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SUMMARY

In recent years, with only small fractions of modern prooessow accessible in a single cycle,
computer architects constantly fight against propagatiends across the die. Unfortunately this trend
continues to shift inward, and now the even most internglufea of the pipeline are designed around
communication, not computation. To address the inwardpcodehis constraint, this work focuses
on the characterization of communication within the pipelitself, architectural techniques to avoid it
when possible, and layout co-design for early detectiorrablems.

Chapter 1 presents work in creating a novel detection taotémmon case operand movement
which can rapidly characterize an applications dataflovtepas. Unlike all previous work which has
focused on detecting repeated instruction idioms or ciitigacircumstantial statistics such as operand
lifetime, | focus on extracting and exploiting the most coamfunctional unit communication patterns.
The results produced are suitable for exploitation as alsmalber of patterns can describe a significant
portion of modern applications.

Chapter 2 on dynamic dependence collapsing takes the elhiems from the previous chapter and
shows how certain groups of operations can be dynamicatiymrd, avoiding unnecessary commu-
nication between individual instructions. This technigigo amplifies the efficiency of pipeline data
structures such as the reorder buffer, increasing both RiGraquency. Importantly, this technique is
accomplished without affecting binary compatibility oopessor power demands.

Chapter 3 identifies the same sets of collapsible instmstat compile time, producing the same
benefits with minimal hardware complexity. This technigaeaiso done in a backward compatible
manner as the groups are exposed by simple reordering ofitaeyb instructions. Though a static
implementation does not produce the performance benefissdyinamic implementation, the power
savings are greatly improved.

Chapter 4 presents aggressive pipelining approaches dee tfesources which avoids the critical
timing often presumed necessary in aggressive supergualegssors. As these structures are designed
for the worst case, pipelining them can produce greateu@rcy benefit than IPC loss. Importantly,

as the stages are carefully selected, this aggressivanigeldoes not significantly affect the power

Xi



efficiency of the chip.

Chapter 5 uses the observation that the dynamic issue amdestructions in aggressive superscalar
processors is predictable. Thus, a hardware mechanisntréglirted for caching the wakeup order
for groups of instructions efficiently. These wakeup vextare then used to speculatively schedule
instructions, avoiding the dynamic scheduling when it ismecessary.

Chapter 6 presents a novel approach to fast and high-quaiip/layout. Given the tight timing
constraints within the pipeline, the interdependence betwhigh- and low-level design has never been
more important. Layout issues must be addressed at thestastages of design, even for fine-grain
processor resources. By allowing architects to quicklyuata what if scenarios during early high-level

design, chip designs are less likely to encounter impleatiemt problems later in the process.

Xii



CHAPTER|

POPULAR COMMUNICATION PATTERNS

Summary

The complexity-effectiveness of modern wire-dominatezhéectures is heavily influenced by operand
movement patterns within workloads. Unfortunately, thelgtof these common patterns is burdensome
given the NP-completeness of the problem and the size ofataflow graphs in modern applications.
In response we present CPX, a fast and memory-efficient twdhke extraction of common dataflow
subgraphs from application binaries. Using this tool andafcal metric of pattern popularity, we
analyze MediaBench and Spec2000int benchmarks and pteséninost frequent communication pat-
terns. Results confirm the intuition of prior research thegggehdence chains dominate integer code, but
more importantly demonstrate that dataflow communicasamestricted to a tractable set of templates.
A set of only ten small patterns characterizes over 90% ot3p@0int and over 75% of MediaBench
dynamic instructions. These common dataflow idioms are aivlerto dynamic optimization, more

efficient code representations, and reducing the broadeaste of micro-architectural resources.

1.1 Introduction

Compiler researchers have long observed common instrugtitierns, termed idioms by Aho et al. [4],
in the assembly output. These dataflow subgraphs oftenrpeda operation considered by the pro-
grammer to be atomic (i.e., increment an element in an grbay)are reduced into multiple operations
based on the instruction set architecture (ISA) being tatheDue to source-level repetition and the
iterative nature of integer code, the dynamic frequencyheké assembly-level patterns can be quite
high. For instance, Spadini et al. have shown that over 258&mic instructions in Spec2000int can
be replaced with 10 trivial idioms per benchmark [107].

Despite the applicability of idiom extraction to ISA designd code compression, it is difficult
to perceive broader trends in dataflow with this informatidio address this shortcoming, our work

extracts general instruction communication patternseratien the operation-specific idioms studied by
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add r4, r1, r0
load r4, 1 [ 8]

storer4, r0[16]

beq r1, r0, addr \\§

Figure 1: Enumeration of 5 instructions into 25 unique dataflow pagerThe number of patterns
grows linearly with the total number of instructions and exentially with the maximum pattern size.

Aho and Spadini. In other words, we are interested in idiohtiseagranularity of instruction types (i.e.,
loads, floating point multiplies, integer ALU instructigngithout the restrictive objective of dividing
the program up into disjoint macro-instructions. This lo@acharacterization allows insight into the
hardware implications of instruction communication, ampariant topic of study in the modern era of
wire-dominated architectures [87]. For instance, ourlteshow the ‘stringiness’ of modern dataflow,
confirming the intuition behind research in collapsing def@nce chains [67, 99].

Unfortunately, any algorithm for extracting the most conmpatterns reduces to subgraph isomorphism—
an NP-complete problem [50]. Additionally, this extractiprocess commonly requires loading the ap-
plication’s complete dataflow graph (DFG) into memory andgrening subgraph analysis afterward.
Both of these requirements make an exhaustive search fanoondataflow idioms burdensome, espe-
cially on non-trivial applications. As an illustration,dtire 1 shows a trivial DFG and the large number
of possible pattern enumerations present. The number tdrpatpresent increases linearly as the total
number of instructions increases and exponentially as t#damum size of a pattern increases. As a
result of this complexity, architects are often left to gsmore circumstantial evidence of instruction
communication patterns—operand use rates, basic blogidreies, performance counters, etc.

To address this issue we introduce CPX (Communication ma&¥tractor), a novel on-the-fly
pattern miner which maintains only the ‘front wave’ of the ®&nd analyzes it for common subgraphs.
With the use of a graph library which converts graphs intchkasdes unique to it and its isomorphs,
this tool is rapid (about 100,000 subgraphs analyzed pamskon our test platform) while keeping

a very low memory footprint (less than 10MB). The output isomplete library of dataflow patterns
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Figure 2: lllustration of dataflow graph (DFG) plotted over time. Thajgh height is limited by the
number of architectural registers in the ISA.

from a set of benchmarks. A second pass with CPX through thicapon, augmented with the pattern
library, rapidly produces coverage results—what fracbbdynamic instructions can be included in at
least one of these patterns.

For this work, we also present the most frequent patterriteefar Spec2000int and MediaBench,
two common integer benchmark suites. Interestingly, thet waajority of instructions in all simu-
lated benchmarks can be described by just a handful of patteModern processors, however, are
not designed to accommodate this limited set of average-gasrand movement patterns. Rather, the
worst-case broadcast-based design of microarchiteatesalirces such as the issue queue and bypass
path often create bottlenecks in the pipeline [87, 100]. @sults help quantify the motivation behind
proposals focusing on common-case performance in thasgstes [67, 69].

The sections are organized as follows. Section 1.2 dissuststed work in dataflow pattern analy-
sis. CPX, our rapid pattern extraction tool, is then introetliin Section 1.3. Section 1.4 presents the
results of CPX, including performance, common operand camaoation patterns, and their coverage.

Finally, Section 1.5 concludes with a discussion of the iogpions of dataflow patterns and future work.

