains binary compatibility and minimizes additional hardware com-

plexity. Of critical importance is the focus on transient operands, which compilers frequently create

as a side-effect of architectural register conservation, programming language semantics, and the limita-

tions of a dyadic ISA. The one-to-one producer-consumer relationship provides numerous opportunities

for using direct communication rather than broadcast during execution, which static strands can simply
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exploit.

By avoiding broadcast on the bypass network, access of the register file, activity within the issue

logic, static strands can significantly reduce the energy ofseveral key resources and buses within a

modern embedded processor. Additionally, the consolidation of several instructions into an atomic

strand effectively widens the instruction window, allowing for significant IPC gains. These gains can

be exchanged for frequency reductions to maintain a baseline execution throughput, reducing workload

energy further. In the end, static strands provide energy savings for embedded cores with very little

hardware or software cost.

Future work in static strands focuses on applying static strand work to desktop microprocessors

where frequent avoidance of bypass and issue can produce significant speedup. Static strands may

also provide a hedge against the penalties of pipelined issue and bypass which most drastically affect

dependence chains.
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CHAPTER IV

PIPELINING ATOMIC STRUCTURES

Summary

In modern superscalar out-of-order processors, the tight loops of issue and bypass have been previously

identified as primary determiners of clock frequency and pipeline width. The complex and atomic

nature of these operations creates long critical paths which only become relatively slower with each

technology shrink. Designing a processor with these stagesnaı̈vely pipelined is widely accepted as

unwise since the subsequent IPC penalties inherent in such divisions are significant. However, our

timing analysis and cycle-accurate simulations show the parallelism costs are less than the frequency

benefits, even with the most trivial pipelining. A modern four-wide machine with these stages pipelined

produces an overall instruction throughput 18% higher thanthe baseline with atomic issue and bypass

across Spec2000int, Spec2000fp, and Mediabench applications. Additionally, despite the increase in

frequency,BIPS3/Watt power efficiency on that machine is improved by 10% with this modification,

and technology trends indicate a growing advantage as the relative delay of these loops increases.

Keywords: Pipelining, Atomicity, Issue, Bypass

4.1 Introduction

In the quest for microprocessor performance, architects frequently must choose between parallelism

and frequency early in the design cycle [3]. Several different operations within modern processors are

linearly or polynomially related to the superscalar width,limiting either the cycle-time or width of such

designs. Simple pipelining can reduce some of these operations into smaller ones, but others (so-called

tight-loops [14]) are traditionally kept as atomic operations to avoid significant instruction-per-cycle

(IPC) penalties. It is generally assumed that the IPC loss incurred by pipelining these atomic operations

cannot be offset by frequency gains.

The two most complex operations in superscalar out-of-order processors were previously identified

by Palacharla et al. as issue and bypass [86, 87]. These two stages are especially critical because they
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must be performed atomically to avoid introducing pipelinestalls [14], and continued technology scaling

only amplifies the relative length of their operation. Thus,modern processor frequencies are generally

set by the longer of these stages, and this dependence will only increase with each technology shrink

[86, 87].

Previous research in optimal pipeline depth determination[55, 56, 59, 108] did not consider pipelin-

ing these traditionally atomic structures. Instead, theseworks assumed that such operations could be

performed in a single cycle or future optimizations would allow pipelined operation without IPC penalty.

Many optimizations have indeed been proposed, however theyall incur some penalty while adding com-

plexity and design time. No previous research, however, advocates trivially pipelining structures such as

issue or bypass. Hrishikesh et al. [59], for instance, statethat “...a naı̈ve pipelining strategy that prevents

dependent instructions from being issued back to back wouldunduly limit performance.” This work

proposes, however, that architects carefully examine thisassumption when designing new processors.

Rather than introducing additional complexity by fighting IPC penalties or decreasing processor

width to accommodate the increasing latency of these operations, we examine a simple approach of

designing a processor with these two stages divided in a trivial manner. Our results show that the IPC

penalties, though significant, are not overwhelmingly so. In turn, a processor designed with issue and

bypass pipelined can achieve much higher frequencies. Through the use of delay models and benchmark

simulations, we determine the optimal atomic-structure pipelining for maximum instruction throughput.

Our results show that execution rates on Spec2000int, Spec2000fp, and Mediabench applications

can be increased by 18% on a four-wide processor by triviallydividing issue and execute/bypass into

two stages each. Similarly, the average execution rate on aneight-wide processor can be increased 49%

by dividing them into four stages each. Importantly, these design points are not excessively pipelined

or high frequency; they run at reasonable frequencies of 2.4to 2.8GHz on 90nm processes. Though

average processor power does increase with additional pipelining, BIPS3/Watt power efficiency also

increases by 10% and 36% on the four- and eight-wide machinesdue to the significant instruction

throughput improvements. The raw power effects, however, can be ameliorated by trading in perfor-

mance for lower power, utilizing additional clock-gating opportunities, and optimization of our trivial

pipelining.

The sections are organized as follows. In Section 4.2 we provide background on these two tradi-

tionally atomic operations, explore the trivial pipelining of them, and discuss related work in addressing
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their complexity. Next, Section 4.3 derives cycle time estimates for various extents of issue and by-

pass pipelining. Section 4.4 then presents IPC results for the configurations identified in the previous

section. These frequency and IPC estimates are then combined in Section 4.5 to produce instruction

throughput results showing the overall efficacy of pipelining atomic structures. Section 4.6 then esti-

mates the power and power efficiency impact of pipelined atomic structures via analytical and empirical

evaluation. Finally, Section 4.7 concludes and reiteratesthe assumptions of this work.

4.2 Issue and Bypass

Issue and bypass have been previously introduced as the primary sources of complexity in superscalar

processors, limiting cycle-time and processor width [86, 87]. Other resources such as the physical reg-

ister file or rename are also often cited as sources of complexity, but these other stages are pipelinable–

thus not impeding cycle time. On the other hand, Borch et al. [14] point out that issue and bypass form

tight architectural loops due to the short feedback requirement–just a single cycle. Any longer and IPC

penalties must be incurred as dependent instructions are nolonger able to issue or execute on subsequent

cycles. It is also important to note that these two loops are logically connected. A processor which takes

multiple cycles to issue dependent instructions need not accommodate single-cycle bypass as there can

be no instruction issued subsequently to use it. Thus, when considering the pipelining of these two

loops, it is logical to only consider equivalent pipelining–adding equal number of stages to each loop.

The remainder of this section describes the logical structure of issue and bypass, illustrates the trivial

pipelining approach taken, and covers related work on subverting these stages’ atomicity.

4.2.1 Issue

4.2.1.1 Background

In most out-of-order processors, the issue stage is responsible for deciding which of the waiting in-

structions will be executed next. These waiting instructions generally reside in an issue queue, a com-

plex structure filled with content-addressable memories (CAMs) for determining which instructions are

ready. The termqueue, however, is a misnomer as instructions can be inserted and removed from any

part of the structure. Figure 26 (a) shows a traditional issue queue slot and the logic for waking up and

selecting ready instructions.

In short, issue forms a loop. During wakeup, instructions waiting for input operands check their
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Figure 26: Overview of issue on a sample issue slot with (a) no pipelining, (b) two stages, (c) three
stages, and (d) four stages. Dashed lines indicated the boundary of stages where latches must be placed.

source tags against those of instructions which will be finished next cycle. Any instruction no longer

waiting on any sources raises itsrequestline, indicating its readiness for execution next cycle. The

select logic then determines which of the ready instructions are chosen for idle functional units via

the grant line. These selected instructions then broadcast their output tags to the instructions waiting

to be woken up. If all of these operations cannot occur in a single cycle, there is no trivial way of

waking up dependent instructions on dependent cycles. Though there are often other ready instructions

to be scheduled instead, the dependence-chain nature of integer code [67] makes IPC penalties likely in

multicycle issue.

To quantify the delay of this stage, Palacharla et al. [87] model the basic structure to derive Equation

7, whereW is the width of the issue stage.

Tissue = c0 + c1 · W + c2 · W 2 (7)
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Table 7: Delays for different blocks of pipelining logic in 180nm with a 32-slot issue queue [86, 87].
Pipeline Width

Area Stage 1 2 4 8

wakeup
tag drive 20ps 26ps 31ps 42ps
tag match 53ps 72ps 91ps 118ps
match OR 49ps 61ps 84ps 125ps

select
request prop 107ps 107ps 107ps 107ps

root 141ps 141ps 141ps 141ps
grant 123ps 123ps 123ps 123ps

4.2.1.2 Pipelining

Palacharla et al. divide the analysis of issue into two different sections. For brevity, we combine them

as these operations tend to work as a unit. The wake-up logic divides into approximately three regions:

the tag driving, the tag matching operation, and the “OR” check. The selection logic for the same

wakeup parameters is also broken into three regions: request propagation, root delay, and grant delay.

Approximate timing values for these stages are shown in Table 7, assuming 4-wide with a 32-instruction

window in 180nm process. The “selection” stages appear as constant since they are a function of window

size, not issue width.

To divide this stage in half, the easiest location is betweenthe wakeup and select logic, as shown in

Figure 26 (b). While this is not a perfect division–200ps compared to 370ps–it provides the cleanest and

simplest division with the least complexity. The longest path drops from 670ps to 370ps. Moving to a

more balanced three-stage pipelining, isolating the wakeup as one block creates a delay of approximately

200ps. The second stage becomes the arbitration propagation delays, approximately 250ps. The final

stage is the grant return, which accounts for approximately125ps. This is shown in Figure 26 (c). The

longest path has dropped from 670ps to 250ps. The four-stagevariant, as shown in Figure 26 (d), divides

the arbitration and root propagation signals. The longest path is now 200ps, through the entire wake-up

logic. While not perfectly balancing the delay of each stage, these are the cleanest locations for trivial

pipelining efforts.

4.2.1.3 Related Work

Various research in industry and academia aims to pipeline issue yet alleviate the IPC penalty. For

instance, half-price architecture [69] and tag-elimination [41] reduce the number of CAMs by assum-

ing that most instructions need only one CAM per cycle. In these cases, the order of source operand
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Figure 27: Overview of the execution stage with (a) no pipelining, (b) two stages, (c) three stages,
and (d) four stages. Cycle numbers are from the perspective of the top ALU. Dashed lines indicated the
boundary of stages where latches must be placed.

wakeups must be predicted, and any misprediction requires recovery and subsequent pipeline bubbles.

Several authors have proposed banking the issue queue for faster access to a smaller subset of waiting

instructions [17, 59]. Stark et al. propose pipelining issue but adding grandchild tags to wakeup in-

structions two dependencies away, limiting the IPC impact [109]. Brown et al. [18] separate the select

operation from the more critical wakeup loop via dataflow pre-scheduling.

4.2.2 Bypass

4.2.2.1 Background

The other tight loop in modern superscalar processors is thebypass path, which serves to deliver the

outputs of functional units back to the inputs. In most modern processors, this is implemented as afull

bypass–all functional unit outputs are delivered to all functional unit inputs. Unfortunately, this set of

communications requires a complex set of result buses and input multiplexers. A basic illustration of a

full bypass is shown in Figure 27 (a), where four arithmetic-logic units (ALUs) are being bypassed.

The difficulty of this communication is further enhanced by the demand forfreebypass–the transport
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Table 8: Approximate ALU and bypass network delays at 180nm and 90nm.
Pipeline Width

Area 1 2 4 6 8

bypass 0ps 13ps 185ps 524ps 1057ps
ALU 524ps 524ps 524ps 524ps 524ps

of these operands as the latter part of the execute stage. Thus, simple ALU instructions can complete and

their results can be ready for consumption within a single cycle. Without such expediency, dependent

instructions could not execute on subsequent cycles, reducing IPC as discussed earlier.

To quantify the delay of this stage, Palacharla et al. modeled a full bypass network across different

process generations. They simplified its delay to the polynomial relationship shown in Equation 8,

whereW is the number of functional units being bypassed [87]. This delay, further detailed in the next

section, is dominated by the wire delay of the result buses which does not scale with technology. The

result is bypass delays which are constant between process shrinks, and thus are slowing relative to

surrounding logic.

Tbypass = c0 · W 2 (8)

4.2.2.2 Pipelining

Physically, a basic bypass network is fairly straightforward. Each functional unit routes its result to every

other unit and the register file/reorder buffer every cycle.The delays computed by Palacharla for the

bypass network are shown in Table 8, assuming that the numberof ALUs is equal to the processor width.

They point out that the long result bus wires maintain a constant delay across process shrinks (they are

shorter, but narrower), thus the delay of bypass grows relative to the surrounding logic as feature sizes

decrease. Though repeaters can electrically accelerate these wires, their inclusion in interconnect design

also adds complexity. Repeaters can be quite large relativeto the wires themselves, widening the buses’

pitch and changing the floorplan significantly [58]. We should also point out that, according to this

model, the delay of the one-wide bypass network (with no result bus) is zero. Obviously, there is a small

delay to bring results back to the front of the ALU but it is quite small compared with the large delay of

the ALU.

To determine our ALU’s delay, we consider the 180nm Intel Itanium 2 microprocessor. Intel reports

that this CPU spends half of its execute cycle on ALU execution and the other half traversing the six-way
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full bypass network [45]. Thus Table 8 reports the delay at 180nm of this ALU as equal to the six-wide

bypass delay (524ps) and invariant of processor width. To verify this estimate, this would make the

Itanium 2 cycle-time twice that, or 1048ps. This corresponds to a frequency of 954 MHz, which is close

to the 1GHz peak frequency of the 180nm part produced [63].

For pipelining we make the assumption that the ALU itself is not trivial to pipeline. Thus, the

best first pipelining division is between the ALU output and the bypass network, as shown in Figure

27(b). As certain input operands may arrive before others onthe result buses, additional input buffers

are necessary to hold any early arriving values for the maximum latency of the bypass network–in this

case, two cycles. Similarly, the additional stages required for 2- and 3-cycle divisions equally divide the

bypass network itself, as shown in Figure 27(c,d). While notimproving on the cycle-time of the ALU,

further subdivisions continue to reduce cycle-time on wider machines.

It is important to note that we are taking a trivial pipelining approach and avoiding the complexities

of heterogeneous bypass. The issue logic has no knowledge ofthe physical distance between producer

and consumer functional units when scheduling instructions, thus all operands must incur the full bypass

delay. Any operands arriving at an ALU early must wait in the buffers shown in Figure 8 until the

maximum bypass delay has transpired. Though this method produces the maximum amount of IPC

penalty possible, it requires the least amount of additional hardware.

4.2.2.3 Related Work

The most common architectural method of alleviating bypassdelay is clustering–dividing a processor’s

resources into logical groups. In this scheme, bypassing within a group is quick and efficient, but moving

values between clusters incurs an additional delay. This heterogeneous bypass requires intelligent steer-

ing of instructions into clusters to minimize global communication [90]. The Alpha 21264 and 21364

implement this technique commercially with two identical pipelines, each with distinct register files and

bypass networks [53]. Academia has explored clustering with more advanced steering approaches in

proposals such as as Multicluster [44] and CTCP [11].

Similarly, work into explicit bypass removes the all-to-all broadcast nature of the network. Ahuja

et al. [5] analyze the performance penalty of all possible incomplete bypass networks for a simple

processor. Transport-triggered architectures (TTAs) [33] expose the bypass and reservation stations to

the programmer for more explicit operand movement. Finally, grid-based processors such as TRIPS [82]
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Figure 28: The four different pipelining models studied with varying degrees of atomic structure
pipelining.

allow forwarding only to nearest-neighbor functional units, moving the burden of bypass from steering

to the compiler.

4.3 Cycle Time Estimation

For both of these atomic operations, we have presented priorresearch which attempts to alleviate the

IPC penalties of pipelining. The assumption of these proposals is that naı̈ve pipelining is ineffective,

causing losses of parallelism that are not offset by increases in processor frequency or are otherwise

undesirable. This is certainly true when modifying an existing pipeline; dividing a couple of stages

amongst several that have already been carefully balanced would leave the other stages as the cycle time

determiners. Instead, we propose processors which are designed from the outset with trivially pipelined

issue and bypass. In this manner, frequency does have potential to rise, possibly offsetting any drop in

IPC. The rest of the stages are then pipelined to equalize with these pipelined stages.

Before beginning our analysis, we first choose 4 specific pipelining models to study. These are

shown in Figure 28, ranging in pipeline depth from 11 to 33 stages. The critical stages of issue and

bypass are highlighted in the figure. The top model we consider to be the baseline, based loosely on

the AMD Opteron architecture. The remaining models uniformly divide the two target operations into

two, three, and four stages, respectively. Not shown in the figure are other resources not in the primary

pipeline, such as the branch predictor, which might also require additional pipelining to balance the

stages.

Though there are sixteen possible combinations for pipelining both of our critical stages from one
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Figure 29: Estimated processor cycle-times for various processor widths, technology levels, and
pipelining models.

to four stages each, pipelining both to an equal degree allows a logical overlap of IPC penalties. Thus,

we only evaluate the four uniform possibilities. For each pipelined model, the remaining stages are also

divided to maintain a rough balance of cycle-times. As shownin Sections 4.4 and 4.5, performance is

insensitive to minor errors in this estimation. It is important to reiterate that we are not proposing the

re-pipelining of existing processor designs; that would beintractably time-consuming and error-prone.

Instead, these choices would be considered at the earliest steps of a processor’s design.

For the overhead of latching, clock skew, and jitter, we use the determinations of Hrishikesh et

al. [59]. In that work, they estimate the total overhead as approximately 125ps at 180nm and 66ps

at 100nm. According to their assumption that these numbers scale with technology, we extrapolate an

overhead of 60ps at 90nm.