1.2 Related Work

Though our work observes operand communication pattewtsspecific instances of these patterns
with specific operations, the approach and analysis is veryas. Aho et al. [4] first introduced these

patterns, termed idioms, as the result of source code tigpetihe iterative nature of integer code, and
limited instruction sets. Later work showed that by slicangrogram into a tractable collection of these

idioms, designers can achieve code compression, clustairgy heuristics, and optimal ISA extensions.



For instance, Arrujo et al. [6] convert applications intdlections of tree-patterns (op codes) and
operand patterns (registers and immediates). By remokimgnitropy of the individual instructions, the
size of Spec95 binaries is reduced by over 40%. Spadini @] expand this work by allowing pat-
terns to span basic blocks. Their analysis tool uses himgrist find a disjoint set of macro-instructions
which cover a significant portion of the instruction stredmt, no runtime or memory footprint numbers
are presented. Their pattern results show that, on aveoage,a quarter of any Spec2000int bench-
mark’s dynamic instructions can be covered by a small setrofdioms of five instructions each. Clark
et al. [27], pointing out the practicality of customizedtimstions for many application domains, use
dataflow pattern analysis to discover instruction set esttgrs automatically. As with prior work, no
analysis of runtime is presented, though heuristics ardasignused to intelligently divide the DFG.
Our work has a broader scope, however, as we wish to obsemngsttike ALU fan-in rather than the
frequency of instruction combinations (i.e., xor-mulidubtract).

More generally, work in collapsing dependent instructioesognizes broad patterns in operand
communication such as trees and chains. Smith [67] intreglirtstruction strands, linear dependence
chains, as a means of exposing wire-delay to the compilee ifituition, confirmed by his results,
is that modern integer dataflow is filled with dependencerchaihich need not require a broadcast
bypass or individual wakeup. Previously, we have identiffegse linear instruction chains dynamically,
and developed optimized ALUs for their execution [99]. ¥ehnd Temam [121] describe instruction
functions, tree-shaped dataflow subgraphs with a singlpubutvhich are executed atomically on a
specialized functional unit. As with our work, these fubo can overlap but only cover an average
of 65% of the dynamic instructions in Spec2000int and otlerchmarks. Our work aims to quantify
the motivation behind these and other research directigrshdwing what communication patterns are

actually prevalent in modern integer code.

1.3 Pattern Extraction

Despite the intuitiveness of extracting common patterosfa graph, this problem reduces to a classical
NP-complete problem, subgraph isomorphism [50]. Thougpadsible subgraphs of a graph can be
enumerated in polynomial time, determining which graplesidentical (or isomorphic) cannot. Prior
work in instruction pattern analysis [6, 27, 107] does ndaidi¢he runtime or memory requirements

of their tools, but the extensive use of heuristics indigdte difficulty of this problem. Additionally,



choosing the proper metric for pattern frequency is compkexevery graph has subgraphs which are
at least as frequent. Thankfully, there are several insigtio this particular instance of the subgraph

isomorphism problem which reduces the difficulty immensely
1.3.1 Extraction Insights

First is that an application’s dataflow graph is not arbityatonnected. In fact, it is quite narrow as
the number of values live at any point in time is limited to thenber of architectural registers in the
ISA. Figure 2 shows a high level view of a typical DFG plotteghist an axis of time illustrating its
thinness. Secondly, to draw conclusions about the ingdru@ommunication, the patterns produced
must be small-ten or fewer nodes. Large patterns are toceloywio perceive ‘stringiness’, wide fan-
outs, and other communication characteristics. It is the@sebservations which allow CPX to perform
analysis as the program executes (similar to a profiling tethout storing the entire graph in memory.
For all but the rarest cases, storing only the most recetippasf the DFG (the last 10,000 nodes or so)
is sufficient to detect all desired subgraphs. Figure 2 depidés front wave as the far-right portion of
the graph. This feature keeps the memory footprint of CP>eat veasonable levels—under 10MB.

A third observation is that small graphs can be reduced iaghitodes unique to it and its iso-
morphs. In other words, if two graphs are isomorphs they pvilduce the same code, but otherwise
will produce distinct codes [77]. Though this hash-codeegation is as time consuming as check-
ing for the isomorphism of two graphs, the use of binary cddesomparison prevents a problematic
matching issue: instead of having to compare every new rpaétgainst every known one, only one
time-consuming activity is required per pattern, and ddtikiash-table handles the binning. As hash
generation will be the dominant factor in our performance,amploy the NAUTY graph library [78],
one of the fastest graph libraries available [46]. On ouiGH2 Intel Xeon test platform, NAUTY
generates about 100,000 pattern hash-codes per second.

Another insight is that looking for frequent patterns idistecal, and thus sampling can be effective
in speeding up processing. Though the exact frequency bffgttern is no longer available, the relative
frequencies should be the same given a sufficiently longutixet The speedup due to sampling is very
close to linear: sampling 1% of patterns speeds executicapbyoximately 100 fold. An analysis of

the accuracy of sampling is shown in later results.



app CPX
binary ::> pass 1 <:| NAUTY
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Figure 3: CPX algorithm illustration.

Finally, we observe that the optimal metric for gauging ai$ is not frequency. Since each sub-
graph contains smaller subgraphs inside which occur at ésasequently as the parent (and probably
more often elsewhere), the most frequent patterns wouldyevie the most trivial ones. Rather, we
propose a metric ghattern popularity defined as the frequency of a pattern multiplied by the numbe
of instructions in the pattern. In other words, the most pappatterns are those which instructions are
most likely to be a part of. Thus, a pattern twice as large hblftds frequent as another pattern have
the same popularity. This metric provides a fair balancevben frequency and size while still being

meaningful.
1.3.2 Extraction Algorithm

Our CPXtool is based on the SimpleScalar 3.0c toolset [1&}cke-accurate simulator for a MIPS-like
ISA. Figure 3 shows an overview of how CPX is used to produeentiost popular patterns and the
coverage results. The first pass profiles the applicatiorcesates a complete library of patterns found,
while the second pass takes the library to determine theraggecurves. Technically, the first pass
could also create coverage information by recording whattepns each dynamic instruction was a part
of. However, each of the billions of instructions simulatedontained in several hundred patterns. This
would require a significant amount of temporary storage éildesjuires a tool to process this data into

a coverage distribution. For designers wishing to tradeag® space for speed, though, this option is



available.

For the initial profiling pass, each instruction is appentie@ dataflow graph as it is simulated.
Rather than simply using the last set of instructions asrthvd fvave (see Figure 2), CPX keeps limited-
size queues for each register. Each instruction is plactbigueue of its destination register, dequeuing
the oldest instruction simultaneously. Instructions withregister destinations (i.e., control instructions
and stores) are placed in miscellaneous queues. The froxeat @fdhe dataflow graph is then the set of
arcs between all instructions in these queues. This alldalzagvalues (such as the stack pointer) to
remain within the front wave as long as they are not overemitt

After an instruction is appended to the DFG, all subgrapessaumerated which:

¢ Include the instruction just added
e Have less than a maximum number of instructions

e Do not span basic blocks

The first requirement is essential and guarantees that we dlmurble-count the same pattern—no
previously checked pattern included the node just added patterns checked in the future will defi-
nitely include nodes not yet added. The last two requiresmarg optional but convenient. Setting a
maximum pattern size dramatically decreases the numberuherated patterns, and smaller patterns
are exponentially faster to generate hash-codes for. lifinbk basic block requirement is useful in
moderating the effect of stack references. When allowirttepss to span blocks, all top patterns in-
volved combinations of stack pushes and pops. Though tleesmanication patterns are important and
should be represented, we wish to observe other patterigebestack access. It is important to note
that this restriction is easily removed for more pure result

On average, the addition of each new instruction producesees 50 and 250 patterns of eight
or fewer instructions. The sampling rate and a random nurgbeerator determine which of these
patterns will be analyzed. For instance, a sampling rate0&6 Would mean an average of 5 to 25
of these patterns would be checked. For each pattern tozzmalAUTY is used to produce a 64-bit
hash-code as discussed earlier. The pattern is then stoegabish-table using this as the key. If the key
already exists, the frequency of that stored pattern i®mented. The final output of this first pass is a

text file describing all discovered patterns and their feswies, termed the pattern library.