We can now determine the cycle-times for each pipeline modelat different superscalar widths and

process generations. Using the results of Palacharla et al.and the assumption that the other stages can

be pipelined, cycle-times are easily computed at 180nm. These results are shown in the left bars of

Figure 29. Interestingly, for all 4 models at all reasonablewidths, the execute/bypass stage(s) determine

the machine clock frequency. Thus, the cycle-time of the machine is the sum of the ALU, bypass, and

overhead delays for the baseline model, and the maximum of the stages for the pipelined models. This

produces simple formulas for processor cycle-time in Equations 9 and 10, wherealu is the delay of the

ALU, bypass is the delay of the bypass network,ohead is the clocking overhead, andp is the level of

pipelining (1-3 in the models evaluated).

cycletime0 = alu + bypass + ohead (9)
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cycletimep = max

(

alu,
bypass

p

)

+ ohead (10)

Though Palacharla et al. do not provide a more modern 90nm analysis, they do observe that the

bypass network does not scale across process generations. Thus, it is reasonable to assume that the

execute/bypass stage(s) governs the cycle-time a traditionally designed 90nm part even more so. Scaling

the logic of a 180nm 524ps ALU to 300ps at 90nm, we can derive cycle-times for 90nm using the same

equations given above. These results are shown in the right bars of Figure 29.

The large cycle-times for the 11-stage, eight-wide systemsillustrate the growing bypass delay prob-

lems. As the pipelining increases, processor cycle-times decrease until the minimum of(alu + ohead)

is reached. This minimum cycle-time of 360ns at 90nm produces a frequency of 2.78GHz, a feat already

achieved by commercial processors. Additionally, though power results in Section 4.6 show power in-

creases over the baseline model, that baseline was chosen for its conservative low-power pipeline. Thus,

the designs chosen here do not represent excessively pipelined designs–processors which are so deep

and high-frequency as to be uneconomical to manufacture [55, 59, 108]. These are, instead, achievable

design points which explore the pipelining of traditionally atomic structures.

As we are assuming each pipelining model keeps issue and bypass uniformly pipelined, sometimes

issue might appear “over-pipelined”; that is, it did not have to be pipelined as much as bypass to not

affect overall cycle-time. Given the logical connection between the pipelining of issue and bypass as

discussed earlier, there is little IPC harm to keeping pipelining uniform, and any stage with timing slack

can utilize slower transistors to reduce the overall power demands of the chip.

4.4 IPC Simulation

To determine the effect of naı̈ve pipelining on IPC, we modified the SimpleScalar 3.0 cycle accurate sim-

ulator [19] to simulate the four pipeline models at four superscalar widths and two process generations.

Simulation parameters are shown in Table 9.

We used eCACTI [75] to determine the cache access times for both technology levels, and an esti-

mated memory latency of 75ns is used. Using the cycle-time estimates from Figure 29, these times are

converted to cycles for each of the 24 configurations. These variable delays are used by the simulations

to reflect the increased number of access cycles needed in higher frequency designs. For the floating

point units, the delays shown in Table 9 are assumed for a four-wide machine at both process genera-

tions. The number of floating point stages for other configurations is then adjusted based on the relative
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Table 9: Architectural parameters used for all simulations.
Feature Value

Integer ALUs equal to width
Integer Multipliers 2 units
FP ALUs 2 units
FP ALU Delay 2 cycles (4-wide)
FP Mult/Div/Sqrt 1 unit
FP Mult/Div/Sqrt Delay 4/16/19 cycles (4-wide)
Reorder Buffer 128 slots
Issue Queue 32 slots
Load/Store Queue 32 slots
Memory Ports 2 ports
L1 I-cache 64 KB, 2 way, 64B line
L1 D-cache 64 KB, 2 way, 64B line
L1 Delay 1530ps (180nm) 765ps (90nm)
L2 Unified 1024 KB, 16 way, 64B line
L2 Delay 4918ps (180nm) 3793ps (90nm)
Memory Delay 75000ps
Branch Predictor combining bimodal/gshare
Branch History Table 4096 entries
Branch Target Buffer 2048 entries (4 way)

Figure 30: Average simulated IPC results across different processor widths and pipelining. Error bars
indicate sensitivity to three fewer or three more front-endstages.

frequency of those designs in the same technology level. In other words, we assume that the logic of

these units scale down during a process shrink, but in the same generation, the floating point units retain

the same temporal latency.

Most of the benchmarks from Spec2000int, Spec2000fp, and MediaBench [73] are used for analysis.

Any benchmark omitted from these suites did not compile cleanly using gcc 2.95.3 with O2 optimiza-

tions. For each run, we simulated 500 million instructions after skipping the first 100 million. Spec2000

inputs come from thetestdata set, and the default MediaBench inputs were enlarged tolengthen their

execution. A list of all benchmarks analyzed, along with detailed IPC results, is shown in Tables 11 and
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12 at the end.

Average IPC results for each combination of technology, pipeline width, and pipelining are shown

in Figure 30. As would be expected, IPC increases with wider pipelines and decreases as the atomic

operations are further divided. As technology level is reduced from 180nm to 90nm, performance

per clock changes very little. Though cache latencies are reduced significantly in time, the change

measured in cycles is quite small. Additionally, the constant delay of memory between processes causes

an increased penalty on the faster-frequency 90nm designs.

Overall, adding one pipelining stage to the two atomic structures creates a 11% IPC drop on the two-

wide machines, 20% on the four-wide, and 32% on the eight-wide regardless of process technology.

With this reduction in IPC, the intuitive reaction to reducefunctional units to avoid idle capacity is

incorrect. We simulated various forms of reduction, and found that reducing functional units had a

substantial negative impact on overall throughput.

Also shown on Figure 30 are error bars indicating the variation in IPC if the design had three more

(lower error bar) or three fewer (upper error bar) stages in the front end of the pipeline. As one can

see, the sensitivity to the precise number of stages is far less than the sensitivity to more significant

changes like width, process generation, and critical stagepipelining. It should be noted that adding a

reasonable number of stages to the back-end (after writeback) has little perceivable performance effect

as the branch penalty is unchanged. Of course, if committinginstructions takes too many cycles, the

freeing of reorder buffer slots and physical registers might stall the front end. Our experiments show,

however, that over ten stages must be added to the back-end before this effect is noticed, thus we do not

consider error in our estimates for these stages.

4.5 Execution Throughput

Instruction throughput, measured in instructions per second, measures the total execution rate of a

processor. This final calculation, a simple division of simulated IPC by calculated cycle-time, is shown

in Figure 31. As with the IPC results, the figure also indicates the sensitivity to the precise number of

pipeline stages. The upper error bars indicate the instruction throughput if the model had 3 fewer stages,

and the lower error bars indicate throughput with 3 more stages. As with IPC, the precise number of

stages chosen for the four models does not affect relative trends in the data.

As would be expected, total execution throughput increasessignificantly with a process change
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Figure 31: Estimated instruction throughput across technology, processor widths, and pipelining. Er-
ror bars indicate sensitivity to three fewer or three more front-end stages.

from 180nm to 90nm. Also expected is that on the two-wide system, no pipelining of issue and bypass

achieves the highest instruction throughput. More interestingly, designs which are pipelined produce

the highest instruction throughput for the four- and eight-wide designs. For the four-wide, dividing the

atomic structures into two stages produces highest throughput–3% higher than the baseline processor

at 180nm and 18% higher at 90nm. For the eight-wide machine at180nm, dividing each structure into

three stages produces the highest throughput–45% higher than the baseline. For the eight-wide machine

at 90nm, dividing each structure into four stages produces the highest throughput–49% higher than the

baseline. Regardless of processor width, though, the trendbetween 180nm to 90nm results shows that

these optimal design points are becoming more pronounced orshifting towards additional pipelining.

Also of interest is that the four-wide designs achieve higher throughput than eight-wide designs,

especially at more modern technology levels. The fastest eight-wide design is 17% slower than the

fastest four-wide design at 180nm, and 41% slower at 90nm. Though it is intuitive that wider machines

could be lessefficient, it is less so that they would beslower. The high delay of a wide broadcast bypass

network, however, forces architects to choose between a pipelined bypass with low IPC and a zero-cycle

bypass with a high IPC. Either option results in limited instruction throughput, placing a bottleneck on

performance.

4.6 Power and Power Efficiency

The previous section has shown that the performance of a processor with pipelined bypass and issue can

surpass a processor without such divisions. The reason is clear: dividing these stages produces a fre-

quency benefit greater than the IPC penalty. However, important considerations when architecting the
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pipeline depth are power and heat. Deeper pipelines might prove advantageous in performance but pro-

hibitive in energy. Previous work by Hartstein and Puzak [56] has shown that the most energy-efficient

depth of a pipeline is heavily dependent on the optimizationmetric used. According to their models,

BIPS/Watt and BIPS2/Watt are both maximized with a pipeline depth of one (no pipelining).

These results motivate us to study the effect on both power and power efficiency for our designs. As

such, the remainder of this section presents an analytical evaluation of dynamic and static power, and

then an empirical power and power efficiency evaluation.

4.6.1 Dynamic Power

A casual observer might warn that the designs with the highest IPS in the previous section have approxi-

mately twice the frequency as the baseline machine and thus have nearly twice the dynamic power draw.

Indeed the general equation for dynamic circuit power, shown in Equation 11 (whereα is average gate

activity, f is clock frequency,C is total gate capacitance,V is the supply voltage), indicates that power

is directly proportional to frequency:

Pdynamic = α · f · C · V 2 (11)

However, the frequency increases being evaluated in this work are not simple changes in clock

frequency, but rather a reorganization of the pipeline stages. As such, we must evaluate changes to

every term in the above power equation. We start with the capacitance term, which can be broken down

into Cg · N : the average gate capacitance times the number of gates. As the functionality (i.e., number

of ALUs, branch predictor, etc.) of the pipelined models is the same as the baseline model, the total

number of gates between models mostly varies by the additional latches. According to Shivakumar et

al. [106], pipeline latches represent 2% of the total gates in a highly pipelined processor (8 FO4 gates

per stage). Consequently, the additional gates and corresponding chip capacitance created by these extra

latches is minimal. Similarly, the supply voltageV should be unchanged. As higher frequencies are a

result of reducing the number of gates per stage, not runningthe transistors faster, increases to the supply

voltage should be unnecessary.

Of course, we have already shown that frequency increases with additional pipelining. However, it

is also clear that the average gate activity levels decreasewith additional pipelining for our models. A

large part of this activity decrease is due to the insertion of extra pipeline bubbles with each successive
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(a) front end (b) commit unit

(c) branch predictor (d) register file

(e) integer ALU (f) floating point unit

(g) load/store queue (h) data cache

(i) L2 cache

Figure 32: Average activity rates (accesses per second, orα·f ) of various processor resources for each
of the evaluated models. Results are normalized to the baseline machine for each width and technology
level.

division to issue and bypass. Thus the likelihood that any particular gate is switching on any particular

cycle should decrease with additional pipelining. To quantify the effect on both of these terms, we

extract the average activity rates (defined as the number of accesses of a unit per second, orα · f

in Equation 11) across each of the models for twelve important processor resources. These include
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the number instructions processed in the front end (L1 instruction cache, fetch, decode, rename); the

number of instructions committed; the number of accesses and updates to the branch predictor; the

number of reads and writes of the register file; the number of instructions sent to the integer ALUs and

floating point units; the number of accesses of the load/store queue, the L1 data caches, L2 cache. These

average of these numbers across all evaluated benchmarks are then plotted in Figure 32, normalized to

the baseline machine for each width and technology level.

It is clear from the figures that the activity rates do not increase at the same rate as frequency. Instead,

they are far more correlated to the IPS numbers shown in Figure 31. For instance, the activity factors

for the 90nm four-wide pipelined machine increase by about 27% on average, compared to the 18%

increase in execution throughput and the 56% increase in frequency. Of course, the important increase

in clock-tree activity and additional control logic is not addressed in these activity factors. Thus we use

a chip power simulator to emperically evaluate power effects later in this section.

4.6.2 Static Power

With modern deep sub-micron VLSI designs, static power is asimportant as dynamic power. A simple

equation for static power from Butts and Sohi [20] is shown inEquation 12 (whereV is the supply

voltage,N is the number of transistors,kdesign is a design parameter, andIleak is the per-transistor

leakage current).

Pstatic = V · N · kdesign · Ileak (12)

As with dynamic power, we go through the terms individually to evaluate changes on the static power

total. The first term, the supply voltageV , should be unchanged as explained in the previous subsection.

Similarly, Ileak is a constant dependent on the process technology and shouldnot be affected by the

reorganization of the stages. Thus the only variant terms are the average design parameter,kdesign, and

the number of transistors,N . The design parameter takes into account that certain CMOS structures,

such as SRAM cells, are more susceptible to leakage than other gates, such as dynamic logic. As the

functionality of the chip is the same regardless of the pipelining, the only change in transistors between

designs of the same width are due to additional latches. As latches are usually implemented as SRAM

cells, we need to investigate both the number of transistorsand the overall averagekdesign which should

now be more skewed toward SRAMs.
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Table 10: Sim-Panalyzer parameters used for all simulations.
Feature Value

Frequency value from Figure 29
Clock Skew 125ps (180nm) 60ps (90nm)
Logic Voltage 1.8V (180nm) 1.0V (90nm)
I/O Voltage 1.2V
Clock Tree balanced H-tree

However, as stated in the previous subsection, Shivakumar et al. [106] estimate that only 2% of

modern processors’ transistors are latches. If we assume the number of additional latches is proportional

to the increase in stages, thenN only increases by a percent or two and should only affect the average

design parameter slightly. Tsai et al. [116] confirm this conclusion with their observation that latches

only represent 13% of the die leakage at 70nm in an aggressively-pipelined processor. Thus the total

static power increase for the four-wide two-stage model which has 54% more stages than the baseline is

54% of 13%, or just 7%. It is important to note that the this estimate assumes 70nm fabrication where

leakage is noticably worse than at 90nm.

4.6.3 Total Power and Power Efficiency

To supplement the dynamic and static analysis, we now empirically evaluate atomic structure pipelining

with Sim-Panalyzer [118], a power analysis tool based on topof SimpleScalar 3.0 [19]. We altered this

simulator also to model pipelined bypass and issue, and we executed the benchmarks using the simu-

lation parameters from Table 9 and the additional Sim-Panalyzer parameters shown in Table 10. We

choose an I/O voltage of 1.2V to approximate the low-voltagedifferential swing (LVDS) of a Hyper-

Transport off-chip connection.

Figure 33 presents results across four different power metrics, each averaged across our benchmark

suite. Figure 33(a) in the top left presents average power inWatts (both dynamic and static). It is

clear from this plot that the increases in clock frequency created by issue and bypass pipelining have a

significant power cost. For instance, the 90nm four-wide model with pipelined issue and bypass has a

49% higher average power draw than the baseline model. The difference between this number and the

average activity rates earlier in the section is almost entirely due to increased clock-tree energy.

These power results come with many caveats, however. First is the naı̈vety of pipelining which

incurs the maximum amount of IPC penalty possible for each division. Any optimizations to this

pipelining would likely improve performance, power, and power efficiency. Second is the increased
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opportunity for clock gating as lower IPCs increase the likelihood of idle stages. The activity rate

data suggests several possible targets, but examining thisopportunity is beyond the scope of this work.

Finally, the chosen baseline model is conservatively pipelined (11 stages) compared to other modern

desktop processors and thus exhibits a low average power dissipation (30W for the 90nm four-wide

model). As such, there should be more headroom for power increases, especially considering that some

IPS gains can be traded in for lower power. Finally, the target clock rates of the pipelined designs (2.4 to

2.8 GHz on a 90nm process) are well within the range achieved by modern commercial microprocessors.

Thus the power demands of the designs presented here should not exceed what is already commercially

viable.

The remaining graphs in Figure 33 present three power efficiency metrics,BIPS/Watt, BIPS2/Watt,

andBIPS3/Watt, all averaged across the evaluated benchmarks. As stated earlier in this section, pre-

vious work in maximizing power efficiency via pipeline depthchanges had shown that the first two

power efficiency metrics are maximized with one pipeline stage [56]. Only when instructions per sec-

ond is weighted three-fold is a pipelined processor more efficient. Though this prior work never directly

addressed pipelined atomic structures in their IPC analysis, we present the same three metrics for com-

parison.

As predicted, theBIPS/Watt metric in Figure 33(b) shows that designs with the minimal amount

of pipelining (the baseline models) prove the most power efficient at all evaluated widths and technolo-

gies. It is noteworthy how comparable the numbers are acrosstechnology generations and superscalar

width–all models have an averageBIPS/Watt of between 0.06 and 0.11 with clustering in the middle.

These results show a relatively constant energy-per-instruction (or power-per-instruction in this case)

cost for all reasonable designs. The less reasonable the design choices (excessively wide or excessively

pipelined), the higher the cost and the lower theBIPS/Watt efficiency.

As we place more emphasis on performance in theBIPS2/Watt metric of Figure 33(c), pipelining

is still not advantageous, also confirming the data in [56]. The 180nm eight-wide designs, however, are

a slight exception. Here the model with three stages of issueand bypass is 7% more power efficient than

the baseline machine. This advantage disappears when moving to 90nm technology or to a narrower

pipeline, but it is a foreshadow of the effiency results for the final metric. The efficiency advantages of

90nm two- and four-wide machines are also now evident in thismetric. This, of course, is predictable

from IPS results shown earlier and the abundance of commercial processors designed as such.
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With theBIPS3/Watt measurement in Figure 33(d), the anticipated power efficiency benefits of

pipelining are finally seen. Interestingly, the 90nm four-wide model with two stages of issue and bypass

presents a 10% higher power effiency than the baseline, and the 90nm eight-wide machine with three

stages of issue and bypass shows a 36% increase. Also of significance is a technology trend similar to

that for IPS shown in Figure 4.5: the power effiency benefits ofpipelining atomic structures grow as

fabrication technology progresses.