Table 1: The fourteen instruction types recognized, though onlyitsefive appear in the most popular

patterns.
Type | Description
IALU Integer ALU instruction
EA Effective address computation (subset of iALU)
branch | Branch predicate computation (subset of iALU)
load Memory load (without EA computation)
store | Memory store (without EA computation)
iMult Integer multiply
iDiv Integer division
fpAdd | Floating point addition
fpMult | Floating point multiplication
fpDiv Floating point division
fpSart | Floating point square root
fpComp | Floating point comparison
fpConv | Floating point / integer conversion
jump | Control jump

For the second pass to determine coverage, the patterrylibegomes an input. As before, CPX
executes the program, maintains the front wave of the DF@&ganerates a hash-code for each pattern
enumerated. The key is then compared to each pattern ifbtheyli from most frequent to least frequent,
to find the match. That instruction is then marked as coveand,we record which pattern was used
to cover. As we sampled on the first pass, it is possible thatitenm does not match anywhere in the
library. This turns out to be statistically infrequent arakd not affect results presented.

It is important to note that more than one pattern can covenstruction. This is a key difference
between our work and most previous work in idiom discover2[g 107]. As our objective is to observe
communication patterns, not divide up the operations iregnarinstructions, this choice is reasonable.
It also proves to be convenient as determining the optim@figoration of patterns for coverage is also

NP-complete [50] and would require complex heuristics.

1.4 Pattern Experiments and Results

Using CPX, we analyze the Spec2000int and MediaBench doiteataflow communication patterns.
We classify instructions into the 14 different categorieeven in Table 1, though only a few of these
types show up in the most popular patterns. It is importamdie that effective address and branch
predicate computations are merely addition operationgtarslare often calculated on the integer ALU.
As over 70% of dynamic instructions are executed there iregperiments, we separate these from other
integer ALU instructions to gain a more specific view of thesenputations.

A detailed list of the benchmarks used is shown in Table 2. Bagchmark omitted from these



Table 2: Pattern statistics for each of the benchmarks studieddimguruntime for each CPX pass (in
hours), the total number of patterns enumerated (in balipand the number of unique patterns.

CPU Total Unique
Benchmark Hours | Patterns| Patterns
164.gzip 5.0 74B 1066

= 175.vpr 4.1 70B 4617
'g 176.gcc 10.2 254B 4333
S 181.mcf 2.9 46B 3319
&  197.parser 6.2 120B 3089
UQ)' 255.vortex 20.5 528B 3484
256.bzip2 29 54B 867
Total 51.8 1145B 6371
adpcm-decode 8.5 88B 1874
adpcm-encode  15.9 170B 1007
jpeg-decode 7.9 100B 2891
jpeg-encode 6.9 104B 2524

é epic-decode 3.1 38B 3497
2 epic-encode 5.2 92B 770
© g721-decode 4.1 54B 1678
@ g72l-encode | 5.3 74B 1968
= mpeg2-decodd 9.5 848 2448
mpeg2-encodg 13.1 132B 5298
pegwit-decode| 16.2 284B 1242
pegwit-encode| 21.9 314B 2779
Total 117.6 | 1534B 7376

Al Total | 169.4 ] 2679B | 8615

suites did not compile cleanly under gcc 2.95.3 with O2 ojatations. Spec2000 inputs come from
the test dataset, and the default MediaBench inputs weeegenl to lengthen their execution. We
execute each benchmark for one billion instructions (oil thnt end of the program) after skipping the
first 100 million. The sampling rate is set to 1% and the maxinpattern size is set to eight for all
experiments. Though some new popular patterns do appdahigiter maximums, the general shapes
and conclusions we draw are the same.

Table 2 also shows the runtime required for one pass on ousystem, an Intel Xeon 2.4GHz
with 512MB memory running Redhat Linux. Though these ruesmrmight not seem remarkably fast,
they are on the same order of speed as a common cycle-acoutaiéorder simulator, SimpleScalar’s
sim-outorder [19]. In other words, the execution time is image considered acceptable by processor
architects. This is significant given we are tackling an MRplete problem on a very large dataset (un-
like cycle-accurate simulation). The size of the probleemvisienced by the large number of enumerated

subgraphs per benchmark in Table 2—an average of 141 hilBolvenchmark.
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Figure 4: Cumulative distribution functions for how the 100 most plappatterns cover all benchmark
instructions with various sampling rates.

1.4.1 Pattern Coverage

Figure 4 shows how the most popular patterns cover the dynestructions from all of the analyzed
benchmarks. The results are shown as a cumulative distnibéunction (CDF) versus the 100 most
popular patterns (ordered most to least popular). The ghpivs that 90.4% of Spec2000int and 77.7%
of MediaBench dynamic instructions are covered by the toma6t popular patterns. Unfortunately, as
overlap between patterns is allowed, this does not implttiia portion of the program can be sliced
into 10 communication templates. However, this does shawrttost popular patterns shown in the
next subsection do describe a vast majority of all instamstiencountered.

Figure 4 also shows the effect of sampling on coverage acgufes would be expected, the more
aggressively sampling is used, the more results deviaie fh@ accurate curve. Our sampling algo-
rithm assumes that patterns randomly overlap with eachr,dblé patterns which resemble each other
will be highly correlated and affect the actual coveragérithistion. The first pass is unaffected by this
phenomenon, however, and the 10 most popular patterns dhaoge between no sampling, 10% sam-
pling, and 1% sampling. The sampling results on the secoss @@ also reasonable for our purposes
considering that a 1% sampling rate produces a 100-foldedserin runtime.

Given the immense number of possible dataflow communicatiaphs with eight or fewer nodes
of fourteen different types, the number of pattermeserobserved is also notable. From Table 2, each

benchmark produces an average of only 2690 unique patt@nasacross all benchmarks only 8615
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Figure 5:

Figure 6: Ten most popular patterns across MediaBench applicatim g, most to least popular.

unique patterns were found. Sampling was found not to beghsecof this phenomenon, but rather the
repetitive nature of code and the compiler’s limited cool@a$sembly mapping algorithm. This small
set of used patterns lends credence to architecture rbsediich focuses on average-case instead of

worst-case performance [67, 69, 121].
1.4.2 Most Popular Patterns

Figures 5 and 6 show the ten most popular dataflow patternpaée2®00int and MediaBench appli-
cations respectively, and 7 shows the most popular pateenmss all benchmarks. As sampling was

used to speed execution, the number of occurrences of ettelnpia not given; however, the relative
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Figure 7: Ten most popular patterns across all applications, front odsast popular.

frequencies of these patterns are the first 10 data-poiriggime 4. There is no ordering to the edges
in these patterns, so inputs and outputs could have occiriady program order for the patterns to be
considered isomorphic. Unfortunately, as patterns caravesome patterns may be slight variants of
other patterns.