4.7 Conclusion

We do not present this analysis as a proposal for future processor designs per se, but rather a motivation

for further pipelining studies without the fear of significant IPC losses. Though previous work has shown

that the IPC penalties of dividing these stages can be pacified at the cost of additional complexity, the

current difficulty of validation for modern microprocessors makes such additions costly. Our results,

however, show that naı̈vely pipelined atomic structures can be beneficial to a processor’s throughput

and efficiency despite these IPC reductions. On a 90nm four-wide machine, instruction throughput is

increased 18% while increasingBIPS3/W power efficiency 10% over a baseline machine with atomic

issue and bypass. Furthermore, technology trends indicatethat, as feature size decreases and the non-

scalability of wires becomes more dominant in performance,the benefits of pipelining these resources

grows. Altogether, processors designed from the ground-upwith pipelined bypass and issue in mind

could have clear advantages as technology progresses.

Of course, it is important to restate the assumptions which produced our results. First is the atomic-

ity of the ALU. Though the pipelining of an ALU is not intractable, removing this assumption generates

frequencies which are unreasonably high for commercial implementation. Second is the ability of the

other stages to be pipelined and pipelined evenly. Though issue and bypass have gotten the most atten-

tion in academic literature, pipelining other resources such as the register file or the branch predictor

might prove troublesome during physical design. And as the number of stages increases, the chances

of asymmetries within the pipelining also increases, reducing the potential for frequency gains. Ad-

ditionally, our work assumes that this pipelining is feasible from a power perspective. Section 4.6.3

elaborates the caveats of the presented power increases andnotes the increase in power efficiency in the

BIPS3/W metric. Finally, large design variations between architectures makes definitive conclusions

difficult–what is beneficial for one processor may prove to beharmful to the next.
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At least, it is clear that the asssumption of atomic pipelinestages should be challenged. Architects

must decide the degree of issue and bypass pipelining based on the combination of metrics which are

valued highest, not on preconceived notions. It is well known that pipelining is about moderation: too

few stages and the clock rate is low, too many and the IPC is toolow. Our work fits supplements this

optimization problem by removing the restriction that certain resources are taboo to divide.

83



Table 11: Detailed IPC Results at 180nm.
1 wide 2 wide 4 wide 8 wide

two three four two three four two three four two three four
baseline stages stages stagesbaseline stages stages stagesbaseline stages stages stagesbaseline stages stages stages

Clock Freq (GHz) 1.54 1.54 1.54 1.54 1.51 1.54 1.54 1.54 1.21 1.54 1.54 1.54 0.59 0.85 1.53 1.54
Overall IPC Avg 0.64 0.61 0.58 0.56 1.11 0.99 0.89 0.76 1.73 1.40 1.13 0.93 2.12 1.60 1.18 0.93

M
ed

ia
B

en
ch

jpeg encode 0.73 0.71 0.67 0.68 1.36 1.24 1.25 1.00 2.35 2.04 1.54 1.56 2.83 2.41 1.70 1.30
jpeg decode 0.77 0.75 0.73 0.73 1.48 1.38 1.27 1.15 2.64 2.22 1.81 1.40 3.25 2.55 1.89 1.44
epic encode 0.71 0.70 0.69 0.67 1.36 1.28 1.15 1.10 2.36 2.24 1.74 1.72 2.85 2.46 1.71 1.54
epic decode 0.51 0.49 0.45 0.48 0.60 0.54 0.50 0.45 0.63 0.57 0.51 0.47 0.72 0.64 0.52 0.47
g721 decode 0.74 0.68 0.63 0.59 1.27 1.08 0.91 0.75 1.89 1.42 1.10 0.83 2.40 1.58 1.16 0.86
g721 encode 0.75 0.68 0.63 0.59 1.27 1.07 0.91 0.74 1.91 1.40 1.11 0.81 2.40 1.56 1.14 0.84
mpeg2 decode 0.78 0.74 0.72 0.68 1.45 1.29 1.19 1.00 2.49 2.03 1.57 1.23 3.19 2.34 1.63 1.27
mpeg2 encode 0.66 0.59 0.54 0.51 1.07 0.90 0.79 0.64 1.54 1.18 0.94 0.72 1.76 1.27 0.96 0.72
pegwit decode 0.72 0.72 0.72 0.72 1.43 1.43 1.43 1.43 2.86 2.86 2.63 2.33 3.67 3.51 2.89 2.44
pegwit encode 0.78 0.77 0.77 0.77 1.54 1.52 1.44 1.22 2.99 2.42 1.80 1.41 3.58 2.60 1.86 1.43
adpcm encode 0.63 0.49 0.42 0.37 0.86 0.63 0.51 0.38 1.05 0.72 0.57 0.40 1.14 0.74 0.56 0.41
adpcm decode 0.57 0.41 0.35 0.30 0.71 0.52 0.40 0.29 0.84 0.55 0.42 0.30 0.88 0.57 0.43 0.31
Mediabench avg 0.69 0.64 0.61 0.59 1.20 1.07 0.98 0.85 1.96 1.64 1.31 1.10 2.39 1.85 1.37 1.09

S
p

ec
2

0
0

0
in

t

bzip 0.65 0.64 0.62 0.62 1.17 1.05 0.87 0.72 1.71 1.26 0.99 0.79 2.10 1.44 1.00 0.79
gcc 0.60 0.56 0.52 0.49 0.99 0.85 0.74 0.61 1.39 1.06 0.87 0.68 1.73 1.24 0.91 0.70
gzip 0.70 0.67 0.64 0.62 1.28 1.11 0.96 0.81 1.96 1.49 1.17 0.91 2.43 1.71 1.23 0.94
mcf 0.58 0.55 0.51 0.49 0.92 0.79 0.67 0.55 1.18 0.91 0.75 0.59 1.50 1.09 0.76 0.60
parser 0.57 0.54 0.49 0.46 0.97 0.79 0.67 0.54 1.32 0.98 0.78 0.59 1.53 1.08 0.80 0.60
vortex 0.57 0.55 0.52 0.49 0.97 0.88 0.79 0.65 1.43 1.12 0.96 0.77 1.71 1.34 1.01 0.79
vpr 0.63 0.61 0.57 0.57 1.15 0.99 0.82 0.66 1.73 1.21 0.92 0.71 2.03 1.32 0.93 0.72
Spec2000int avg 0.61 0.59 0.55 0.54 1.06 0.92 0.79 0.65 1.53 1.15 0.92 0.72 1.86 1.32 0.95 0.74

S
p

ec
2

0
0

0
fp ammp 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.14 0.13 0.13 0.13 0.22 0.22 0.13 0.13

art 0.61 0.59 0.56 0.55 0.85 0.79 0.75 0.64 1.02 0.90 0.82 0.70 1.30 1.12 0.84 0.71
equake 0.67 0.63 0.58 0.56 1.12 0.95 0.82 0.70 1.56 1.23 0.99 0.79 2.06 1.45 1.05 0.82
mesa 0.70 0.69 0.67 0.66 1.28 1.29 1.25 1.10 2.31 2.07 1.75 1.47 2.94 2.46 1.86 1.55
wupwise 0.72 0.72 0.70 0.69 1.44 1.32 1.13 0.92 2.31 1.70 1.27 0.97 2.68 1.83 1.28 0.97
Spec2000fp avg 0.56 0.55 0.53 0.52 0.96 0.90 0.82 0.70 1.47 1.21 0.99 0.81 1.84 1.41 1.03 0.84
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Table 12: Detailed IPC Results at 90nm.
1 wide 2 wide 4 wide 8 wide

two three four two three four two three four two three four
baseline stages stages stagesbaseline stages stages stagesbaseline stages stages stagesbaseline stages stages stages

Clock Freq (GHz) 2.78 2.78 2.78 2.78 2.68 2.78 2.78 2.78 1.87 2.78 2.78 2.78 0.71 0.90 1.70 2.43
Overall IPC Avg 0.60 0.60 0.56 0.52 1.08 0.97 0.87 0.75 1.72 1.36 1.10 0.91 2.12 1.61 1.23 0.92

M
ed

ia
B

en
ch

jpeg encode 0.71 0.71 0.67 0.65 1.35 1.24 1.25 1.00 2.39 2.04 1.54 1.56 2.83 2.41 1.73 1.30
jpeg decode 0.75 0.75 0.73 0.70 1.48 1.38 1.27 1.15 2.69 2.22 1.81 1.40 3.25 2.55 1.95 1.44
epic encode 0.70 0.70 0.69 0.67 1.36 1.28 1.15 1.10 2.39 2.24 1.74 1.72 2.85 2.46 2.03 1.54
epic decode 0.43 0.43 0.39 0.37 0.52 0.47 0.43 0.40 0.54 0.49 0.45 0.41 0.72 0.63 0.51 0.43
g721 decode 0.68 0.68 0.63 0.55 1.27 1.08 0.91 0.75 1.93 1.42 1.10 0.83 2.40 1.58 1.18 0.86
g721 encode 0.68 0.68 0.63 0.55 1.27 1.07 0.91 0.74 1.95 1.40 1.11 0.81 2.40 1.56 1.15 0.84
mpeg2 decode 0.75 0.75 0.72 0.66 1.42 1.26 1.25 1.13 2.45 1.95 1.55 1.20 3.19 2.36 1.64 1.26
mpeg2 encode 0.59 0.59 0.54 0.47 1.05 0.89 0.78 0.64 1.55 1.16 0.93 0.71 1.76 1.27 0.98 0.72
pegwit decode 0.72 0.72 0.72 0.72 1.43 1.43 1.43 1.43 2.86 2.86 2.63 2.32 3.67 3.51 3.07 2.44
pegwit encode 0.77 0.77 0.77 0.76 1.54 1.51 1.44 1.22 3.00 2.42 1.80 1.40 3.58 2.60 1.88 1.42
adpcm encode 0.49 0.49 0.42 0.33 0.86 0.63 0.51 0.38 1.05 0.72 0.57 0.40 1.14 0.74 0.57 0.41
adpcm decode 0.41 0.41 0.35 0.27 0.71 0.52 0.40 0.29 0.86 0.55 0.42 0.30 0.88 0.57 0.44 0.31
Mediabench avg 0.64 0.64 0.60 0.56 1.19 1.06 0.98 0.85 1.97 1.62 1.30 1.09 2.39 1.85 1.43 1.08

S
p

ec
2

0
0

0
in

t

bzip 0.61 0.61 0.59 0.55 1.08 0.98 0.83 0.69 1.58 1.16 0.92 0.75 2.09 1.43 1.03 0.76
gcc 0.55 0.55 0.50 0.45 0.94 0.81 0.71 0.59 1.39 1.00 0.84 0.66 1.72 1.25 0.95 0.69
gzip 0.66 0.66 0.63 0.57 1.26 1.09 0.95 0.80 1.99 1.46 1.15 0.90 2.42 1.71 1.28 0.93
mcf 0.50 0.50 0.47 0.42 0.80 0.69 0.60 0.50 1.02 0.78 0.66 0.54 1.49 1.08 0.78 0.56
parser 0.53 0.53 0.48 0.42 0.95 0.78 0.66 0.53 1.33 0.96 0.77 0.58 1.53 1.08 0.83 0.60
vortex 0.53 0.53 0.51 0.47 0.93 0.84 0.76 0.63 1.41 1.06 0.92 0.74 1.71 1.36 1.07 0.78
vpr 0.61 0.61 0.57 0.51 1.15 0.99 0.82 0.66 1.85 1.20 0.92 0.71 2.03 1.33 0.98 0.72
Spec2000int avg 0.57 0.57 0.54 0.48 1.02 0.88 0.76 0.63 1.51 1.09 0.88 0.70 1.86 1.32 0.99 0.72

S
p

ec
2

0
0

0
fp ammp 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.21 0.21 0.12 0.09

art 0.52 0.52 0.50 0.46 0.68 0.65 0.62 0.56 0.78 0.71 0.66 0.61 1.28 1.12 0.84 0.63
equake 0.60 0.60 0.56 0.49 1.04 0.89 0.78 0.67 1.46 1.14 0.93 0.75 2.05 1.45 1.09 0.80
mesa 0.69 0.69 0.67 0.61 1.35 1.30 1.24 1.10 2.34 1.98 1.71 1.44 2.91 2.46 2.02 1.54
wupwise 0.73 0.73 0.71 0.67 1.41 1.31 1.13 0.92 2.43 1.70 1.27 0.97 2.68 1.83 1.33 0.97
Spec2000fp avg 0.52 0.52 0.50 0.46 0.91 0.84 0.77 0.67 1.42 1.12 0.93 0.77 1.83 1.41 1.08 0.81
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(a) average power (W ) (b) average power efficiency (BIPS/Watt)

(c) average power efficiency (BIPS2/Watt) (d) average power efficiency (BIPS3/Watt)

Figure 33: Power and power efficiency metrics for all evaluated models.Error bars indicate sensitivity to three fewer or three morefront-end stages.
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CHAPTER V

SCHEDULE PREDICTION

Summary

Modern out-of-order processors expend a great deal of energy dynamically scheduling instructions.

Unfortunately, these orderings are discarded upon use despite the high likelihood that these same in-

structions will be scheduled identically in the near future. To address this shortcoming, we propose the

Execution Schedule Predictor (ESP) which exploits this temporal locality to reduce the use of the ag-

gressive issue logic. Rather than use front-end dataflow analysis, redundant VLIW instruction-caches,

or single-instruction predictors for pre-scheduling instructions, ESP stores and predicts wakeup vectors

generated from the conventional issue logic. These lists ofwakeup times are then used to speculatively

schedule whole groups of future instructions, avoiding unnecessary uses of the wakeup logic. In the

end, an ESP prediction system with only 7KB of storage can predictively schedule 36% of the dynamic

instructions across Spec2000 and Mediabench, reducing wakeup comparitor activity by 39% and broad-

casts by 37%. Importantly, IPC reduced less than 3% via this approach due to the original schedules

being generated by the traditional dynamic issue logic, theaccuracy of the wakeup predictor, and the

ability to defer predictions in low-confidence situations.

5.1 Introduction

Though the concept of selecting ready instructions for execution is intuitively simple, the typical im-

plementation of out-of-order issue logic in silicon is complex and high-power: waiting instructions

compare their input tags to the output tags of issuing instructions; if all inputs are satisfied, the in-

struction requests execution; selection logic chooses which instructions match up with which functional

unit; all selected instructions broadcast their output tags to begin another round. Each of these steps

requires large amounts of dynamic power, and declining feature sizes will continue to increase their

leakage power as well. However, most programs spend a majority of their time in a steady state (highly-

predicted branches, low cache-misses), where this dynamicissue results in the same execution schedule

87



for each dynamic instance of the instructions. As the repetitive nature of branches motivated the use of

branch predictors, the repetitive nature of execution schedules motivates the use of schedule predictors.

To that end, we propose a mechanism called the Execution Schedule Predictor (ESP) which caches

wakeup schedules for groups of instructions and uses that information to avoid later dynamic issue

of the instructions. The concept of predicting wakeup timesin itself, however, is not novel. Most

previous proposals suggest the replacement of the issue logic with front-end wakeup prediction logic,

usually based on dataflow analysis [18, 22, 79]. Rather than add such complexity to the front end

of the machine, ESP uses the existing aggressive issue logicto generate tight schedules the first time

which are then applied to later iterations of the instructions. In this manner execution proceeds as

efficiently as dynamic issue even though the traditional wakeup logic is turned off. Thus ESP only

reduces performance for benchmarks across Spec2000 and MediaBench by less than 3% while reducing

wakeup comparitor activity by 39% and broadcasts by 37%.

Ehrhart et al. also suggest the history-based prediction ofwakeup times, but on a per-instruction

basis [37]. Instead, ESP schedules whole groups of instructions at once viawakeup vectors, minimizing

the size of the additional storage (ESP uses only 7KB of SRAM)and access energy for retrieving the

information. As our goal is to reduce the energy consumptionof the workload, this is an important con-

sideration. Our mechanism is also highly agnostic to the type of issue logic actually used. Any wakeup

system that includes timers (most alternative designs do) is likely compatible with ESP. The principle

of ESP is simply to remember how groups of instructions were scheduled previously (regardless of how

that was done), and use that information later.

Additionally, as the cached schedules were generated by theprocessor’s issue logic, the schedules

have already been verified as correct for previous iterations. Our results show that only about 0.05% of

instructions speculatively scheduled by ESP violate operand-readiness. Thus popular mechanisms for

recovery of mis-scheduled instructions such as replay can be replaced by simple course-grain pipeline

flushes. This is important as more sophisticated correctionmechanisms can be complex, high-power,

and prone to stall-inducing corner cases.

The sections are organized as follows. Section 5.2 introduces related work in wakeup prediction

and caching. Section 5.3 introduces the concept of schedules and wakeup vectors. A description of how

schedules are accessed and applied to dispatching instructions is found in Section 5.4. Then Section 5.5

describes how those schedules are detected and stored in thefirst place. An experimental evaluation of
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ESP is found in Section 5.6. Finally, Section 5.7 concludes.

5.2 Related Work

ESP is a hybrid between two popular areas of research: VLIW cache fill-units [13, 47, 83, 111, 112]

and wakeup-free scheduling[18, 22, 37, 42, 79, 87]. Both areas aim to reduce processors’ dependence

on the tight [14] issue-loop for power and/or frequency improvements. This section will review these

two areas of research in turn, and contrast our work with them.

Chronologically, the first work in dynamically-filled VLIW caches was the shadow cache [47]. In

this work, a scalar front end fetches instructions from a traditional instruction cache during the first

iteration of a code segment. Parallel to execution, the instructions are organized into scheduled groups

and stored in the shadow instruction cache. Later iterations of the instructions would then issue in

parallel from this store, allowing the machine to achieve IPCs greater than one without a superscalar

front end. Nair and Hopkins [83] also use a parallel fill unit,but use a second set of execution hardware

for the pre-scheduled instructions to use. This hot-path iswider and shallower than the default pipeline

as it is fed by a pre-renamed, pre-scheduled instructions. Turboscalar [13] also uses an alternate pipeline

for executing pre-scheduled instructions from their shadow cache equivalent, but fills that cache after

commit on the default pipeline. Finally, Talpes and Marculescu’s execution cache [111, 112] fills a

VLIW cache after commit but uses the same set of resources forexecution. It is important to note that all

of the above proposals except the shadow cache utilize special register files and renaming mechanisms

due to the interaction of scheduled and unscheduled instructions. More importantly, all proposals require

two instruction caches to maintain binary compatibility while simultaneously storing schedules.

The other area of research that ESP draws upon is wakeup-freescheduling [18, 22, 42, 79, 87]. In

these proposals, issue is divided into two independent stages to break the wakeup/select loop in an effort

to increase clock frequency. The first such stage performs pre-scheduling, where the wakeup times of

each instruction are estimated, usually using dataflow relationships. These instructions are then usually

placed in an array indicating their relative wakeup times. Ehrhart et al. [37], however, use a history-

based prediction table instead of dataflow analysis. Their prediction table, however, must be accessed

for every issuing instruction. Regardless of the pre-scheduling mechanism, most proposals fall back on

replay to recover from scheduling errors.

Also related is work by Valurri et al. [119], who propose the use of compiler analysis to assist in
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Figure 34: Dynamic instruction schedule example. Synchronization instruction 1 begins a valid ESP
schedule.

dynamic scheduling. In their mechanism, the compiler augments the binary with scheduling information

for regions of code with high parallelism. Instead of being dispatched into the traditional issue queue,

these portions of code are placed into the S-Buffer, a structure for holding instructions pending execution

in a pre-scheduled order. Our algorithm also applies schedules to groups of instructions, but this is done

dynamically via history not compiler analysis.

5.3 Schedules and Wakeup Vectors

Before we begin a discussion of how ESP works, we first define our terminology. We define a schedule

as a transformationS {im...in} → {cs...ct} which maps the set of instructionsim throughin onto the

wakeup cyclescs throughct. We define this series of instructions as aschedule group, and the range of

execution cycles as theschedule duration. The schedule group must be monotonically increasing–that

is, the dynamic instruction count must only increase fromim to in. However, neither the instructions

nor the cycles need to be continuous as instructions can be skipped and wakeup cycles can be idle. We

also define awakeup vectoras an enumeration of this transformation in the form{cm...cn} wherecm is

the cycle on which instructionm issued and so on.

An example is shown in Figure 34. On the left is a sample sequence of fifteen instructions and

on the right is how they issued on a four-wide machine. The corresponding wakeup vector for these

instructions is then shown in the lower portion of the figure.This vector indicates that instruction 0 will

issue on relative cycle 0, the second will issue on relative cycle 1, and so on.

We also add the restriction that only one scheduled group canexist on any given cycle (in other
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Figure 35: Overview of hardware requirements for the ESP mechanism. New additions are shaded.

Figure 36: Detailed diagram for Wakeup Tag Array and Wakeup Vector Buffer.

words, schedule durations cannot overlap). As we will describe later, we will declare certain issue

cycles as entirely pre-scheduled or entirely dynamically scheduled. Though it is conceivable to design

issue logic to handle both classes of instructions simultaneously, it would add tremendous complexity

to the already complicated issue logic.

5.4 Accessing and Applying Schedules

Now that we have defined a schedule, we can describe how they are accessed and applied. Figure 35

shows an overview of the hardware changes needed for ESP withnew blocks shaded. As an overview,

the front end of the machine accesses the schedule cache and any applicable wakeup vector will be sent

to the dispatch stage. Here the schedule is applied by placing the instructions in the issue queue with

wakeup timers set according to the vector. When all the instructions prior to this schedule have issued,
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the wakeup logic is powered off and the select logic chooses instructions based only on their wakeup

timers. During these cycles, the issue stage resembles thatof a VLIW machine, blindly accepting the

schedule previously given to these instructions. When the pre-scheduled instructions have completed,

the wakeup logic turns back on for any instructions subsequent to the schedule group.

The remainder of this section describes the three primary components of schedule application–

accessing the schedule caches, execution of pre-scheduledinstructions, and verifying the schedule. The

subsequent section then describes the update of the caches with new scheudules.

5.4.1 Schedule Cache Access

Working from the same example in Figure 34, we start by tracing the execution of instruction 1. As in

a typical processor, the front end of the machine requests the I-cache returns the instruction. With ESP,

each I-cache block is also annotated with a hint bit indicating whether this instruction might be the start

of a wakeup vector. If the bit is set, each instruction in thiscache block will access theWakeup Tag

Array (or WTA), which is shown in more detail in Figure 36.

It should be noted that the I-cache hint bit is not necessary for correctness, but dramatically reduces

unnecessary accesses to the predictor tables. We don’t feelthis addition precludes implementation–

processors such as the AMD Opteron maintain pre-decode information for instructions in the I-cache.

Results in Section 5.6 show that removing the hint bits makesESP underdesirable from an energy

perspective.

The Wakeup Tag Array is indexed with a hash of the current PC and the PC of the last control

instruction. If this cache hits and the tag matches, it will contain a set of information about a schedule

including its length including skipped instructions, the number of instructions not counting skipped

instructions, and its duration in cycles. It will also contain the number of times it has been verified

(passes) as a saturating 3-bit counter. The most-significant bit of this counter is used as the valid bit

for this access; thus, a schedule with 4 verified passes is valid for a schedule read. If this entry is

indeed valid, a pointer into the direct-mappedWakeup Vector Buffer(or WVB) is followed. The WVB

contains wakeup vectors organized into lines of 32 entries each. Each entry indicates a wakeup time for

an instruction. The lines in the Wakeup Vector Buffer are sequential–that is, a vector of size 160 will

span 5 adjacent lines. If the tag of the WVB entry matches the last eight bits of the WTA entry tag, the

wakeup vector is valid. An illustration of this buffer is also shown in Figure 36.
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There are two important attributes of the schedule caches. First, is the two-level cache structure

which supports a variety of wakeup vector sizes without bloating the cache. The data labels on Figure

40 show the average size of schedules generated across our benchmark suite. It is evident that some

applications are best scheduled with long vectors; other applications are best scheduled with many more

short ones. A unified cache with a few entries of long cache lines could support applications in this first

group, but the cache would thrash on the second group. Similarly a unified cache with several small

lines could fit the applications with small vectors, but longvectors would have to be trimmed down for

the other group. A naive solution would have many cache entires, each with long lines. Of course, this

solution would leave most of the cache bits empty most of the time, wasting unnecessary power and

occupying valuable chip real-estate. An important insightis that the total size of applications’ wakeup

vectors is roughly constant–the smaller the vectors are, the more are needed. Thus the Wakeup Vector

Buffer is organized as a circular buffer of wakeup vectors that support any size vectors. Any vectors

longer than 32 simply span to the next line, wrapping around if necessary. For our benchmarks, we

found that a Wakeup Vector Buffer of 256 lines (5KB) was more than sufficient for these applications.

We also found that the Wakeup Tag Array need not be large either–128-set 2-way (2.4KB) is sufficient

for near-limit coverage on the the benchmarks.

The other important aspect of the cache is differential encoding. Rather than store the absolute

wakeup cycles1 in each vector entry, instead each entry stores the difference between the previous cycle

and this one. As wakeup vectors can be up to 512 instructions long, this allows us to represent high

absolute cycle numbers with only small difference values. Experimentally we have found that 5 bits

is sufficient for each entry, allowing differences from -15 to +15 with one value (11111) reserved for

entries that are skipped (not pre-scheduled). This impliesthat, in steady state, instructions usually issue

within 15 cycles of the instructions before and after them inprogram order.

The Wakeup Vector Buffer then sends the vector four entries at a time (or whatever the dispatch

width of the machine is) to the dispatch stage, where it will meet up with the instruction that requested

it. It is important that there is ample time between fetch anddispatch to provide sufficient time for data

from the two-level schedule cache to be used expediently. Asthese stages are often several cycles apart

on modern processors, our eCACTI [75] analysis shows that there is ample time to retrieve the data and

1Absolute wakeup cycles refer to cycle numbers relative to the beginning of the schedule (e.g., 0, 2, 3, 1, 6, etc), not cycle
numbers relative to the start of program execution.
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Figure 37: Overview of Group Control and changes to the issue queue entries. New items are shaded,
and dashed boxes indicate newly power-gated logic.

return it to the dispatch stage.

5.4.2 Execution of Pre-Scheduled Instructions

In the dispatch stage, the instructions meet up with the schedule provided by the Wakeup Vector Buffer

and the schedule info provided by the Wakeup Tag Array. Typically in the dispatch stage, operations

are placed in the issue queue (or analogous structure) to await operands and selection for execution. We

make some minor modifications to this process, and Figure 37 illustrates the hardware for the changes.

First is storing some additional information in the issue queue entry: the wakeup timer, a pre-

scheduled flag, and the schedule group number. The wakeup timer is the corresponding entry from

the wakeup vector which has been expanded from its differential encoding into an absolute number.

The first instruction in a schedule has a wakeup timer of zero,and the subsequent instructions have

timers relative to that. The schedule detection logic, explained in the next section, ensures that the first

instruction does indeed start with zero and that all instructions in a schedule have positive timer values.

This timer is reduced each cycle by a decrmentor. When it reaches zero (the NOR of the counter bits

is true), the readiness condition for this pre-scheduled instruction is met. It should be noted that most

modern processors already contain decrementors for broadcast timers (i.e., broadcast the tag for a load

in N cycles). As pre-scheduled instructions do not broadcast their tags, designers could choose to use a

single decrementor for both purposes, compacting the design.
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The pre-scheduled flag indicates whether or not this instruction is to be issued in a timer-driven

manner. If so, there is no need for the wakeup comparators, soFigure 37 shows that they are power

gated off in this case. The pre-scheduled flag also controls asmall multiplexer choosing the readiness

condition of this entry between 1) traditional operand readiness or 2) the wakeup timer. Finally, the pre-

scheduled flag also blocks the tag broadcast for timer-driven instructions. It is assured these instructions

will issue before any subsequent instructions, so the dispatch logic pre-emptively sets the input-ready

flags for any inputs dependent on pre-scheduled instructions. In other words, instructions that dispatch

after a schedule assume that all prior instructions have completed.

This sequentiality is assured by ordering schedule groups.Any instruction in schedule groupG

must issue before schedule groupG + 1, so groups are non-overlapping and sequential. Thus, the final

piece of information added to the issue queue entry is the group number. We also add a small global

Group Control to the issue stage to track schedule groups. This simple logic indicates the current group,

the number of instructions remaining in each group in the issue queue, and moves to the next when a

group completes. It should be noted that the issue queue can contain instructions from several different

groups simultaneously. By using this Group Control, we allow pre-scheduled instructions which are not

in the current group to power off their request logic and the countdown timer. It also prevents normal

(not pre-scheduled) instructions from requesting selection when they are not in the current group.

For instance, the dispatch stage might currently be assigning instructions into group 7. When a

pre-scheduled group is begun by dispatch, those instructions will be assigned into a new group 8. In-

structions after the schedule group will be assigned group 9, as well as instructions that were skipped

(an X in the schedule) by the schedule for group 8. During issue, all group 7 instructions must issue

before group 8, and group 8 must complete before group 9. Thusgroups are entirely pre-scheduled or

entirely dynamic-issue. As we don’t wish to impair the ILP ofthe machine, there is no restriction that

group 7 instructions come before group 8 instructions in theprogram. We can in-order dispatch a group

7 instruction, then a group 9 instruction, then a group 6 instruction. In other words, the schedule groups

are linear in time, not necessarily in program order.

As the dispatch stage transitions to a new schedule group every time a schedule starts and stops,

the number of groups seen during execution can be quite high.However, only so many groups are ever

present in the system at once, so only a small wrap-around counter is needed. We have found that a

mod-4 group system is sufficient–groups count from 0 to 3 and then wrap around to 0.
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Figure 38: Illustration of the dI/dt noise for instantaneous and gradual power gating.

The result of this monotonic movement through the groups is aprocessor which alternates between

dynamic and pre-scheduled issue. Some groups are not pre-scheduled and thus proceed with the normal

wakeup-select logic. The other groups are pre-scheduled and instructions wakeup based on timers.

In the first cycle of this group, all instructions with an original wakeup timer of 0 issue and all other

instructions decrement their timers; on the next cycle, allinstructions which now have a timer of 0 issue,

and the rest decrement; and so on. Only when all instructionsfrom a group are issued are instructions

from the subsequent group.

As these timers are blindly accepted as correct during pre-scheduled mode, it is obviously important

that they be feasible. For example, if the machine can only has one multiplier, a wakeup vector should

not indicate that two multiply instructions issue on the same cycle. However, this is a key advantage

of ESP over related schedule prediction mechanisms: as wakeup vectors are snapshots of how these

instructions dynamically issued previously, they are likely to be correct this iteration.

We would like to elaborate on our references to power gating.Turning off idle processor resources is

well studied, but one important concern in a dynamic-issue machine is unpredictability and dI/dt noise

[39, 89]. Generally, it is difficult to know when to turn a resource on, so designs either 1) turn on the

device quickly when it is needed, causing a noise spike in thepower grid, or 2) turn the device on slowly

to avoid power noise but lose cycles waiting for it to turn on.Either choice diminishes performance–

power spikes increase the clock’s noise margin which reduces maximum frequency, or wasted ramp-up

cycles cause losses in IPC.

Thankfully, our ESP schedules provide the needed predictability for low-noise power gating. If

groupG is pre-scheduled, then the Group Control knows exactly how many cycles untilG’s instructions

will complete (the schedule duration was provided from the Wakeup Tag Array). Thus we can slowly

ramp-up the wakeup logic for the issue queue entries containing groupG + 1 instructions knowing
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exactly what cycle they will be needed. Figure 38 shows an example of this voltage ramping and it’s

effect on dI/dt noise.

5.4.3 Schedule Verification

As with any speculative scheduling mechanism, there is a risk that instructions are mis-scheduled. There

are various commercial and academic solutions to such this problem. The The most common solution

is replay [71], which re-issues instructions that were erroneously selected for execution. Flea Flicker

[9] adds a tail-end execution engine to VLIW processors to re-execute instructions which were mis-

scheduled and their dependents. Similarly, DIVA [7] adds a secondary execution engine to the back-end

of an out-of-order processor, addressing a variety of errors from scheduling problems to alpha particles.

Interestingly, our experiments have shown that the accuracy of ESP is so high as to make a mis-

scheduling recovery mechanism unnecessary. Across our benchmark suite, only about 0.05% of pre-

scheduled instructions violate operand readiness. With this low rate, it becomes practical to initiate a

pipeline flush (as if the instruction was a mis-predicted branch) at mis-scheduling events. Results in

Section 5.6 will show the minimal advantage of using a replaymechanism instead of a pipeline flush.

Regardless of the mechanism used, any instructions having to be re-executed will be flagged as mis-

scheduled in their reorder buffer entries. Upon commit, these flags will trigger the Wakeup Tag Array

to reduce the number of passes for this schedule to 0, forcingit to be verified before it is used again.

A more pertinent problem for ESP is a sub-optimal schedule. For example, a certain series of

instructions might be scheduled identically for several iterations, causing a confident schedule to be

cached and used for future iterations. At some point later, aload in the schedule starts hitting in the L1

cache instead of the L2 as it was previously. Unfortunately,the instructions are being scheduled as if

the load was still hitting in L2. Though no instruction is technically mis-scheduling, these instructions

could have been executed faster if pure dynamic scheduling was being used.

There are several possible solutions to this issue. First would be to detect changes in schedule

characteristics, such as where the loads hit and whether theleading branches were correctly predicted,

and use that to invalidate schedules. This does work most of the time but requires storing a significant

amount of metadata about the scheduled instructions to detect these changes. Another possibility is

to defer schedule application every so often, allowing the instructions to schedule dynamically and be

confirmed against the existing schedule. This is also effective, but in some cases, sub-optimal schedules
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Figure 39: Overview of schedule detection algorithm.

are confirmed if two schedules are back-to-back and only one defers.

Thus a better solution is to defer all schedules at one point in time. For simplicity, ESP does this via

a schedule cache flush everyN instructions (for our benchmarks, every one million instructions works

well). At that point, all valid bits in the Wakeup Tag Array and Wakeup Vector Buffer are cleared, and all

schedules are relearned from scratch. Though this short re-learning time causes ESP to miss some pre-

scheduling opportunities, the coverage loss is minimal–about 1% fewer instructions are prescheduled.

However, the periodic cache flushes allow ESP limit the performance effect of sub-optimal schedules.

5.5 Schedule Detection

Now that we have described how schedules are accessed at the front end of the machine and how

instructions are executed in pre-scheduled mode, we now describe how schedules are created in the

back-end and stored into the schedule caches. We divide thisdiscussion into three phases–start point

detection, schedule determination, schedule storage. An overview of the algorithm is shown in Figure

39.

5.5.1 Start Point Detection

An important challenge in isolating scheduled groups is theout-of-order nature of issue. This execution

behavior, of course, is to be encouraged as it increases the exploitable ILP of the machine. Unfortunately,

this is also makes it difficult to determine a good starting point an instruction schedule. For illustration of

this point, we refer back to the example in Figure 34. Supposethe instructions were issued dynamically
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Figure 40: Average number of instructions between syncronization instructions, inset with the average
size of detected schedules.

as is shown, and we extract a schedule starting at instruction 3. This produces the wakeup vector:

{0, 1, 2, 3, 1, 6, 3, 3, 5, 5, 6, ...}

This is a valid wakeup vector, but instructions 1 and 2 will create a problem during dispatch. Suppose

dispatch is assigning groupG to instructions 1 and 2. Instruction 3 then begins a new pre-scheduled

group,G + 1. However, as we discussed in the previous section, scheduled groups must issue in-order

though their instructions can issue out-of-order. So all group G instructions must issue before group

G + 1 can begin to issue. So on cycle 0 instruction 1 will issue, then on cycle 1 instruction 2 will issue.