We observe several interesting trends in this data, thougheaognize that our architectural back-
ground likely biases what we see. Researchers in other fieldkkely draw complimentary conclu-
sions from these results. The first such observation is Heatrtetric of popularity appears useful as
the patterns range in size from two to eight instructionspalestrating a balance between size and fre-
guency. This metric also gives insight into the slight-gatipatterns mentioned earlier. For instance, in
Figure 7 pattern 2 is a subgraph of pattern 3, but to be moralpomust have occurred at least 15%
more frequently than pattern 3. Thus even variant-patterogide useful information.

It is also evident that the ten most popular patterns acibbgrchmarks in Figure 7 are not in the
ten most popular patterns for Spec2000int and MediaBengharately. The only exception is pattern
6, which is identical to pattern 9 in the MediaBench resultkough many of the graphs have similar
shapes and subgraphs, there is little overlap betweenghmatterns of these parallel media applications
and the more sequential Spec applications. Table 2 showsveo, that less than 20% of the patterns
seen in these suites are not present in the other suite.

The predominance of dependence chains is clear,espewaiaén looking at the MediaBench pat-
terns. Smith [67] termed these chains instruction straadd,several proposals suggest their collapse

into atomic macro-instructions [67, 99]. Though the spedifstances of our strand patterns may have
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been subgraphs of a wider graph, the popularity of the lisbapes indicates generally linear dataflow.
For architecture researchers, this is another remindéreofimited instruction level parallelism (ILP)
present in integer code. Interestingly, our results inditaese strands are less dominant in Spec2000int,
a suite with generally low ILP.

Next we observe that the first and fourth most popular pagtéynall benchmarks include a direct
load-to-store communication. This memory copy operatimticates movement in or between data
structures (copying one primitive to another in C resulig register-copy, not a memory-copy). Though
beyond the scope of this work, we hypothesize that notieeattie-compression could be obtained by

adding memory-copy instructions to the ISA rather thangisitoad-store pair.

1.5 Conclusion

As architectures become more dominated by wire-delay,nipitance of instruction communication
versus instruction computation only stands to increasesuit, the fast and accurate characterization
of application communication can provide architects anaiter researchers with important data for
their work.

Without explicit knowledge of dataflow patterns, this workdhpreviously been based on statistics
related to register usage. For instance, after showingnfreguency of instructions with two-live inputs,
Kim and Lapasti introduced an architecture with only halfha register ports and wakeup signals [69].
Clustered processors such as the Alpha 21364 dynamicakgtdastruction communication to steer
instructions to different groups of execution resourcé].[Bloting the dataflow trends in static binaries,
Smith proposes a new accumulator-based ISA which operatesropiler-identified dependence-chains
[67]. The dataflow patterns shown earlier quantitativelpfoen the intuition behind these and other
proposals, while still leaving room for future research.

Our future work is focused on a study of compiler effects otaffiew patterns. We wish to confirm
our hypothesis that each compiler is limited and deterrtiig its generation of dataflow, but that
between compilers, interesting differences in commuitingiatterns might be found. Additionally, the
most popular patterns among all compilers might repreggpitcation dataflow more authentically, as
some compiler-specific effects have been muted.

As a broader goal, the high coverage of the top ten patterghtrmidicate a level of predictability.

By anticipating and reacting to these common data movemantikitects might be able to create new
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dynamic optimization techniques to reduce the impact oesdielay. Additionally, compilers might
be able to annotate binaries with such communication inédion to assist these hardware optimiz-
ers. Combined with work on specific instruction idioms [6, 207], the problem of compactly and

comprehensively describing the control and dataflow of gfanm appears tractable.
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CHAPTER I

DYNAMIC STRANDS

Summary

In the modern era of wire-dominated architectures, spegfifitct must be made to reduce needless com-
munication within out-of-order pipelines while still ma#&ining binary compatibility. To ease pressure
on highly-connected elements such as the issue logic arasbypetwork, we propose the dynamic de-
tection and speculative execution of instructgirands-linear chains of dependent instructions without
intermediate fan-out. The hardware required for detedtimgge chains is simple and resides off the
critical path of the pipeline, and the execution targetstheenormal ALUs with a self-bypass mode.
By collapsing these strings of dependencies into atomicoriastructions, the efficiency of the issue
queue and reorder buffer can be increased. Our results $tav20% of all dynamic operands can
be incorporated in strands, increasing the effective uetibn window and reducing activity in many
pipeline resources. Additionally, these strands haverakepeoperties which make them amenable to
simple performance optimizations. Our experiments shavame IPC increases of 15% on an aggres-
sive four-wide machine in Spec2000int, Spec2000FP, andidiledch applications. Finally, strands
ease the IPC penalties of multicycle issue and bypass byciregulependency pressures, providing

opportunity for clock frequency gains as well.

2.1 Introduction

As architects strive for faster pipelines with decreasiiligah feature size, they are faced with in-
evitable communication issues. Minimum latency througticad path code often requires dependent
instructions execute on subsequent clock cycles. Formgnoath delays, however, do not scale with
technology [87] and modern CPUs already spend as much tipesking the ALU result as computing
it [45]. Additionally, instruction scheduling (wakeup asdlect) gets substantially slower as pipelines
get wider [87], leading some architects to consider sabriback-to-back issue of dependent instruc-

tions. In the end, the scalability of modern architectusehampered by the communication between
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dependent instructions, not the actual computation.

The key insight of this work is that many dependent instargiproduce operands which dran-
sient that is, they have a single consumer of their value. Tramsiperands allow RISC instruction
set architectures (ISAs) to overcome their dyadic naturer. ifistance, it is impossible to sum three
numbers in RISC assembly without using a temporary registach is probably only consumed by the
second addition. CISC proponents might use this oppoytdaiirgue for more complex instructions,
yet a dyadic ISA can effectively describe any program. In,fde processor is free to construct more
efficient, complex operations from these simple instrutioNe propose such a method.

To address the issue of dependent instruction communicatior mechanism identifies repetitive
chains of instructions connected by transient operandesdlare cached and issued atomically in re-
placement of the original instructions which are removemnfthe stream. Since a chain’s result is
computable as soon as its sources are ready, they are igse@dadively before all of the original in-
structions have been seen. Due to the special propertibesd thains, this light-weight speculation is
easily maintained and recovered from in the case of a misudgiion. Small logic engines and a cache,
all of which lie off the critical path of the pipeline, provdhe hardware support for this mechanism.
These units prepare strands for execution on closed-loogtifunal units-traditional arithmetic-logic
units (ALUs) with a self-bypass mode. These ALUs can opeaatdouble frequency because the in-
termediate values are not bypassed. The end result is dicignireduction in the number of in-flight
instructions and evident performance improvements (sils simple IPC increases or a reduction in
the IPC penalty of multicycle issue [70, 109] and multicyioigass [90]).

The sections are organized as follows. Section 2.2 revieesgqus research in related areas. Sec-
tion 2.3 introduces transient operands, their grouping,thair relation to interconnect issues. Section
2.4 describes the hardware and algorithm for our groupinghem@sm. Section 2.5 details the experi-
mental setup, coverage results, and performance restliallyi- Section 2.6 concludes and describes

future work.

2.2 Related Work

Previous work has addressed functional unit clusteringielzcale hyperblock enhancement, small-

scale dependence collapsing, and speculative data-dni@othread creation. Our work gathers from
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all proposals, dynamically creating and speculativelycatag groups which can span beyond the in-
struction window yet are small enough to construct and maeagily.