It is not until cycle 3 that the pre-scheduled group begin. Assuch, the issue of instructions 1 through 13

will take 2 extra cycles due to the in-order constraint of groups.

Instruction 3 is a poor choice for a schedule start because instructions before it in program order will

issue after it or at the same time as it. Instead, schedules are best started at what we termsynchroniza-

tion instructionswhich loosely order the program’s execution. Any instruction inst exhibiting the two

following qualities is such an instruction:

• Any instruction beforeinst in program order issues on a cycle beforeinst.

• Any instruction afterinst in program order issues on the same or a later cycle asinst.

As a result, these synchronization instructions occur in both program and issue order, though in-

structions between them maybe be out of order in either. Though we could force any instruction to

exhibit these qualities, these qualities occur naturally in a significant number of instructions. The bars

in Figure 40 shows the rate of synchronization instructionsacross our benchmark set. On average, these

occur about every 33.5 instructions, though there is a high variability across benchmarks. This data
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is a primary motivation for ESP’s two-level schedule cache which efficiently supports short and long

schedules.

To determine these synchronization points, we add a circular queue called thehistory vectorand

related logic to the commit stage of the pipeline. As instructions are retired in program order, they are

placed at the tail of the history vector, which is set to the size of the reorder buffer plus 32. As they

are placed in, the cycle on which the instruction issued is compared with the maximum issue cycle

seen thus far. If it is not the new maximum, there is no possibility this instruction is a synchronization

instruction–there are instructions prior in program orderwhich issued after this instruction. If it is the

new maximum, the entry in the history vector is marked with apossible synchronization flag. It is only

a possiblesynchronization instruction at this point because later instructions not yet retired might have

issued before this instruction.

Periodically, the oldest 32 instructions in the vector are pulled from the history vector into a separate

buffer and scanned for true synchronization points.This isdone by working from the newest instruction

backward, disqualifying any possible synchronization instruction which is not is not the new minimum

issue cycle. This process is why the history vector must be the size of the reorder buffer plus 32–we

need to assure that no instruction that has yet to commit issued before any of these 32 instructions. This

process of scanning for start points is illustrated in the second step of Figure 39.

As we are concerned with issue reducing energy, we take careful note of how much additional power

we are using in this computation. Reducing the energy of issue via schedule prediction is moot if we

expend more energy creating the schedules in the first place.We estimate this by counting comparisons,

in this case, each instruction in the buffer is compared twice, once for the maximum issue cycle at

insertion, once for the minimum cycle during scanning. Later power results will tally these comparisons

and compute their energy cost for real benchmarks.

5.5.2 End Cycle Determination

These 32 instructions are then simplified into a zero-based schedule and moved to the next buffer to

scan for end cycles (separate buffers are used for the different analysis stages to allow pipelining of the

schedule detection). At this time an access is also made to the schedule cache to retrieve any schedule

with this PC and path. If there is a hit, the first 32 entries (one Wakeup Vector Buffer line) is sent here.

This process is illustrated in the first step of Figure 39.
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Though the start of schedules should be an instruction in program and issue order, the end of a

schedule is merely the first issue cycle where one followingschedule stoppersoccurs:

• A branch miss.

• A discrepancy with the cached schedule.

• The issue cycle of an instruction is not within -15 to +15 of the previous instruction’s issue cycle.

• A schedule length of 512 instructions is exceeded.

• A schedule duration of 2048 cycles is exceeded.

If a stopper is seen at issue cycleC, it indicates that instructions up to cycleC − 1 should be

included in the schedule. Thus we make a parallel access to the buffer, flagging any instructions issuing

afterC − 1 to be skipped. By stopping at a certain cycle rather than a certain instruction, we ensure that

awaiting the issue of this scheduled group will not delay theissue of subsequent instructions. In other

words, we avoid the sequentiality issues described by a poorstart point in the previous subsection. This

detection of stoppers and exclusion of instructions is illustrated in the third and fourth steps of Figure

39 respectively.

It is clear from the stoppers above that the detection logic supports schedules far larger than the

current working buffer of 32 instructions. Schedules longer than the buffer are simply constructed 32

instructions at a time and stored into the Wakeup Vector Buffer, but the corresponding valid bit is not

set in the Wakeup Tag array until the schedule construction is completed.

For this phase of detection there are 4 comparisons needed per entry for stopper detection–one for

the branch miss flag, one for the discrepancy with the cached schedule, one for the differential, and one

for the maximum cycle. We assume that the maximum length can be detected by simply watching the

ninth bit of a the current length counter.

5.5.3 Final Schedule Storage

Now that we have a schedule, we need to mark it as covered and store it in the schedule caches. These

steps are illustrated in steps 5 and 6 of Figure 39. We set a “covered” flag in each instruction in entry

of the history vector up to the stopper instruction. If an instruction is marked as covered or is part

of a group of instructions that was pre-scheduled during this iteration, these detection phases will not
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proceed. This avoids overlapping schedules clogging the caches and unnecessary comparisons during

detection. Thus the more instructions are pre-scheduled, the less the cost of detecting schedules will be.

Then the Wakeup Tag Array is updated with information on the new schedule. If the cache access

during the previous phase hit, that WTA entry is updated withthis new schedule, and its corresponding

Wakeup Vector Buffer line is updated. If the tag array missed, then a new WTA entry is created, the

head pointer of the Wakeup Vector Buffer is stored in that entry, and that WVB line is replaced with this

cache entry. Some applications overflow the WVB and overwrite valid schedules as the buffer wraps

around. This is why the WVB entry stores a tag to ensure that, if two WTA entries point to it, which is

the valid schedule. Thankfully, the benchmarks that overflow Wakeup Vector Buffer tend to do so only

during highly irregular phases, where the schedules being created would not have repeated consistently

enough to be applied anyway.

It is important to note that, if the schedule discerned from the history vector differs from one already

existing in the cache, what results from end cycle determination is the common sub-schedule between

the two. As this sub-schedule is, by definition, smaller thanthe existing cached schedule, its Wakeup

Vector Buffer lines can be replaced without risk of overwriting any subsequent schedules. The only

ill-effect of this common sub-schedule storage is wasted WVB space, which is rarely at a premium.

The final task for the schedule detection mechanism is to update the hint-bits in the I-cache. ESP

does so when this schedule’s saturating counter for “passes” in the Wakeup Tag Array reaches four,

indicating it has been seen identically four passes in a row.Conceivably, this hint-bit update either

requires a new write port into the I-cache or sharing the existing write port from L2. We believe the

latter is the better choice, as the steady-state behavior ofapplications creates little traffic from L2 to the

L1 I-cache. Even if there were traffic, these hint-bits can below priority without effect on pre-scheduling

coverage. It should be noted, however, that these bits do no propagate beyond L1 and thus are lost upon

cache replacement.

5.6 Experiments and Results

To determine the effect of our Execution Schedule Predictoron performance and processor energy, we

implemented our structures and algorithms on the cycle-accurate SimpleScalar 3.0 simulator with the

PISA instruction set [19]. Table 13 enumerates the parameters common to all designs evaluated in this

section. Most of the benchmarks from Spec2000int, Spec2000FP, and MediaBench [73] are used for
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Table 13: Architectural parameters used for all simulations.
Feature Value

Pipeline Width 4 wide
Integer ALUs 4 units
Integer Multipliers 2 units
Floating Point ALUs 4 units
Flouting Point Mult/Div 1 units
Reorder Buffer 128 entries
Issue Queue 16 entries
Load/Store Queue 16 entries
Memory Ports 2 ports
L1 I-cache 64 KB (2 way), 3 cycles
L1 D-cache 64 KB (2 way), 3 cycles
L2 Unified 1024 KB (16 way), 8 cycles
Memory infinite size, 160 cycles
Branch Predictor combining bimodal/2level
Bimodal Predictor 4096 entries
2-Level Predictor 4096 entries
Branch Target Buffer 2048 entries (4 way)
Branch Penalty 10 cycles

Figure 41: IPC Speedup for default ESP model, ESP with replay, and ESP without I-cache hint bits.

analysis. Any benchmark omitted from these suites did not compile cleanly using gcc 2.95.3 with O2

optimizations. Spec2000 inputs come from thetestdata set, and the default MediaBench inputs were

enlarged to lengthen their execution.

We use SPICE to model the energy of the issue logic using a predictive 70 nm technology transistor

model provided by the Device Group at UC Berkeley [23, 117]. The goal of ESP is to reduce the total

energy of these items by reducing their activity, but ESP itself incurs energy penalties. We modeled the

Wakeup Tag Array (128 sets, 2 way set-associative, 10B per line, 1 R/W port, 1 R port) and Wakeup

Vector Buffer (256 sets, direct mapped, 20B per line, 1 R/W port, 1 R port) using eCACTI [75] at 70nm.

We also use the same SPICE model for the schedule detection comparitors as the wakeup comparitors.

Modeling the slow ramping behavior of clock-gating shown inFigure 38, however, is beyond the scope
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Figure 42: Percent energy change for default ESP model (equal to ESP with Replay), ESP without
I-cache hint bits, and ESP on a machine with large out-of-order queues.

Table 14: Breakdown of issue energy for the default ESP model. Total counts and energies are across
the duration of our benchmark execution–500M instructions.

unit baseline total ESP total
component energy (pJ) count (M) energy (µJ) count (M) energy (µJ)

IssueQ Comps 6.0 9,792.4 58265.0 5,956.7 35442.3
IssueQ Bcasts 32.2 559.5 18015.7 352.8 11360.8
IssueQ Selects 0.1 265.3 31.3 259.0 30.6
WTA Accesses 112.0 114.9 12863.5
WTA Updates 114.0 1.0 108.8
WVB Accesses 191.7 16.9 3244.0
WVB Updates 191.6 5.2 987.7
ESP Comps 0.9 2,111.5 1794.8

Energy Total 76312.1 65832.5
Energy Change -13.7%

of this work.

5.6.1 Default ESP Configuration

We first evaluate the default configuration for ESP. In this setup, we use I-cache hint bits and pipeline

flushes at mis-scheduled instructions. Full schedule cacheflushes occur every million instructions to

evict sub-optimal schedules. As Figure 40 shows, synchronization instructions occur every 33.5 in-

structions on average, and the average schedule length for this configuration is 61.

The first set of bars in Figure 41 shows the speedup results across our benchmark suite. If the

implementation of an energy-saving mechanism degrades performance significantly, it is often simpler

and more effective to employ voltage and frequency scaling to achieve the target energy savings. Prior

work such as Ernst et al. [42] and Ehrhart et al. [37] incur an average IPC penalty of about 10% across

Spec2000 benchmarks, but they are targeting clock frequency increases by breaking the wakeup-select
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loop. ESP, on the other hand, leaves the wakeup-select loop but avoids it for energy savings. Thus the

IPC penalty must be very small for ESP to be competitive.

On average, IPC loss varies between applications from 0% to 10%. An interesting outlier ismpeg2-

encodefrom MediaBench. This application is plagued by sub-optimal schedules (discussed in Section

5.4.3) due to the frequently changing memory-access times.Other applications, such aswupwisefrom

MediaBench see almost no slowdown in IPC. These benchmarks are the most predictable, with high

branch prediction accuracies and predictable memory-access latencies. In general, IPC is only reduced

by 2.5%, showing how effective dynamically-created schedules are for pre-scheduling.

Figure 42 shows the percent change in issue energy for each evaluated benchmark from the baseline

model. The average energy case for the “ESP” line in this graph is broken down in Table 14. As

is shown, issue energy is computed as the wakeup comparison energy plus the tag broadcast energy

plus the select energy. As even pre-scheduled instructionsrequire selection, the change in this number

is small. On average, ESP reduces the number of wakeups comparisons by 39%, the number of tag

broadcasts by 37%, and the number of selections by 3%. This would reduce the issue logic energy by

almost 40%, but we must include the ESP energy costs for a faircomparison. Even after these accesses

of the ESP caches and fill-unit comparisons are incorporated, the issue energy savings are still almost

15%.

Interestingly, Figure 42 shows that there is strong variation between applications, some of which

show increases in energy consumption such as Mediabench’sadpcm. Future work for ESP is to recog-

nize application phases where ESP is not beneficial and poweroff the prediction logic. The current

version of the logic has no such feature, however, and thus should be seen as a worst-case situation.

5.6.2 Replay Implementation

The second set of bars in Figure 41 shows the performance effect of using a replay mechanism instead of

full pipeline flushes during mis-scheduling events. For these experiments, we implement a replay queue

of 16 instructions, which is filled from writeback with mis-scheduled instructions. These instructions

are then re-injected into the issue queue at a higher priority than new instructions are dispatched. To

keep the numbers comparable, we do not use the replay mechanism to implement speculative scheduling

for other purposes; it is only used as a recovery mechanism for ESP. As the data demonstrates, there is

almost no performance advantage to using replay instead of full flushes. Though such flushes are costly,
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only 0.05% of instructions are mis-scheduled across our benchmark suite. Thus a full replay system is

not only unadvantageous, but is also an extra energy consumer that can be avoided.

The use of replay also has very little effect on issue energy,so the energy line for the default ESP

configuration in Figure 42 applies to this configuration as well. This analysis, however, does not include

the energy cost of the replay hardware itself. Quantifying this number is beyond the scope of this work,

but it would likely erase all gains of schedule caching if it were not already present in the pipeline.

5.6.3 I-Cache Hint Bits

Another deleterious effect can be seen in the third column ofthe table, showing the energy delta when

I-cache hints are not used. As every instruction must accessnow the Wakeup Tag Array at least once

(sometimes a second time at during our tail-end schedule detection), WTA activity increases dramat-

ically (approximately ten-fold), consuming more energy than is saved in the wakeup logic. This ESP

configuration increases average issue energy by 65%, indicating that I-cache hint bits should always

accompany an ESP implementation.

Thankfully, the L1 instruction cache and schedule cache achieve steady state at similar points, so

there are few missed opportunities for pre-scheduling whenusing hint bits. The third set of bars in

Figure 41 show the IPC effect of not using the I-Cache hint bits. Thus all fetched instructions are

checked against the Wakeup Tag Array. This increases average coverage of the instructions from 35.5%

to 38.2% due to the occasional schedule start-point which did not have a hint-bit set (the I-cache replaced

it and it is brough back in without the bit set). Interestingly, the IPC of the machine is slightly increased

with these brute-force accesses. As the hint bit is also usedduring commit time for schedule checking,

this means that some sub-optimal schedules are not discovered.

5.6.4 Large Queues

The final set of bars in Figure 41 and the “ESP + big queues” linein Figure 42 show the effect of

quadrupling the reorder buffer to 512 entries, quadruplingthe issue queue to 64 entries, and quadrupling

the load/store queue to 64 entries. By increasing the out-of-order execution abilities of the pipeline, we

have dramatically reduced the frequency of natural synchronization points, making schedules harder

to detect. With this model, these ordering instructions occur only 100 instructions instead of every 34

with the default machine. MediaBench’swupwiseis the most severely affected here, and does not find
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a single synchronization instruction during its execution!

Average instruction coverage for this model drops from 35.5% to just 17%, mostly due to the high-

parallelism MediaBench applications which now issue in such an out-of-order manner as to prevent the

schedule detection logic from identifying where to start a schedule. However, as the average activity

of the issue logic has increased, savings here weigh more heavily against the costs of ESP hardware.

In the end, ESP reduces the issue energy by about 3% over a baseline configuration. As mentioned

before, however, a more realistic implementation of ESP should include “futility logic” which shuts

off schedule detection and access if the current program (orphase of the program) is not amenable to

pre-scheduling. The implementation studied here is alwayspowered on, and thus should be viewed as

worst-case.

5.7 Conclusion

An on-going goal for ESP is increased coverage. Variabilityof control flow creates most of the coverage

loss seen in our experiments, and more aggressive schedule creation could handle this at the cost of

sub-optimal schedules. In general, schedule prediction faces a pure tradeoff–all instructions can be

pre-scheduled without violating operand readiness if we are prepared to accept sub-optimal schedules.

Of course, at some point the performance has dropped so much as to make simple voltage/frequency

scaling a better option. But as ESP’s commit-time checker does not analyze instructions which were

pre-scheduled, the power benefits of pre-scheduling instructions are two-fold. Future study is needed

to pin-point precisely the aggressiveness is needed to discover the optimal point for performance and

energy.

Another direction of future study is relaxing the wakeup-select loop into two cycles. Most previous

research in wakeup prediction is motivated by alleviating the IPC penalty of two-cycle issue. ESP

currently has no such goal, but it is conceivable for schedules to be created by two-cycle issue logic and

compressed into tighter one-cycle scheduling before caching. More research is required to determine if

efficient logic can be designed for this purpose.

It is evident, though, that in its existing form the Execution Schedule Predictor can eliminate the

need for traditional issue for large portions of modern integer applications. Results in the previous

section show that over 35% of instructions are pre-scheduled via the predictor, cutting the number of

wakeups and broadcasts by 35% to 40%. Additionally, due to the tight schedules originally generated
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by the issue logic, ESP incurs less than a 3% IPC drop over full-time dynamic issue.
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CHAPTER VI

RAPID FLOORPLANNING

Summary

As the size and complexity of VLSI circuits increase, the need for faster floorplanning algorithms also

grows. In this work we introduce Traffic, a new method for creating wire- and area-optimized floorplans.

Through the use of connectivity grouping, simple geometry,and a constrained brute-force approach,

Traffic achieves an average 18% lower wire estimate than Simulated Annealing (SA) in orders of mag-

nitude less time. This speed allows designers to rapidly explore a large circuit design space, evaluate

small changes to big circuits, fit bounding boxes, and produce initial solutions for other floorplanning

algorithms.

6.1 Introduction

Despite the amount of academic and industrial research in the area, the challenge of block packing is

even tractable by a child: given a set of rectangles, arrangethem into the smallest area. This problem

is relevant to many fields, from truck loading to OS process scheduling. Additional constraints such as

wire-minimization or fixed-position blocks make the challenge more complex for VLSI circuit floor-

planning. However, even without these additional constraints, floorplanning is difficult and requires

heuristics to efficiently solve.

We introduce a two-phase algorithm for VLSI floorplanning called Traffic (Trapezoidal Floorplan-

ning for Integrated Circuits), which seeks to floorplan through constrained brute-force techniques. The

first phase groups blocks by global and local connectivity using a modified partitioning algorithm and

simple heuristics. The second phase forms trapezoidal shapes from these grouped blocks. Trapezoids,

with similar slopes on their diagonals, are easily tileable. We use this principle to tessellate these shapes

across the floorplan. By primarily addressing connectivityin the first stage and addressing packing in

the second, Traffic divides-and-conquers the complexity ofVLSI floorplanning. Since the algorithm

and data structures are very simple, each run is several orders of magnitude faster than a Simulated
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Annealing (SA) run and achieves very good results. Taking the best of many Traffic runs improves the

solution quality further while still taking far less time than even a single SA run.

An important philosophy of Traffic is the exploration of the design space through constrained brute

force techniques rather than complex heuristics. In several aspects of floorplanning, we find it is more

efficient to try a reasonable number of options rather than attempt to discern which option is best a priori.

Though this gives the illusion of finding a result accidentally, it is only through important constraints on

the possible solutions that a good one is found quickly.

The quality and speed of Traffic indicate many applications.First is as a final floorplanner, as

taking the best of hundreds of runs achieves high result quality in a reasonable amount of time. More

significantly, our algorithm allows the circuit design space to be appraised quickly. Engineers using

Traffic can quickly evaluate the physical implications of different circuit configurations (i.e., 10 large

blocks versus 1000 smaller blocks) or different architectural details (i.e., 16-entry register file versus 32-

entry). Traffic can also be used to produce initial solutionsfor other floorplanning algorithms, mitigating

their prohibitive run-times and improving their result quality.

The sections are organized as follows. Section 6.2 addresses previous work in the area of floor-

planning. Sections 6.3 and 6.4 describe the two phases of theTraffic algorithm. Section 6.5 presents

the experimental parameters we use for our results. Section6.6 shows area and wire-length results for

Traffic compared against Simulated Annealing. Finally, Section 6.7 concludes and addresses future

work.

6.2 Related Work

Floorplanning has been studied extensively in the past two decades due to its theoretical and practical

importance. Given a VLSI circuit consisting of both fixed or flexible blocks (some of the blocks can

be pre-placed at some locations) and a net-list interconnecting these blocks, floorplanning constructs a

layout indicating the position and shape of each flexible block such that all nets can be routed and total

layout area is minimized.

There are two types of floorplans: slicing and non-slicing. Aslicing floorplan [34, 85, 110, 120] is

one that can be obtained by recursively cutting a rectangle into two parts by either a vertical line or a

horizontal line. A non-slicing floorplan [24, 52, 81, 88] is one that is not necessarily slicing. In general,

a non-slicing floorplan can describe any type of packing.
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Most of the existing floorplanning algorithms are iterativein nature–start with some initial solution

and gradually improve its quality by performing various local moves. A popular choice for exploring the

solution space has been Simulated Annealing [72], where a new solution is selectively accepted based on

some probability in a cost function. Moreover, the major focus of recent advances on floorplanning has

been on the development of an efficient solution representation [24, 52, 81] and its fast evaluation [113]

for SA-based optimization approaches. In addition, some recent works [2, 114, 122, 123] address how

to satisfy various user specified geometric constraints during floorplanning. Unfortunately, however, it

has been a widely accepted fact that SA-based algorithms suffer from a prohibitively long runtime and

require tedious parameter tuning.

To address these concerns, many authors have introduced fast floorplanning algorithms for ASIC

[10, 35, 49, 54, 93, 103, 104] and FPGA [40, 115], which quickly estimate the area and wiring needed

by a completed floorplan. Though these algorithms are often very fast and accurate, they are only a

heuristic–there is no guarantee that a floorplan can be created with the output results.

Ranjan et al. [96] propose improving the speed of Simulated Annealing by computing the cost

functions a priori in a predictor. They then use these values, along with top-down slicing and a final

stage of SA, to quickly produce floorplans. Their result quality is comparable to SA, and their speedup

is significant.

6.3 Connectivity Phase

The first phase of Traffic addresses wire-length while deferring block packing until the second phase.

A complete overview of the Traffic algorithm is shown in Figure 43, where lines 1-3 represent this

connectivity phase. The connectivity phase itself is divided into two sub-stages,global net grouping

andlocal net grouping, though the distinction between these terms is vague. Global nets connect distant

blocks in a floorplan; however, given a different floorplan ofthe same blocks, a different set of nets may

be considered global.

6.3.1 Global Grouping

To minimize longer wires that will be present in any floorplan, we first partition the blocks using a

method called Linear Partitioning and Placement (LPP), which is similar to the partitioning algorithm

introduced in [31]. Pseudocode for this stage is shown in Figure 44. In this scheme, a block-level netlist
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connectivity phase
01: partitions[] = globalgrouping(blocks);
02: for (part from 0 to numpartitions)
03: localgrouping(part);

physical phase
04: for (run from 0 to numruns)
05: for (part from 0 to numpartitions)
06: rows = initial placement(part);
07: for (step from 0 to 25)
08: mutate(part.rows);
09: if (no change) break;
10: squeeze(part.rows);
11: is partition best(part.rows);
12: all rows = mergepartitions();
13: is total best(all rows);

Figure 43: Traffic algorithm pseudocode.

global grouping(NL, K)
01: NL = block-level netlist;
02: K = number of partitions desired;
03: while (num partitions is notK)
04; P = visit partitions in top-down BFS order;
05: CP = multi-level clustering hierarchy forP ;
06: hgt = height ofCP ;
07: BP (hgt) = random bipartitioning at levelhgt;
08: for (i = hgt downto 0)
09: move clusters inCP (i) to reduce linear WL;
10: BP (i) = new bipartitioning at leveli;
11: projectBP (i) to BP (i − 1);
12: return BP (0);
13: return K partitions;

Figure 44: Global grouping pseudocode.

is divided into multiple partitions, but the partitions (not the blocks in the partitions) are assumed to be

placed onto a line. Thus, a connection from partition one to four incurs a higher cost than a connec-

tion from partition one to two. This produces linearly ordered partitions, which is analogous to block

linear ordering [65]. In our approach, however, we perform multi-level partitioning [66] by building

a multi-level clustering hierarchy using ESC algorithm [30] and performing cutsize minimization via

declustering and refinement. We use terminal propagation [36] in LPP to reduce the linear length of

wires connected to other partitions during each bipartitioning. As the next section will show, this linear

order is advantageous to us since the Traffic physical algorithm will operate on each partition separately
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then stack them together to form a final floorplan. Figure 45(a) shows an illustration of global grouping.

P =
4

5
·
√

N − 2 (13)

We round the result from Equation 13 to determine the best number of partitionsP for N blocks.

This formula, derived by regression analysis of the best partition counts for various circuits, has been

validated for accuracy on circuits up to thousands of blocks. Intuitively, this equation prescribes a square

chip layout with each partition consisting of only one row-pair (explained in the next section). This

allows maximum use of the partitioner without sacrificing the area efficiency of the created trapezoids.

Also prescribed by this equation is that, for circuits of less than 12 blocks, only one partition should be

used.

Section 6.6.5 analyzes the effect of grouping on circuits ofvarious sizes. In general, global grouping

provides more benefit for larger circuits, reducing wire-length by up to 75% on the biggest circuits

tested. Additionally, the runtime of this optimization is not burdensome–partitioning a 1000 block

circuit takes under three seconds on our test platform. We also find that this time is completely offset

by the speedup of the physical layout phase of Traffic. Since that aspect’s runtime is roughlyO(n2) on

the number of blocks in the partition being worked on, executing on many small partitions is faster than

running on one large partition.

6.3.2 Local Grouping

For shorter wires, Traffic bindshighly connected pairstogether before the physical placement begins.

Highly connected pairs are two blocks within the same partition which have significantly more inter-

block nets than average for that partition. For instance, inthe GSRC benchmarkn300a, blocks 57 and

76 are connected by 14 different nets. These are the most highly connected blocks in the circuit, and

their distance apart in the final floorplan will make a noticeable impact on the total wiring estimate.

Instead of forming macro-blocks or complicating the physical phase with a cost function to assure

these pairs have high proximity, we choose to use a side-effect of the physical algorithm. As will be

explained in more detail in the next section, blocks of the same height will have high spatial locality in

each partition. To persuade these highly connected blocks to be adjacent to each other, we expand the

shorter block to the height of the taller. Then we lock these highly connected blocks so that they may

not rotate. Thus they will remain of identical height until the termination of the physical algorithm. As
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(a) (b)

Figure 45: Illustration of connectivity phase. (a) global grouping, where the linear arrangement of the
partitions depicts our linear placement result, (b) local grouping.

these blocks will be very close in the final layout, they should not contribute significantly to the wiring

estimate.

However, this grouping has two detrimental effects. First is the addition of false area to these blocks,

effectively increasing the white-space of the layout. Additionally, locking down too many blocks will

restrict the physical algorithm from exploring large areasof the solution space, possibly excluding

the optimal floorplan. Thus, the threshold number of block pairs to group must be chosen wisely.

Experimentally we have determined the best threshold to be 10%–that is, 10% of the blocks are bound

to another. Also, to mitigate the additional area being added to blocks, the algorithm first rotates the

blocks such that the minimal amount of padding is needed.

Experiments have also shown that binding more than two blocks together slightly degrades results–

average wire-length in produced floorplans increases by approximately 1% when removing the pair-wise

restriction. The effect is negative because of the large amount of padding that must be added to make

all blocks the same height, but the impact is small due to the rarety of highly-connected block groups of

three or more.

Figure 45(b) shows an example of local grouping of the secondpartition in Figure 45(a). Here three

sets of blocks are determined to be highly connected. Each pair is rotated to minimize the amount of

padding added, then the shorter block is expanded to the height of the taller. These blocks are then

locked to assure their heights will remain equal.
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On most benchmarks the execution time of this optimization is minimal–under a second for 1000

blocks on our test platform. As with the global grouping, this is a one-time cost as all runs will utilize

the same bindings. In general, local binding further reduces wire-length by approximately 5% beyond

just partitioning. A quantitive analysis of the effect of global and local wire optimizations can be found

in Section 6.6.5.

6.4 Physical Phase

After the blocks have been grouped both globally and locally, Traffic begins its physical layout phase

(lines 4-13 in Figure 43). Though wire-minimization is the ultimate goal of Traffic, a floorplan that

is packed more tightly together will tend to have a lower wireestimate. This phase of the algorithm

ensures a final layout with as little white-space as possible. As wire-length has been addressed within

the first phase, this stage need only address the packing problem. Though we could modify the physical

algorithm cost functions to address wires as well, this phase’s advantages come from the divide-and-

conquer approach to floorplanning.

Incidentally, the physical phase does end up minimizing local wires by picking the layout with the

lowest wire estimate when wire-optimization mode is used. As thousands of possible floorplans will

be evaluated, the likelihood of finding a layout with good wire-length characteristics is quite high. As

mentioned earlier, constrained brute force techniques area recurrent theme of Traffic. By limiting the

solution space to legal Traffic layouts, the number of possible arrangements is quite tractable. Without

this constraint the number of possible solutions quickly becomes unwieldy, making a full brute-force

approach impractical.

We start our explanation of the physical algorithm with a high-level overview of the algorithm, then

elaborate on the details.

6.4.1 Overview

Figure 46 is a graphical representation of what Traffic attempts to do for each partition. In (a), each block

is placed into one of many buckets depending on height. Taller blocks will go in the top rows, shorter

blocks in the bottom rows. This initial placement is done in amanner that the row widths are somewhat

even. Buckets are then sorted alternating ascending and descending, and lined up in contiguous rows in

(b). Thus each bucket is now a single row and should resemble atrapezoid. Since there is a one-to-one
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(a) (b)

(c) (d)

Figure 46: Traffic physical phase illustration. (a) buckets, (b) rows,(c) layout for one partition, (d) all
partitions stacked together.

correspondence between buckets and rows, we use the terms interchangeably from here onward. In (c),

we move blocks between rows to even their lengths out, and flipthe even rows over so that we form row-

pairs (i.e., 1-2 and 3-4 in the figure). These row-pairs are then squeezed together tightly, leaving only

small gaps between. This is repeated for all partitions independently. Finally, the partitioned floorplans

are placed atop each other to form a total floorplan in (d). There is no guarantee the partition floorplans

will be of the same width, so the bounding box becomes the total chip area.

In the pseudocode of Figure 43, line 6 is the initial bucket setup. Evening of the rows’ lengths is

done on line 8, and line 10 does the flipping of the even-numbered rows. The evening and squeezing of

the rows is how Traffic explores the local solution space, so it is done iteratively. This is done for each

partition, so line 12 merges all partition floorplans into a total floorplan.

The evening of the rows, also called mutating, usually achieves even row balance within 3 or 4

steps. This leads to very tight layouts with very little white-space. However, it is advantageous to let

the mutations continue many more times. As blocks are moved around, the trapezoids change shape,

possibly creating tighter fits between row-pairs or better wire estimates. Empirically, we found that the

best results are usually found within 25 steps, thus the constant in the inner loop of the pseudocode.

One run is somewhat significant in its exploration of the solution space, but Traffic does several runs

iteratively to explore a larger space. We evaluate each run based on cost (currently, a weighting of wire-

length and area), and save the total floorplan with the lowestcost. A run normally begins with a random

116



first run
1: block array[num blocks] = readblocks();
2: adj matrix[num blocks][num blocks] = readnets();

every run
3: num buckets = get optimal buckets();
4: buckets[num buckets];
5: ideal row width = sqrt(total block area );
6: for (bucket from 0 tonum buckets)
7: while ( buckets[bucket].width < ideal row width )
8: blocktemp = get next tallestblock();
9: buckets[bucket].add(temp);

Figure 47: Initial placement algorithm pseudocode.

Figure 48: Initial placement of a Traffic partition.

rotation of the blocks and then proceeds with the deterministic mutations. A recent modification to our

algorithm is the addition of a special run at the beginning with all the blocks upright (taller than wider).

This special case handles circuits with mostly elongated blocks, which are sometimes a byproduct of

partitioning algorithms.

The remainder of this section explains the three most important steps in this algorithm–the initial

placement, the mutations, and the squeezing. These are doneto each partition individually and once

completed, all partitions are stacked to form the total layout. The remainder of the algorithm is mostly

file I/O, wire-length estimation, and bookkeeping for saving the best floorplans.

6.4.2 Initial Placement

Line 6 of the pseudocode in Figure 43 encapsulates the initial work to create the buckets/rows: set up

of data structures, creation of buckets, and placing blocksinto buckets. Figure 47 shows more detailed

pseudocode for this step.

The data structures for Traffic are very simple and static. There are no lists, vectors, graphs, or other

dynamic structures present. Instead, all of the work is mainly done on a 2-D array representing the rows
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and a 2-D adjacency matrix representing the nets. The formerof which contains pointers to a 1-D array

of blocks, which are C structs holding very basic information such as width, height, and two lock bits

(explained in the next subsection).

As Figure 47 shows, the block array is filled once upon readingin the data files and never modified,

but the row array must be recreated at the beginning of each Traffic run. To create this 2-D array, we

must first know the optimal number of buckets to be used for thecurrent partition. The Traffic algorithm

determines this with Equation 14.

Bucketsp =

⌈√
∑

Areab

Heightavg
· Np

Ntotal

⌉

2

(14)

To derive this formula, we start with an ideal Traffic layout and work backwards to the number of

rows needed to make it. This perfect floorplan is one-partition, square, row-based, and without white-

space. The square’s area is simply the sum of the individual blocks’ areas since it is completely filled

by non-overlapping blocks. Consequently, the height of this square would be equal to the square-root of

this block area sum. If block heights were uniformly distributed, the number of rows would be roughly

equal to the height of the square divided by the average height of a block. We then multiply this number

of buckets by the ratio of blocks in this partition versus thewhole circuit. This will reduce the rows and

flatten the partition so that, when later stacked, the total floorplan will be relatively square. Finally, we

wish to have an even number of rows to form pairs with, so we round up to the next even number.

The next step is to randomly rotate the blocks 0 or90◦ (except the highly-connected blocks, which

have been locked) to create entropy for this run. As the mutations are deterministic, this is the only

source of difference between runs. It is important to note that, as we padded the heights of highly-

connected blocks to be equal and they did not get rotated, they are likely to end up in the same bucket.

Finally, traffic then places the blocks into the buckets. As we desire rows of roughly equal width,

we fill the each row with blocks until they are near the width ofthe ideal floorplan computed above. As

we wish to keep the slopes of the opposing trapezoids as similar as possible for the tightest fit, we would

like the blocks in each row to be similar. Thus Traffic places blocks in order of descending height into

the rows. Thus the first row will have all the tallest blocks and the last row all the shortest blocks. We

sort descending because an odd number of rows is used for fixedfloorplanning (see Section 6.6.2) and

we wish that last unmatched row to be as slender as possible.
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Figure 48 illustrates a typical result of Traffic initial placement. Each of the four rows is roughly

equal in length, all the tall blocks are toward the top, and all short blocks toward the bottom. The white-

space of this layout is about 10%, fairly low by modern floorplanning standards. Yet the overhead to

set up the data structures and create the buckets is just a fewmilliseconds on our test platform. Since

our algorithm relies on doing tens or hundreds of runs to explore the solution space, this setup speed is

important. This is the overhead of a Traffic run–the real progress is made in the mutations and squeezing.

6.4.3 Mutations

After initial bucket creation, we start calling them rows toillustrate how the buckets will appear in the

layout. The focus is now on evening their widths, which we do through mutations (line 8 in the Figure

43).