The termstrand was first introduced by Marquez in [76], defined as an atomaugrof instruc-
tions identified at compile time. Kim and Smith later refinbistdefinition to an atomic dependence
chain to illustrate the accumulation nature of modern ietegpplications [67]. This corresponds to his
and others’ observation [69] that well over half of dynamikSR instructions in modern benchmarks
only require one or zero register inputs. Though Kim and Bipibposed a new ISA and architecture
to expose such chains, and their proposed accumulatortestthie reduces communication costs by
collapsing them.

The most commonly suggested method of communication-agsageution is clustering—dividing a
processor’s resources into logical groups and steeringngirictions between them based on depen-
dencies. This technique is implemented commercially oithba 21264 and 21364 processors, which
have two identical pipelines with distinct register filegphss networks, and issue logic [53]. Imple-
mentations with more clever steering techniques can badfouacademic research, such as Multicluster
[44] and CTCP [11]. Parcerisa et al. [90] and Baniasadi §8hktudy various clustering techniques to
conclude that performance is very dependent on clustecomeection and steering logic. Our proposal
achieves a similar effect as clustering, but moves theisgpburden off the critical path and into a fill
unit.

Many researchers have proposed using the trace cache filfanrthis and other dynamic opti-
mizations [48, 64]. RePLay [92] forms hyperblock regionalled frames) in a similar fashion, but
guarantees atomicity in its frames. Though no firm estimatesnade of fill unit latency, the authors
assume between 100 and 10,000 cycles are needed. Howet@nraace is not sensitive to this delay
as up to 10,000 cycles produces a similar speedup [43]. Tlehanésm we propose is far less complex
than these proposals, focusing only on grouping chains pémidgent instructions to be collapsed later
on a closed-loop ALU.

Other researchers have studied dynamic collapsing on a-imolit execution unit. Sazeides et
al. [102] explore the potential of instruction-dependenckapsing on 3-1 and 4-1 (three or four inputs
respectively, one output) ALUs. Speedups of 1.35 on Spat@ai an eight-wide machine are stated as
possible with collapsed ALUs, which were proposed in [74] E%] adding negligible latency over two-

input devices. Macro-op scheduling [70] uses no special &Lt does issue dependent instruction
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int sum ( int a, int b, int ¢, int d ) {
return a + b + ¢ + d;
}

add R1, R1, R2
add R1, R1, R3
add R9, R1, R4

Figure 8: Common compilation of four-way addition into accumulataetaflow.

pairs into a single reorder buffer entry. Similarly, theslfeentium M combines some dependent pairs of
micro-ops which derived from the same x86 instruction [91jese approaches allow paired instructions
to be scheduled atomically, but the intermediate value igjnashed as with our mechanism. Macro-op
scheduling achieves roughly similar instruction coverag®ur strands, but does not produce speedup
unless pipelined scheduling is assumed.

To address more than a single dependency, Yehia and Temafpftpose using the rePLay frame-
work to create instruction “functions” which are collapsaal a 10-input bit-sliced ALU. Unlike our
mechanism, these groups are tree-shaped, non-specusatiyaot limited to transient operands; thus it
must duplicate instructions between functions to satigfdut. Similarly, Clark et al. [26] use rePLay
to compose up to 22 instructions into a seven-high upsideiddgangle shape. Our dynamic collapsing
mechanism, though addressing fewer instructions per grdegects these shapes far more efficiently
than do mechanisms based on the complex and cumbersomeyreriiae.

In other ways, our work resembles that of data-driven niuktgading. Chappell et al. first introduced
subordinate microthreads in [25], which Collins et al. [28]d Roth et al. [98] use for speculatively
computing specific critical values such as load addresséseanch predicates. These mechanisms
are effective value prefetchers, but assume a machine imithitaneous multithreading support. Slice-
Processors [74, 80] create microthreads for similar deted purposes but require no multithreading
support. Our strand execution also speculatively exeaatflow paths to produce a single result, but

picks the value for opportunity, not criticality.
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2.3 Transient Operands and Strands

Transient operands, produced values with only one consdiomer the building blocks of our instruction
groups. We restrict the grouping algorithm to these valeeEsbse, once passed to the consumer, these
operands need not be committed to the architectural stateeahachine. These values often connect
critical dependent instructions; in other words, this proer-consumer communication is on the critical
path of the application.

Figure 8 shows an example of transient operands generateddur-input addition. In the top box,
a simple C function returning the sum of the four inputs isrgmoWe used several modern compilers on
this code with various optimization levels and all returpeactically the same assembly code, which is
shown in the lower box with its dataflow representation. Hastruction has a true data dependence on
the previous, creating a critical path of three instruciom this example, the intermediate R1’ and R1”
values are transient operands—they are produced, consameed and discarded. The communication
betweenadd instructions is also on the critical path of the computatihich in a traditional design
would require the use of the bypass path and back-to-bagk.iss

The arrangement in Figure 8 is what we terrstiand A strand is a string of integer ALU instruc-
tions that are joined by transient operands (thus have nodgn This definition is slightly different
than the one introduced by Kim and Smith [67] who did not prdelfan-out in their strands. This re-
striction somewhat limits the number of instructions ddigifor incorporation in our strands, but allows
us to safely discard intermediate results. For our work,cttraponent instructions do not have to be
subsequent, can span basic block boundaries, and for thkshage a maximum length of three instruc-
tions. Though the instructions in a strand are stored im tr@jinal encoding, they can be expressed as

macro-instructions for convenience:
RR=((RR+R)+R3) +R

To cover as many instructions as possible in strands, ouhamggm separates the predicate eval-
uation from branch instructions and the effective addressputation from memory instructions. The
predicate and effective address computations become esiAldll operations and are thus includable
within strands. In Section 2.5.2 we will show that the peta#nransient operands across Spec2000 and
MediaBench is about 66%, showing a high potential for exatmin. As transient operands have such

short lifetimes—on average less than four instructionsusgp producer and consumer—they are more

19



Fetch
Decode non-renamed )
insns dispatch
strands engine
Issue queue
entry Rename air
entry. d rec irty
modifications ql'ﬁgu)é values
[
‘ Issue Queue ‘ strands
Reg File |« strand
closed cache
loop * bypass
[
‘ ‘ transients
ALU ALU ALU strand
cache
fill unit

-«

Insns

previous
values

operand
table

Figure 9: Overview of hardware requirements for supporting strahisv additions are shaded.

Table 3: Example entries in the operand table.

Last Producer| Last Consumern Consumer
Reg Instruction Instruction Count
R5 PC 1440 - 0
R6 PC 1404 PC 1412 1
R7 PC 1408 PC 1480 8

likely to be communication-critical. Thus strands shougbdave this property, and thus avoiding their

internal communication should provide energy and perfoicesbenefits.

2.4 Hardware and Algorithms

The basic organization of our dynamic optimization mecsanis similar to trace-cache techniques
[43, 48, 64, 92] except for our use of a custom cache for grdiqeructions. It should be noted there is
nothing mutually exclusive between our cache and a tradeecas they are accessed in different stages
and store somewhat different information. Figure 9 showsmechanism’s relation to a traditional
OO0O pipeline. There are five main components added or charngedill unit, the strand cache, the

dispatch engine, changes to the issue queue entries, awdidlmop ALUs. We discuss each in turn.

2.4.1 Strand Cache Fill Unit

The strand cache fill unit is similar in purpose to a trace edfh unit: to observe the instructions

being committed and update a decoded cache. This unit fiadsiént operands, connects them, and
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caches them for future use. Results demonstrating theclateferance of the strand cache fill unit (not
shown for to brevity) closely resemble that of other fillubased dynamic optimization techniques
[43]. These results show that the iterative nature of integde allows a great deal of slack in optimizing
instructions. Thousands of cycles of fill unit delay showsappreciable performance effect in our
mechanism as well.

Transient detection is achieved with a small structure énfihunit called theoperand table This
structure has one entry per architectural register, degaihe last committed producer, last committed
consumer, and the number of consumers of this value. Tabf®8ssexample entries in an operand
table. In this example, R5 was produced by program count€) (40 but not yet read, R6 was
produced by PC 1404 and read only once by PC 1412, and R7 wasgea by PC 1408 and has been
read eight times, most recently by PC 1480. An operand isapibeed dead when it is overwritten, so
the fill unit is assured that any instruction writing to R6 ragakhe previous R6 value (the one currently
shown in Table 3) dead. This operand has a consumer counep$otif the producer and consumer are
both integer ALU operations, this table entry (producer emasumer) has been identified as transient.

This transient is then checked to see if it connects to atiegistrand. If it does, the fill unit appends
the transient to that strand; otherwise, a new strand isrbegiowever, to prevent the cache from
overflowing with small strands, we prohibit transients @gdin branch predicate or effective address
computations from beginning a new strand—they must waitetatbtached to an existing strand. It is
important to note that strands are stored using architgctagisters, not renamed physical registers.
This means that the renaming algorithm will not affect théadgon of these instructions in future
iterations.

The strand cache fill unit also watches committing strandsd& for source value-prediction op-
portunities. If a source strides predictably after a thoésimumber of strand executions (we use four,
though this choice has negligible effect on performand®g, gredicted next value will be computed
and stored in the strand cache. If the predicted stride i3, 2bis value is a predicted constant and is
treated in the same way. Since only high-confidence stridedetected, value prediction correctness is
very high—over 99%—but the limited use only increases perdmce by 1 to 2%. It is important to note
that the typical hazards of value-prediction are alreadyerd by other strand hazards, adding little

complexity to handling value mispredictions. This is dissed in more detail in Section 2.4.3.
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Figure 10: The strand cache stores bookkeeping data, the componeniciien information, and
previous reader data.

2.4.2 Strand Cache

The strand cache is a small content-addressable memory J@/&dh stores connected transients as
strands. Figure 10 shows its major contents. Each entryam@m®ximately 175 bytes and holds four
sets of information—the operation information, the sounéermation, the destination information, and
bookkeeping bits. Though each line is large, our resultsvstinat very few entries are needed for
effectiveness.

The first set of data in a strand cache entry holds data onrdred& operations, one for each of the
possible instructions in the arrangement. For each operatie store the PC, op code, and whether it
has been seen by the dispatch engine. The next set of dada stfmrmation on the strand’s sources. For
each possible source, we save the architectural registebenithe PC, the current physical tag or value
of the architectural register, and whether this source B®kan seen. Next, for the destination we also
store the architectural register number along with theiptsvreader information, which is updated by
the fill unit. This includes the PC of the instruction whiche(\wredict) reads the strand output register
before the strand writes to it. It also stores the value tted previously there, so it can be recovered if
a strand is executed prematurely. This algorithm is furthecussed in the next subsection.

Finally, as with many architectural caches, the strande&els basic bookkeeping information such
as a valid bit and counters. These keep track of basic sttatidgties such as the number of times this

strand’s instructions have been seen. There is also a satiddlindicate if this strand can be issued
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from decode

A. Insns 1, 2, and 3 are checked by the
C. Inst4is senttothe dispatch engine. The pipeline is

R4 =R5 + R2 dispatch engine, which signaled to delete them from the
discovers a read of a dirty instruction stream because they are
R3=R2+R6 R2 value. Inst 4 is held found in a solid strand S. R1, R2, and
and rename is stalled. R3 have their Dirty Table entries set.
R2=R1+R7

R1=R9+R8 I .
. Dirty Table
Dispatch R1 [StrandS | Inst1
f /R2) | Strand § Inst 2
Engine /'R3 [StrandS | Inst3
E. Inst4 can now proceed \
to the scheduler. B. Strand S with macro-inst D. The Dirty Table entry for R2 points
Rename is un-stalled. R3=((R9+R8)+R7)+R6 is to the sub-strand of S terminating in
sent to the pipeline and inst 2. Recovery strand R with
issued. R1 is marked clean. macro-inst R2=(R9+R8)+R7 is sent

to the pipeline and inserted in front
of Inst 4. R2 is marked clean.

to dispatch

Figure 11: Example of strand execution and fine-grain recovery.

by the dispatch engine and a least-recently used (LRU) eouwvitich is biased to keep taller strands
longer. This bias forces the most-significant bit of the deufow for strands with three instructions,
making it less likely to be the highest value in the table @ghey to be replaced).

As with an instruction cache, the strand cache referencbétectural registers, not the physical reg-
isters assigned by the renamer. Though the strand cachieateplsome information in the instruction
cache, the strand cache more importantly stores the matddatribing how operations relate and the
state of their sources. This replicated data does not leatdche significantly as the strand cache can
be quite small for significant effect. Section 2.5.2 dettiks sensitivity of our mechanism to the strand

cache size.
2.4.3 Dispatch Engine

Each instruction, after being decoded, is sent to the dibpaigine in parallel with the renamer. This
component’s purpose is to insert strands into the instbncditream and remove the individual instruc-
tions from the stream. This is hazardous if assumptionstabeustrands are incorrect, so the dispatch
engine is also responsible for maintaining a correct macsiiate with the architectural registers. To this
end, there are six basic tasks which need to be completefirghthree of which are done in parallel.

These major tasks are illustrated in Figure 11, which shosisple strand being triggered for execution

and a recovery strand being needed afterward.
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Setting the seenflags. The first tasks is setting threeenflag in the strand instruction entries. This
CAM lookup compares all instruction PCs in all valid straridghe PC about to be renamed. This
should only result in zero or one hit as an instruction cary exist in one strand at once. If all the
instructionseenflags for a strand are set, the strand has completed a paskessektflags are reset.
After a threshold number of passes (we use four), the stsaladhéled asolid. If the seerflag is already
set, this indicates that the strand did not complete itgdass$, and all seen flags are reset.

Updating the source seerflags. This lookup on all source PCs can result in multiple hits a&s th
same instruction can be a source for multiple strands. Sbhece seeiflag is also set if the input is
an immediate, an input from another instruction in the straghe zero register, or has already been
value-predicted by the fill unit.

Updating the previous reader seeflags. As strands replace instructions outside of the safety of
renamed registers, the third task of the dispatch enginatapdheprevious reader seefitag to prevent

anti-dependence violations. A guintessential examplestsamd of the following macro-instruction:

RL = ( ( RO+ 0x42 ) + Ox43 ) + 0x44

If RO is the zero register, it is evident that this strand carekecuted at any time and produce the
correct result as it has no variable inputs. Speculativamang of this strand, however, could cause a
write-after-read (WAR) hazard if another consumer of theent R1 is later fetched. It might also cause
a write-after-write (WAW) hazard in a similar manner. To yest these anti-dependencies between
architectural registers, the strand cache fill unit notespitevious reader PC for each strand, which is
the program counter of the last instruction that reads theevaverwritten by the strand’s output. Only
the bottom output has a previous reader as it is the only watiteen out to the register file. Strands
terminating in branch predicate or effective address cdatjmns overwrite no architectural register, so
no previous reader information is stored for these strands.

Removing instructions. If the dispatching instruction is found in a solid strande thipeline is
signaled to quash this instruction. To assure recovetghbilihen an instruction is removed, tdéaty
tableis updated. The dirty table has a pointer per register ititigadhe strand cache instruction that
creates it.

Determine strand readiness.The dispatch engine also checks the following conditiondeter-

mine which of the strands in the cache are ready:
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Theprevious reader seeftag is set, so the strand’s output should not overwrite avalae.