There are four types of mutations which even out rows by moving blocks in different ways:

• Shrink widest row: moves blocks from the widest row to adjacent rows.

• Grow narrowest row: moves blocks into the narrowest row from adjacent rows.

• Shrink widest row via rotation : takes blocks from the widest row, rotates them90◦, and places

them in the rows matching the height ranges of these blocks.

• Grow narrowest row via rotation : takes blocks from wider-than-average rows that, when rotated

90◦, match the height range in the narrowest row.

Detailed algorithms for the mutation methods are given in Figure 49. For brevity, only two of these

are shown in this pseudocode, but the remaining two are logically similar. Traffic does one shrink and

one grow mutation per step. The non-rotating functions are preferred so they are called first. If the

adjacent rows were already too wide to accept blocks or too narrow to remove blocks from, we call

the rotate versions instead to get blocks to/from non-adjacent rows. The rotate versions identify the

matching rows by comparing the average heights of blocks in that row with the block in question. If all

four mutation functions cannot identify any moves to make, all of the blocks must have both their locks

set. Thus there is no work to do and this run is completed early.

To prevent endless loops, each block is assigned two locks–amove-lock and a rotate-lock. Once a

block is moved to another row without rotation, its move-lock is set, and once it is rotated and moved its
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mutate:
01: shrank = shrink widest row();
02: if (shrank == false)
03: shrank = shrink widest row rotate();
04: grew = grow narrowestrow();
05: if (grew == false)
06: grew = grow narrowestrow rotate();
07: return (grew or shrank);

shrink widest row:
08: shrank = false;
09: source row = find widest row();
10: while (rows[source row].width > ave width)
11: short = shortestunlockedblock(source row);
12: target row = min(rows[source row + 1].width,
13: rows[source row − 1].width);
14: if (rows[target row].width > ave width)
15: break;
16: moveblock(short, target row);
17: shrank = true
18: return shrank;

grow narrowest row rotate:
19: grew = false;
20: target row = find narrowestrow();
21: while (grew ==false)
22: source row = find next widest row();
23: if (source row == null ) break;
24: foreach (block in rows[source row])
25: if (block.locked)continue;
26: if (heightfits row(block.width,target row))
27: block.rotate();
28: moveblock(block, target row);
29: grew = true;
30: if (rows[target row].width > ave width)
31: break;
32: markrow visited(source row);
33: return grew;

Figure 49: Mutation algorithms pseudocode.

rotate-lock is set. These locks prevent further movement between rows or rotation, respectively. Highly

connected blocks which were bound by the local wire groupinghave had both their move and rotate

locks preset, so they are guaranteed not to participate in any mutation.

It is important that mutations are deterministic and blind to the floorplan they will create. Whereas

Simulated Annealing uses complicated cost functions and probabilistic swaps, Traffic’s mutations only

strive to even row widths regardless of how this might affectthe layout. However, it is not coincidence

that floorplans with even row widths tend to produce less white-space in Traffic and thus lower wire
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for (row from 0 tonum rows)
if (row mod 2 == 0)

sort ascending(row);
flip upsidedown(row);

else
sort descending(row);
gap = find gapbetween(row, row − 1);
shift upward(row, gap);

Figure 50: Squeezing algorithm pseudocode.

Figure 51: Sample Traffic partition after mutations and squeezing.

estimates.

6.4.4 Squeezing Rowpairs

The final step (line 10 in the pseudocode of Figure 43) encompasses sorting even rows ascending and

odd rows descending, flipping the even rows around, and squeezing the row-pair trapezoids together.

A more detailed algorithmic overview of this procedure is shown in Figure 50. As this process only

involves small quicksorts and simple arithmetic, squeezing time is negligible.

By alternatingly sorting and flipping rows, smooth trapezoids are formed with the slopes facing each

other. After compressing these together, the only sources of white-space in the layout are the gaps at the

ends of rows and the crease between trapezoid slopes. As mutations keep the row lengths even and row

slopes shallow, white-space is kept to a minimum. It is important to note that the mutations are ignorant

of the squeezing process; as such, a mutation might cause thecorners of two facing blocks to touch and

prevent squeezing. In keeping with the philosophy of Traffic, this situation is handled by taking the best

floorplan of multiple mutations for each of multiple runs. Webelieve this to be a superior option to

complex mutation heuristics.

Figure 51 shows a sample partition after mutations have equalized the rows and squeezing has com-

pressed the trapezoids together. The rows infringe on each other yet do not overlap, and the trapezoids
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Table 15: Block and net counts for GSRC circuits.

ckt blocks nets

n10a 10 118
n30a 30 349
n50a 50 485
n100a 100 885
n200a 200 1585
n300a 300 1893

tile together very tightly. In this example, the floorplan has under 3% white-space, an excellent block-

packing result. Additionally, the time required to create this floorplan (including initial placement,

mutations, and squeezing) is only 0.0009 seconds on our 2.4GHz Xeon testbed.

Since highly-connected blocks have the same height, sorting will leave them adjacent. This is why

Section 6.3 states that the side-effect of Traffic is sufficient to bind these pairs. They started out in the

same row, were pre-locked to avoid mutations, and are sortedadjacently in the final squeezing.

After squeezing is complete, statistics are gathered on this layout and the Traffic step is completed.

If it is the best of the 25 layouts produced at each step, it is considered thepartition bestfor this partition.

After each partition completes this run, each partition best layout will be stacked to form a total floorplan

for that run. If it is the best of all total floorplans, it is thetotal best.

6.5 Experimental Setup

All performance evaluations were done on an Intel Xeon 2.4GHz with 512MB of memory running

Linux. Timing results are user-level time as measured by theUnix timecommand which has a resolution

of 10ms. We use the half-perimeter method of wire estimation.

The Traffic code is written in ANSI C. To avoid comparing pad placement algorithms, wiring results

do not include nets going to pads. Thus, a net that connects blocks A, B, and a pad is reduced to a

connection between A and B. We also assume that all connections are made at the center of a block.

Traffic is compiled with GNU gcc 3.3.2 with “-O3” and “-funroll loops”, and no parameters are tuned

between executions.

For comparison, we chose the Parquet Simulated Annealing floorplanner [2] dated 4/11/2002 which

is written in C++. The choice of this annealer over others wasdue to source-code availability and good

performance. We also modified the code to similarly ignore connections to pads and connect all wires to

the center of the block. All other code is left the same, and the default cooling schedule and “-compact”
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Table 16: Statistics for ISPD and MCNC circuits before and after partitioning into 300 and 1000
blocks.

original 300B 1000B
ckt cells nets nets nets

avq-large 25178 25384 2600 5229
avq-small 21918 22124 2686 5194
golem3 103048 144949 10935 21485
ibm01 12752 14111 4524 6558
ibm02 19601 19584 9106 10812
ibm03 23136 27401 8670 11942
ibm04 27507 31970 11264 14814
ibm05 29347 28446 12859 15808
ibm06 32498 34826 10501 14633
ibm07 45926 48117 14489 19239
ibm08 51309 50513 14642 19484
ibm09 53395 60902 14703 22382
ibm10 69429 75196 22040 25000
ibm11 70558 81454 19609 28271
ibm12 71076 77240 22142 34589
ibm13 84199 99666 23341 33607
ibm14 147605 152772 35802 48745
ibm15 161570 186608 39300 56453
ibm16 183484 190048 41974 58893
ibm17 185495 189581 54937 71395
ibm18 210613 201920 38785 55169

industry2 12637 13419 3633 5495
industry3 15406 21923 7254 10763
s13207P 8772 8651 958 1898
s15850P 10470 10383 1092 2041
s35932 18148 17828 1505 2748
s38417 23949 23843 1587 3037
s38584 20995 20717 2056 3671

(which was found to appreciably improve results without a significant time penalty) are used. Unless

specified, we do not force fixed outlines–output floorplans may be of any aspect ratio. Per the Parquet

Makefile, it is compiled under GNU g++ 3.3.2 with “-O3” optimizations. The “-funrollloops” switch

was not used for Parquet since it made the execution run more slowly. As with Traffic, we do not tune

any parameters between executions.

For evaluation, we use the GSRC, ISPD, and MCNC benchmark circuits. Table 15 lists statistics for

the GSRC circuits, showing the number of blocks and nets in the circuit. The ISPD and MCNC circuits

have been partitioned from standard cells into 300 and 1000 blocks using Flare [29]. Table 16 shows the

net and cell counts for the original circuits and the nets after partitioning. The reader should note that

not all ISPD and MCNC circuits are used since some contain toofew cells to produce sufficient blocks

for our experiments.
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6.6 Evaluation

As stated earlier, Traffic produces high quality floorplans in only a fraction of the time of Simulated

Annealing. We first compare the performance of Traffic and Parquet on simple area minimization and

fixed-outline floorplanning. We then evalutate wire minimization for each algorithm separately and

both algorithms cooperatively. Finally, we explore the effect of the connectivity phase on these Traffic

floorplans.

6.6.1 Area Minimization

Area minimization is sometimes referred to as the block-packing problem–place a set of various-sized

blocks into the smallest encompassing rectangle possible.Table 17 shows area-optimization results

for Traffic and Parquet with data for execution time (in seconds) and white-space (as a percentage of

floorplan). For this experiment, we execute the Traffic algorithm for 10 runs and the Parquet Simu-

lated Annealing algorithm for 5 runs, and choose the best area results. Runtime includes all aspects

of execution including file I/O, and all experimental parameters are as described in Section 6.5. Since

wire-optimization is not needed, Traffic does not perform any block grouping, thus only the second

phase of the algorithm is executed.

Table 17 shows that Traffic produces floorplans with significantly less white-space than SA in far

less time, especially for larger numbers of blocks. These numbers are flexible since we could have only

done one SA run instead of 5, or done 100 Traffic runs instead of10. However, these counts were found

to be roughly the point of diminishing marginal returns.

Since modern circuit floorplanning places more emphasis on wire minimization than area minimiza-

tion, these numbers are no longer relevant to VLSI design. This experiment shows, however, that Traffic

is exceptional at solving the 2-D block packing problem.

6.6.2 Fixed Outline Floorplanning

A somewhat more pertinent floorplanning case is enforcing a bounding-box constraint. Top level designs

of large chips may include outlines of modules which have yetto be laid out. Though these outlines

usually have a reasonable amount of built-in white-space, afixed-outline floorplanner must be flexible

enough to fit any aspect ratio.
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Table 17: Area minimization comparison. Data for Traffic and Simulated Annealing run-time (in
seconds) and white-space (as floorplan percent) is given.

Traffic SA
ckt cpu (s) ws (%) cpu (s) ws (%)

n10a 0.00 4.6 0.1 12.0
n30a 0.00 3.2 0.4 10.6
n50a 0.00 4.4 1.0 9.6
n100a 0.00 3.4 4.5 9.1
n200a 0.00 2.2 17.0 11.4
n300a 0.00 1.8 55.6 12.6

avq-large.300 0.02 6.1 65.0 23.3
avq-small.300 0.02 7.1 53.6 25.4
golem3.300 0.02 6.7 57.1 23.7
ibm01.300 0.02 7.0 53.9 29.7
ibm02.300 0.02 5.6 56.5 27.5
ibm03.300 0.01 6.3 57.1 27.3
ibm04.300 0.02 6.3 45.1 27.1
ibm05.300 0.02 7.3 58.5 26.7
ibm06.300 0.02 6.8 45.5 24.0
ibm07.300 0.02 7.1 58.8 24.3
ibm08.300 0.02 5.8 47.2 24.0
ibm09.300 0.02 6.7 47.3 23.4
ibm10.300 0.02 6.8 61.5 23.5
ibm11.300 0.02 7.4 47.8 23.7
ibm12.300 0.02 6.3 55.0 21.1
ibm13.300 0.02 6.6 62.7 23.6
ibm14.300 0.02 6.0 72.0 22.8
ibm15.300 0.02 6.7 56.0 23.0
ibm16.300 0.02 5.0 69.8 22.6
ibm17.300 0.02 5.7 73.8 23.1
ibm18.300 0.03 5.4 68.8 21.7

industry2.300 0.02 8.4 54.5 30.7
industry3.300 0.02 6.8 55.1 28.4
s13207P.300 0.01 5.2 40.7 30.5
s15850P.300 0.02 7.3 41.5 29.4
s35932.300 0.02 7.1 41.4 27.8
s38417.300 0.02 6.4 41.8 25.1
s38584.300 0.02 6.1 53.4 26.7

avq-large.1000 0.13 6.6 910.6 42.2
avq-small.1000 0.12 5.7 716.8 43.3
golem3.1000 0.10 4.8 750.5 47.4
ibm01.1000 0.11 6.0 910.0 49.6
ibm02.1000 0.09 5.4 913.8 44.4
ibm03.1000 0.12 6.6 928.5 43.5
ibm04.1000 0.12 7.0 719.0 41.9
ibm05.1000 0.09 6.9 923.2 41.4
ibm06.1000 0.10 6.1 923.0 40.6
ibm07.1000 0.10 6.3 928.3 38.0
ibm08.1000 0.12 5.8 732.3 37.3
ibm09.1000 0.09 6.1 730.6 37.0
ibm10.1000 0.11 5.2 746.5 35.3
ibm11.1000 0.13 5.3 734.4 33.9
ibm12.1000 0.13 5.5 947.6 34.9
ibm13.1000 0.10 5.8 934.2 34.3
ibm14.1000 0.13 5.5 956.8 31.0
ibm15.1000 0.13 5.7 756.6 31.0
ibm16.1000 0.13 5.2 958.9 29.5
ibm17.1000 0.13 5.1 982.8 29.6
ibm18.1000 0.13 5.3 959.8 28.9

industry2.1000 0.09 6.9 913.5 49.4
industry3.1000 0.10 7.0 911.4 47.6
s13207P.1000 0.10 5.7 887.8 52.9
s15850P.1000 0.13 7.0 899.7 51.9
s35932.1000 0.11 6.8 708.6 45.7
s38417.1000 0.10 6.2 708.1 43.2
s38584.1000 0.12 6.0 713.1 43.6

The Traffic algorithm is easily adaptable to fixed-outlines by only changing the the number of buck-

ets used. Equation 15 provides an initial guess at the numberrows needed during fixed outline floor-

planning:

Bucketsp =
Heightfixed

Heightavg
· Np

Ntotal

(15)

This formula is similar to Equation 14 except we don’t need tocalculate the height of the ideal

floorplan since it is given. We also don’t round up to the nearest even number. Though this may leave
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Table 18: Fixed outline comparison. Data for average Traffic and Simulated Annealing run-time (in
seconds) to achieve various aspect ratios with 10% white-space is given.

Traffic SA
ckt 2:1 3:1 4:1 2:1 3:1 4:1

n10a 0.0 0.0 0.0 0.0 - -
n30a 0.0 0.0 0.0 0.0 0.0 0.1
n50a 0.0 0.0 0.0 0.2 0.1 0.4
n100a 0.0 0.0 0.0 0.9 1.2 1.6
n200a 0.0 0.0 0.0 8.5 8.1 9.0
n300a 0.0 0.0 0.0 21.7 20.0 17.9

avq-large.300 0.5 0.1 0.1 - - -
avq-small.300 0.1 0.1 0.0 - - -
golem3.300 0.1 0.1 0.1 - - -
ibm01.300 0.1 0.0 0.0 - - -
ibm02.300 0.2 0.1 0.1 - - -
ibm03.300 0.1 0.1 0.1 - - -
ibm04.300 0.1 0.1 0.1 - - -
ibm05.300 0.1 0.1 0.1 - - -
ibm06.300 0.1 0.1 0.1 - - -
ibm07.300 0.1 0.1 0.1 - - -
ibm08.300 0.2 0.1 0.1 - - -
ibm09.300 0.1 0.1 0.1 - - -
ibm10.300 0.1 0.1 0.1 - - -
ibm11.300 0.1 0.1 0.1 - - -
ibm12.300 0.1 0.1 0.1 - - -
ibm13.300 0.1 0.1 0.1 - - -
ibm14.300 0.1 0.2 0.2 - - -
ibm15.300 0.2 0.2 0.2 - - -
ibm16.300 0.2 0.2 0.2 - - -
ibm17.300 0.3 0.2 0.2 - - -
ibm18.300 0.2 0.2 0.2 - - -

industry2.300 0.1 0.0 0.0 - - -
industry3.300 0.1 0.1 0.1 - - -
s13207P.300 0.0 0.1 0.0 - - -
s15850P.300 0.1 0.0 0.0 - - -
s35932.300 0.1 0.1 0.0 - - -
s38417.300 0.1 0.0 0.0 - - -
s38584.300 0.0 0.1 0.0 - - -

avq-large.1000 0.3 0.2 0.2 - - -
avq-small.1000 0.7 0.4 0.3 - - -
golem3.1000 0.6 0.3 0.4 - - -
ibm01.1000 0.8 0.6 0.3 - - -
ibm02.1000 0.6 0.4 0.4 - - -
ibm03.1000 0.4 0.3 0.3 - - -
ibm04.1000 0.6 0.5 0.3 - - -
ibm05.1000 0.6 0.4 0.2 - - -
ibm06.1000 0.6 0.3 0.4 - - -
ibm07.1000 0.2 0.3 0.2 - - -
ibm08.1000 0.5 0.3 0.3 - - -
ibm09.1000 0.5 0.5 0.3 - - -
ibm10.1000 0.3 0.3 0.4 - - -
ibm11.1000 0.3 0.3 0.2 - - -
ibm12.1000 0.2 0.4 0.3 - - -
ibm13.1000 0.5 0.2 0.3 - - -
ibm14.1000 0.3 0.3 0.4 - - -
ibm15.1000 0.5 0.5 0.4 - - -
ibm16.1000 0.8 0.4 0.4 - - -
ibm17.1000 0.5 0.4 0.5 - - -
ibm18.1000 0.6 0.4 0.3 - - -

industry2.1000 0.9 0.5 0.5 - - -
industry3.1000 0.5 0.5 0.3 - - -
s13207P.1000 0.4 0.1 0.1 - - -
s15850P.1000 0.5 0.3 0.3 - - -
s35932.1000 0.4 0.1 0.1 - - -
s38417.1000 0.2 0.2 0.2 - - -
s38584.1000 0.6 0.5 0.2 - - -

us with an unmatched odd row, the flexibility is needed to achieve more outline sizes. This equation

provides a reasonable guess at the needed number of buckets for the first run. After that, Traffic will

increment or decrement the number of rows depending on whether the last run produced a floorplan

which was too wide or tall respectively. As such, Traffic quickly learns the proper number of rows

regardless of the accuracy of the initial estimate.