Each instruction in the strand must haveséenflag set or both of itsource seeflags set. This

assures all values needed to compute the output have been see

The strand must be solid.

The strand is not already executing.

Any strands meeting the above conditions are queued foattispn theready strand queueThis
gueue is multiplexed with the decode-to-dispatch queuk kigher priority, so on the next cycle the
strand(s) will be dispatched before any normal instrustioThe output register is marked as dirty
(pointing to the strand bottom) until all of the instructioin this strand are seen. Thus, strands can
execute before some and after other component instrueitoissonly important that all component
instructions are eventually seen and removed before thedsexecutes again. For example, the strand
in Figure 8 is ready to dispatch as soon as the ingutsc, andd have been seen as well as the previous
reader of R9. As these inputs are often immediates or higiglgigtable register values, strands usually
dispatch many cycles before all of their instructions hagerbseen. Once in the dispatch stage, the
strand will be allocated one reorder buffer entry as if it @varsingle instruction. Of course, since a
strand is atomic, the whole strand must be quashed if somte wfsitructions are quashed by a branch
misprediction. This is a rare occurrence, however, asdsrasually exist within a single basic block.

Anti-dependence checkingThe final task of the dispatch engine is to detect consumtiatirty
values. If the dispatching instruction reads a registehwsitdirty table entry pointing to a strand’s
bottom instruction, this is a previous reader violatiom-fitevious value is being read but a strand has
overwritten it (write-after-write hazard). In this casketdispatch engine puts the offending instruction
back into the decode-to-dispatch queue and dispatchesl-dntoaediate instruction in theeady strand
gueueto replace the previous value. As this queue has a higheatdisgpriority than the decode-
to-dispatch queue, the strand will replace the proper t&giglue before the offending instruction
dispatches again.

Conveniently, this anti-dependence detection also casérslue-prediction errors. For instance,
if an incorrect source value is used in a speculative strandyzing R7, that register now has a cor-

rupt value. However, the corrupt value cannot be read beafareentire strand is seen and any value
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mispredictions are evident. Any attempt to read R7 befdrihalstrand’s instruction have been seen is
previous reader violation, and a value recovery is initlatdnd, by the time all of the strand’s instruc-
tions have been seen, the value prediction can be checkde:laigpatch engine. If it was erroneous,
then the strand is re-inserted with the correct inputs.

If the dispatching instruction reads from a register withadidsdirty table entry not pointing to a
strand bottom, this triggers racovery strand The offending instruction is put back into the decode-
to-dispatch queue and a sub-strand consisting only of tteuictions that produce the dirty value is
gueued. Depending on the flags of each instruction, the sowaities from the last strand execution
might be used for execution instead of the current registkres. An example recovery is shown in
Figure 11, where the read of R2 would result in an incorreltie/ar he dispatch engine also notes when
instructions write to a dirty register, meaning it is no lenglirty thus the table entry is cleared.

Recovery strands are also triggered at strand modificatindgraps. The first keeps the dirty table
consistent with the strand cache by flushing any values digpegron a strand about to grow or be
evicted. Recovery strands are issued at system calls agwlupts as they are assumed to access all
registers, thus any values marked as dirty must be flusheetuonrthe system to a consistent state.
Since these events are statistically infrequent and tirererdy a handful of dirty registers at any time,
recoveries are not a significant source of slowdown. On theleylrecoveries are not common—only
about one per hundred strand executions.

It is important to note that recovery strands are dispatéhedazy manner; that is, they are only
inserted into the instruction stream on-demand. For irgtaif a strand crosses a branch boundary
but the branch mispredicts, the whole strand is quashed amelcovery strand is dispatched. Though
the instructions before the branch are now effectively mgsfrom current instruction stream, the like-
lihood that these results will be needed on the new path tombhgo be quite small. Thus, only if a
future instruction requests these dirty values will theydmovered. This property of transients prevents

excessive recoveries from impeding speedup.
2.4.4 Issue Queue Entries

In order to correctly issue strands, the issue queue emtriest be slightly modified as shown in the
right portion of Figure 12. The first trivial change is the didah of extra op-code fields and immediate

fields for each of the component instructions. The numbeleetlad fields is the maximum number of
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Figure 12: Detailed diagram of ALU and issue queue modifications.

instructions allowed per strand.

Secondly, we add aoper-counterto store which operation is currently being considered $eueé.
This is only necessary for mixed-strands which contain aip@ns other than integer ALU instructions.
These groups will be issued one instruction at a time to tipeoggpiate functional unit, as opposed to
the ALU strands which issue atomically to the closed-loogJ&L Thus, we must keep track in the issue
gueue entry which is the current contained operation.

Next we addper-id tags to identify which instructions the sources apply tahia manner, the two
wakeup comparators assigned to the two sources can be dbaréé entire strand regardless of the
number of contained operations in the strand. A couple of @ieggand small comparators assure that
the readiness of a source is only applicable wherotiex-countematches theper-id of the source.

A more straight-forward solution would havé — 1 comparators, one for each possible input to a
strand of sizeNV. The Intel Pentium M, for instance, incorporates three {apsut the three possible
inputs to a fused pair of operations [51]. To a lesser extgatcan add a third wakeup comparator and
share it using the counters above amongst any reasonableenwhinstructions in a strand. Section
2.5.5 evaluates the benefits of adding a third shared conopata the end, we feel the hardware cost
of supporting the third input is too substantial. This isegable, however, as most identified strands
need very few inputs (about 1.7 on average). This conclusiard have been predicted from the the

preponderance of zero- and one-input instructions in ertegplications [41, 67], which combine into
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strands with few external inputs.

A final modification to the issue entries allows tag broadtmbe avoided for internal results. As we
have guaranteed that there are no other consumers thatewiitdrested in these intermediate results,
there is no need to broadcast their availability. The tagi$gst of long, wide, high-capacitance wires,
and by avoiding unnecessary driving of these lines, we casawe additional power. A single tran-
sistor per issue entry accomplishes this effect, redu@gditoadcasts by about 5-10% and subsequent

wakeups by 15-30% in our experiments.
2.4.5 Closed-Loop ALUs

The execution target for strands are closed-loop ALUs, shiawhe right of Figure 12. These functional
units are normal integer ALUs with the addition of a selfWarding mode. In this mode, output values
are sent directly back to the inputs of that ALU and not writte the result bus. Thus the intermediate
value is lost upon usage and never committed to the architdcstate. As modern processors spend
half of the execution cycle on ALU execution and half on fufiplass [45], an ALU spinning on its
own results can compute two internal values per cycle. Thised-loop operation is similar to the
low-latency ALUs of the Intel Pentium 4 [57], which performvd dependent integer instructions in the
two halves of a cycle. However, the Pentium 4 cycle time igtigdly short and there are two ALUs are
on the double-speed bypass, so these half-cycle operatiersnited to 16 bits. Our closed-loop ALU
only bypasses to itself, and thus can complete two full igiraycle’ operations in one cycle.

A strand is issued two-way-piecewise (two instructions @eile) to a closed-loop ALU the issue
gueue. It then spins far.5 - H cycles to compute the final output of the strand, whires the height
of the strand. Of course, the final result from a closed-loperation must be bypassed (which takes
half a cycle), so the latency for the result to be readyis - H + 0.5] cycles. For example, a two-high
strand requires one cycle for execution plus half a cycleyfabs the result. As the broadcast bypass
does not operate at this double-frequency, this rounds aptte-cycle latency. During this time, the

ALU is busy and not available for issue.