Table 18 shows the average amount of time the Traffic and SA floorplanners take to satisfy the given

aspect ratio with 10% white-space allowance. For Traffic, weexecute the algorithm 100 times (each of
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which would involve multiple runs) and average the amount oftime it takes to fit the given bounding

box. For Parquet we specify the aspect ratio option (-AR), the maximum white-space option (-maxWS),

and since it does not stop when it has found a matching solution, 100 runs. Thus the average time to a

satisfactory solution is then given as 100 runs divided by the number of successful runs multiplied by

the time per run. For example, if there were 20 successful runs out of 100, that would mean an average

of 100/20 = 5 runs was needed to achieve the outline, and at 10 seconds per run would give an average

time of 50 seconds. If an algorithm could not fit the bounding box within an hour, the table entry is

marked with a dash. All other experimental parameters are asgiven in Section 6.5.

It is evident that the Simulated Annealer can adapt to some ofthe GSRC bounding boxes, but

cannot satisfy the constraints for the ISPD and MCNC circuits, even given unlimited time. Only when

the allowable white-space is raised to 30% are most of the aspects on most of the benchmarks achieved

by the Annealer. When these boxes are fit, though, the averagetime required is usually longer than that

for the area-minimization experiment from the previous subsection.

Traffic, however, fits all of the aspects at 10% white-space for all of the benchmarks in under a

second. This is due to the rapid adaption of the bucket formula to different aspects and the generous

whitespace allowance. Thus Traffic usually fits these bounding boxes in less than the 10 runs used for

the previous evaluation.

6.6.3 Wire Minimization

Table 19 presents results for the relevant case of wire minimization. The first pair of columns indicates

the run-time (in seconds) and half-perimeter wire estimate(in mm.) for 10 runs of Traffic. The second

pair indicates the run-time and wire estimate for 5 runs of Parquet. The remaining columns will be

described in the next subsection. Setup for this experimentis as described in Section 6.5, except we

add the “-minWL 1” switch to Parquet and the analogous switchto Traffic to move the focus to wire

reduction rather than white-space. Results are once again mutable by doing more or less runs of either

algorithm. No fixed outlines were used, though both algorithms support wire minimization within an

outline. It is important to note that results are not comparable between 300- and 1000-block circuits.

The wire estimate given is for only inter-block wires–wirescontained within a single block are not

included. Thus with fewer inter-block nets in the 300-blockversions, there will naturally be a lower

wire estimate.
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Table 19: Wire minimization comparison. Data for Traffic, Simulated Annealing, and Cooperative
Floorplanning run-time (in seconds) and HP wire estimation(in mm.) is given.

Traffic SA Cooperative
ckt cpu (s) wires cpu (s) wires cpu (s) wires

n10a 0.0 14 0 6 10 8
n30a 1.0 37 3 30 30 27
n50a 1.0 85 10 81 50 60
n100a 2.0 122 40 130 100 94
n200a 2.1 258 144 293 200 218
n300a 3.2 400 614 443 300 334

avq-large.300 3.5 121 894 187 300 107
avq-small.300 3.4 117 3048 183 300 91
golem3.300 3.5 1427 1357 1742 300 1262
ibm01.300 3.3 159 3186 197 300 136
ibm02.300 3.5 408 2878 524 300 398
ibm03.300 3.3 546 3413 644 300 489
ibm04.300 3.4 646 4188 804 300 553
ibm05.300 3.7 1166 3570 1229 300 1061
ibm06.300 3.4 721 4103 1017 300 716
ibm07.300 3.6 1084 4307 1420 300 1050
ibm08.300 3.8 1248 3991 1775 300 1150
ibm09.300 3.8 1126 6424 1396 300 978
ibm10.300 4.0 1831 5041 2225 300 1784
ibm11.300 3.8 1717 6776 2328 300 1540
ibm12.300 3.9 1871 7505 2330 300 1623
ibm13.300 4.0 2067 9000 2342 300 1908
ibm14.300 4.2 4280 9732 5184 300 4188
ibm15.300 4.3 5217 10514 6794 300 4828
ibm16.300 4.9 5742 13900 6826 300 5155
ibm17.300 5.0 7608 10410 10171 300 7338
ibm18.300 6.0 5559 1186 7252 300 5453

industry2.300 3.5 130 2170 152 300 116
industry3.300 4.2 278 328 310 300 246
s13207P.300 3.1 26 230 30 300 20
s15850P.300 3.1 32 639 35 300 25
s35932.300 3.2 49 598 60 300 41
s38417.300 3.2 65 729 86 300 55
s38584.300 3.2 79 262 106 300 66

avq-large.1000 8.6 169 8290 296 1000 153
avq-small.1000 8.4 162 7046 261 1000 145
golem3.1000 8.3 161 6990 259 1000 143
ibm01.1000 7.7 199 8207 215 1000 183
ibm02.1000 11.7 463 14182 537 1000 448
ibm03.1000 8.8 623 12640 715 1000 550
ibm04.1000 8.7 730 16301 991 1000 729
ibm05.1000 9.3 1286 20757 1433 1000 1187
ibm06.1000 9.8 839 17877 1043 1000 783
ibm07.1000 9.0 1315 20782 1492 1000 1198
ibm08.1000 12.3 1466 22757 1840 1000 1337
ibm09.1000 9.9 1370 21349 1940 1000 1290
ibm10.1000 10.3 1533 25605 2510 1000 1440
ibm11.1000 10.8 2092 30971 2725 1000 1949
ibm12.1000 13.1 2910 35148 3576 1000 2822
ibm13.1000 11.9 2602 34154 3207 1000 2517
ibm14.1000 12.0 5199 40765 7458 1000 5595
ibm15.1000 13.2 6410 57019 8850 1000 6168
ibm16.1000 16.5 6827 53923 9346 1000 6543
ibm17.1000 15.7 8828 72315 11934 1000 8487
ibm18.1000 17.7 6932 54471 9341 1000 6693

industry2.1000 8.1 158 7163 197 1000 150
industry3.1000 12.1 308 10492 379 1000 280
s13207P.1000 7.0 35 2736 45 1000 31
s15850P.1000 7.3 42 3048 57 1000 38
s35932.1000 7.2 71 5431 113 1000 58
s38417.1000 7.6 95 4479 128 1000 81
s38584.1000 8.1 110 5913 153 1000 97

On average, Traffic produces floorplans with an 18% lower wireestimate than Simulated Anneal-

ing. The only cases where Traffic does worse are the smallest GSRC circuits, where the algorithm is

hampered by the limitation of the row-based layout. Given the growing complexity of VLSI circuits,

however, it is reasonable to place less emphasis on these lowblock-count designs which are tractable

enough to be hand-optimized. The next subsection will also address this issue by using a short Simulated

Annealing refinement step to remove the row-based restriction.

For the larger block-count designs, Table 19 shows that traditional annealing can easily take several
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(a) (b)

Figure 52: (a) Traffic-generated initial floorplanning, (b) after Simulated Annealing-based refinement.

hours on a modern machine. Traffic, on the other hand, completes all of the experiments in less than 20

seconds (an average of 1314X speedup over Parquet) and stillproduces better results. It is important to

note that these winning Traffic floorplans are not atypical–the quality of an average run is usually within

5% of the best run. Thus Traffic can produce a very good floorplan (still far better than SA) with only

a single run. Predictors can also give us these numbers quickly, but Traffic produces valid floorplans in

the same order of time.

6.6.4 Cooperative Floorplanning

Prior work has shown that the quality and speed of Simulated Annealing can be greatly improved by

providing a reasonable quality initial solution [96]. As Traffic produces high-quality layouts in a min-

imal amount of time, we analyze the effect of feeding Traffic layouts into Parquet. This should allow

the limitations of Traffic layouts to be relaxed, producing abetter final floorplan. To illustrate, Figure

52 shows the circuit n100a after Traffic-based floorplanningin (a) and after Simulated Annealing-based

refinement in (b). The shades of the blocks are kept constant in between illustrations so it is clearer

where each block moved.

As the Traffic floorplans are already highly optimized and we wish to return results in a reasonable

amount of time, we constrain the total floorplanning time to one second per block. Thus we give a

300-block circuit 300 seconds of floorplanning time betweenTraffic and Parquet. We experimented

with different time allocations but found this guideline tobe simple and sufficient. We use the 100-run

result from the previous subsection for the Traffic allocation, and the time remaining is given to Parquet

for refinement. Since this limit is usually less than SA’s normal runtime, the execution is sped up. Like

many SA implementations, when Parquet is given a time limit less than a run, it reduces its move time

to fit one full run exactly within the limit. For instance, thetime limit does not cut-off the SA algorithm,
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but rather hurries it along. On average, this setup results in about a 1:99 division of time between Traffic

and Parquet. The experimental setup is as described in Section 6.5, except we add “-takePl” to the

Parquet command line to use the Traffic output as the initial placement and “-startTime 0” to skip to the

final phase of the cooling schedule.

The final pair of columns in Table 19 shows the time allocation(in seconds) and wire-length results

(in mm.) for this cooperative floorplanning approach. On average, the annealing pass reduces the wire

estimate by 10% over the Traffic-only solution–a total 28% reduction from the SA-only solution. The

biggest improvement is found in the smaller GSRC circuits, where the row-based Traffic layouts were

too restrictive. Adding the SA refinement step relaxes this constraint, producing better results than

SA on all but the smallest 10-block circuit. For the larger ISPD and MCNC circuits, only a marginal

improvment in floorplan quality is observed due to the high quality of the Traffic initial-placement. In

these cases, the Traffic-only solution has a much lower cost/benefit ratio.

6.6.5 Connectivity Phase Impact

Table 20 shows the effect of wire-optimizations performed by Traffic–the global minimization (parti-

tioning) and local minimization (pair binding). As in Section 6.6.3, we execute Traffic for 10 runs–

approximately the point of diminishing marginal returns for result quality. The run times for all of the

presented cases are nearly identical to that in Table 19 as wire optimizations take a negligible amount of

time (less than 3 seconds on our test platform for even the largest circuits).

The first column shows Traffic’s wire-length result in pure area-minimization mode, which simply

chooses the smallest floorplan. As would be expected, these solutions will often have high wire estimates

as the algorithm is choosing to ignore nets. The remainder ofthe columns show Traffic’s wire-length

result when choosing the minimum wire-length solution. Thefirst of these columns applies neither

the local nor global minimization techniques and simply chooses the floorplan with the smallest wire

estimate. Despite the mutations proceeding identically asin area-minimization mode, these results are

about 10% better.

The next column applies only local minimization which bindshighly-connected block pairs, but the

circuit remains unpartitioned. On average, wire-length isreduced by about 5% over no optimizations.

Though this is not a large reduction in wire-length, the overhead cost of local minimization is very

small and incurred only once for all Traffic runs. Interestingly, on the smallest GSRC benchmakrs, the
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Table 20: Effect of Traffic wire optimizations. Data for HP wire estimation (in mm.) is given for
best-area mode and best wire-length mode with no, local, global, and both optimizations respectively.

area-min wire-min
ckt no opt no opt local global both opt

n10a 18 16 15 16 14
n30a 75 44 46 41 37
n50a 211 100 99 86 85
n100a 449 165 164 127 122
n200a 1351 367 365 271 258
n300a 2599 606 606 414 400

avq-large.300 241 262 263 124 121
avq-small.300 265 258 259 120 117
golem3.300 2620 2317 2318 1507 1427
ibm01.300 405 373 367 163 159
ibm02.300 1157 1035 1033 467 408
ibm03.300 1098 1039 1010 555 546
ibm04.300 1449 1321 1310 665 646
ibm05.300 1941 1877 1819 1186 1166
ibm06.300 1625 1492 1531 790 721
ibm07.300 2679 2377 2348 1191 1084
ibm08.300 2912 2577 2549 1414 1248
ibm09.300 2663 2556 2557 1178 1126
ibm10.300 4688 4392 4341 1982 1831
ibm11.300 4131 3899 3840 1807 1717
ibm12.300 4781 4298 4209 1991 1871
ibm13.300 5698 5070 4897 2238 2067
ibm14.300 11078 10079 10148 4504 4280
ibm15.300 13048 11200 11047 5452 5217
ibm16.300 13684 13145 13412 5990 5742
ibm17.300 18485 17713 17698 8321 7608
ibm18.300 14309 13303 13313 5915 5559

industry2.300 342 305 313 135 130
industry3.300 674 627 627 288 278
s13207P.300 68 62 62 27 26
s15850P.300 84 77 76 33 32
s35932.300 143 132 130 53 49
s38417.300 187 176 173 73 65
s38584.300 232 202 204 84 79

avq-large.1000 536 502 497 174 169
avq-small.1000 509 468 463 164 162
golem3.1000 501 464 461 162 161
ibm01.1000 577 520 532 201 199
ibm02.1000 1237 1206 1183 466 463
ibm03.1000 1455 1351 1372 620 623
ibm04.1000 1883 1773 1833 728 730
ibm05.1000 2389 2247 2218 1284 1286
ibm06.1000 2150 2068 2069 846 839
ibm07.1000 3328 3184 3133 1309 1315
ibm08.1000 3750 3415 3519 1511 1466
ibm09.1000 4015 3825 3794 1401 1370
ibm10.1000 4511 4257 4230 1593 1533
ibm11.1000 5574 5397 5452 2126 2092
ibm12.1000 7136 6894 6833 2927 2910
ibm13.1000 7990 7595 7581 2673 2602
ibm14.1000 14606 14246 14274 5047 5199
ibm15.1000 17331 16813 16801 6381 6410
ibm16.1000 19685 19455 19285 6906 6827
ibm17.1000 25494 23742 23992 8931 8828
ibm18.1000 20573 20083 20092 7084 6932

industry2.1000 466 448 431 162 158
industry3.1000 906 839 872 310 308
s13207P.1000 101 127 126 36 35
s15850P.1000 135 132 131 43 42
s35932.1000 240 222 221 71 71
s38417.1000 315 304 302 100 95
s38584.1000 394 365 360 112 110

solution space is small enough that the highly connected blocks will end up adjacent by coincidence

without the need for binding. Thus local minimization is redundant on these small circuits.

For the next set of results, global minimization (partitioning) is applied but local minimization is not.

This has a tremendous effect on wire-length, dropping the average wire estimate by about 50% from no

optimizations. As larger circuits are too unwieldy to be brute-forced (even under the constraints of

legal Traffic floorplans), LPP partitioning limits Traffic toa set of small solution spaces. Given the

roughlyO(n2) complexity of the physical algorithm, working on many partitions actually increases the
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performance. Additionally, the linear-order partitioning method of LPP is very effective and allows the

final stacked floorplan to have excellent global wire characteristics.

The last column, applying both local and global minimizations, is identical to the results from Table

19. Adding local to global minimization produces approximately the same 5% improvement as adding

it to the no-optimization case. This cumulative effect of local and global minimization implies that these

two techniques are mostly orthogonal.

6.7 Conclusion

As stated earlier, Traffic derives its advantages from the use of constrained brute force techniques.

Whereas competing algorithms such as Simulated annealing carefully choose each move, Traffic con-

strains the solution space to a tractable number of possibilities and rapidly evaluates several of them

blindly. The constraints, of course, are the key. By linearly partitioning the circuit at the beginning,

we assure that every evaluated solution already has reducedglobal wires. By binding highly-connected

block-pairs together, we remove a great number of undesirable floorplans from the solution space. Fi-

nally, by keeping blocks within sorted row-pairs within each partition, we can constrain the number of

legal floorplans considerably without losing too much flexibility in block placement. The end-result

is an algorithm capable of besting Simulating Annealing in area and wire-length while taking several

orders of magnitude less time.

Moreover, we believe the importance of this floorplanning speed will only increase. As transistor

integration continues to grow, rapid feedback on design changes is needed at all levels of design. At the

highest level, architects can no longer assume that the physical design is an independent stage, separate

from their concerns. Thus these designers require a way of physically evaluating small changes to large

chips, such as changes in buffer sizes and bus width. For thisapplication, Traffic can produce viable

floorplans for very large circuits in seconds rather than hours, giving immediate feedback to the architect

in similar time as a predictor.

At the block level, engineers must also make educated decisions concerning layouts. Choosing 10

large or 1000 small blocks will make a significant impact on routability, timing, and similar concerns.

Traffic gives layout designers a way to generate and evaluatelayouts for all points within this solution

space in a practical amount of time and thus improve their design choices.

At the final stage of design, run-time is less critical. Hoursare a reasonable investment of time
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for floorplanning a completed chip, thus SA is a reasonable choice here. In these situations, however,

Traffic can provide an excellent initial floorplan for Simulated Annealing to quickly improve. Results

show that Traffic floorplans can be improved by over 10% with anSA refinement of only one second

per block.

Our ongoing investigations include timing, thermal, and decoupling capacitance [124] optimization

during Traffic. We feel strongly that our constrained brute-force philosophy will be applicable to these

difficult issues with only minor alterations to the core algorithm. In addition, we plan to handle recti-

linear shapes and fixed blocks to our algorithm, as well as soft-blocks. Traffic-based 3D floorplanning

[105] and microarchitectural floorplanning [38] are also under investigation.
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