2.5 Experimental Setup and Results

To determine the effect of dynamically created instructtnands, we implemented our structures and

algorithms on the cycle-accurate SimpleScalar 3.0 simulaith the PISA instruction set [19]. We
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Table 4: Architectural parameters used for all simulations.

Feature | Value

Integer ALUs 4 units

Integer Multipliers 2 units

Fetch Queue 32 entries

Reorder Buffer 128 entries

Issue Queue 32 entries
Load/Store Queue 32 entries

Memory Ports 2 ports

L1 I-cache 64 KB (2 way), 3 cycles
L1 D-cache 64 KB (2 way), 3 cycles
L2 Unified 1024 KB (16 way), 8 cycles
Memory infinite size, 160 cycles
Branch Predictor combining bimodal/gshare
Branch History Table 4096 entries
Branch Target Buffer 2048 entries (4 way)
Branch Penalty 10 cycles

focus on measuring the two benefits of our work: the effentdgs of grouping instructions into atomic
entities, and the IPC gains from the speculative and dosjied execution of strands. We also evaluate
performance sensitivity to the dispatch engine delay, ooiiig that a strand-mechanism is latency

tolerant.
2.5.1 Experimental Parameters

Table 4 enumerates the parameters common to all designsa&sailin this section. Most of the bench-
marks from Spec2000int, Spec2000FP and MediaBench [73lised for analysis. Any benchmark
omitted from these suites did not compile cleanly using g&&3 with O2 optimizations. Spec2000
inputs come from théestdata set, and the default MediaBench inputs were enlargkzhgphen their
execution.

For each simulation, we execute 500 million effective cottediinstructions after skipping the first
100 million. By using effective commits, we avoid the digzaacy in number of committed instructions
between the strand and baseline models. To assure both asurnmg the exact same piece of the
application, we also verify by hand that the number of loattses, and branches committed is identical

between models.
2.5.2 Operand Coverage

As stated earlier, as more operands are encapsulated siithimds, unnecessary activity within the issue
gueue, bypass path, register file, and other resourcesdareeet and the effective size of these structures

is increased. Additionally, as strands are completed éamedataflow order rather than control flow, a
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Figure 13: Percent of dynamic operands which were transient, and homy mbthose which were
incorporated into strands with various strand cache sizes.

reduction in load and branch penalties should create IP&geith larger coverage.

The full height of the bars in Figure 13 show the percent ofasyit operands in our benchmarks
which were transient operands. It is clear from the averd&ifé &ansience rate that there is high
potential for exploitation and modern broadcast-basedlipips are overdesigned. The breakdown of
these bars represents the portion of transients which vesered with a 16-entry strand cache (2.8KB),
32-entry strand cache (5.6KB), 64-entry strand cache KB)2128-entry strand cache (22.4KB), and
those which were unincorporated. Though operands do neesmond 1-to-1 with instructions, the
coverage numbers for instructions are very similar.

On average, about 10% of dynamic operands are covered witnthllest strand cache, 16 entries.
Doubling the size to 32 adds 4% of coverage, then doublingdtadils 3%, and then doubling to
128 adds 2%. Though this diminishing return indicates, thate are only small gains beyond 128
entries, that is interestingly false. MediaBench’s peggmitode and pegwit-decode both require over
400 strand cache entries before any instructions can beembvéhis is due to the high transience of
operands within the main loop, which overflow the strand edogfore any strands can be solidified.
With a large cache, however, the strand mechanism can coeerd0% of the transients in these two
benchmarks.

As such, the benchmarks with the highest opportunities fpiogation sometimes end up being

the hardest to affect. For the highest transient coveragalldrenchmarks, an infinite-sized cache is
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Figure 14: Average (a) activity level changes in affected pipelinerapens and (b) subsequent energy
level reductions in related resources.
required. As this is impractical to build, static detectioinstrands [101] might be a more practical

approach to maximize coverage at the cost of eager execution
2.5.3 Energy Changes

As stated in the previous subsection, the incorporatiorpefands within strands prevents unnecessary
communication within the pipeline. Figure 14(a) shows fivgortant such communications and their
reduction as strand cache size chandgesy wakeupsndtag broadcastsefer to the comparisons and
broadcasts of result tags in the issue queue. As we are configd no other instructions are interested
in the intermediate output of a strand, there is no need towrge its availability on the high load
tag bus or make the subsequent comparison when that tagese@abh issue queue entry. As such tag

wakeups are reduced between 15-30% and tag broadcastsd9g.5klect cyclesefers to the number
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of cycles that the select logic is selecting instructions. sétands compress the instruction stream, the
odds of having an empty issue queue at any particular cys#s slightly, reducing the need for select
activity.

If we make the simplifying assumption that the energy of #seié mechanism is represented by the
sum of the wakeup energy, broadcast energy, and selectyggrigh is constant per cycle as long as it
is active), we can compute issue energy change with Equatiomthis equationf,,;, Epcst, andEy;
are the energy of one wakeup comparison, one tag broadoasgne active select cycle respectively.
Similarly, Nyip, Nicst, @and Ny, are the number of wakeup comparisons, tag broadcasts, &ae ac

select cycles during the benchmark execution.

Eissue = (Ewkp : ka:p) + (Ebcst : Nbcst) + (Esel : Nsel) (1)

To determine the energy for each operation, we use SPICEdelrtite issue logic using a predictive
70 nm technology transistor model provided by the Deviceu@rat UC Berkeley [23, 117]. Our
analysis shows that each wakeup comparison expends 5.8agd) broadcast 27.6 pJ of energy, and
each select cycle 0.18 pJ. It should be noted our model mewedergy data with more significant digits
than are being shown here. Figure 14(b) plots the resultargg reduction of the issue logic using
these constants and Equation 1. Decreases from 12% witheatiysstrand cache to 24% with a 128-
entry strand cache are shown. As issue logic often represehbt-spot for power and heat within a
processor, any reduction of these in this resource is wedcom

Figure 14(a) also plots the reduction of writebacks whicbgsivalent to the uses of the full bypass
network. Though this 4-8% reduction is less dramatic tharréductions in the issue logic, it is signif-
icant given the power expense of the bypass network’s lageltrbuses and large input multiplexers.
As the dynamic energy of bypass is roughly a function of it8wity, Figure 14(b) copies these points
as the reduction in bypass energy.

Finally, 14(a) plots the reduction in physical register fdads. Though it is only 1-2%, this reduc-
tion is combinable with that for writebacks which also regenats physical register file writes. If we
assume that the dynamic energy for the register file corsigtsly the read and write energies, we can

represent it with Equation 2. In this equatidh,., and E,,.;;. are the energy on one register read and
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Figure 15: IPC speedup as the dispatch engine delay is varied from a¢hode cycles.

one register write, respectively. Similarly¥,...q and N,z are the number of reads and writes to the

register file during the execution.

Eregfile = (Eread : Nread) + (Ewrite : Nwrite) (2)

To determine the per-read and per-write energy, we use eC/G] to model a 64-entry 64-bit
register file with 8 read ports and 4 write ports at 70nm. Thi&uhs in a read energy of 262 pJ and
a write energy of 260 pJ. Combining those constants with &@ua& produces the register file energy
reduction curve shown in Figure 14. Depending on the sizénefstrand cache, energy is reduced

between 4 and 8% in this resource when using strands.
2.5.4 Dispatch Engine Delay Sensitivity

Of course, whether strands are an overall positive or nagatidition to a processor in terms of energy
depends greatly on the strand creation and detection heedwWwaough a physical model of this logic
is beyond the scope of this work, we can observe how sensite/@ipeline is to running this logic at
a low frequency. If the strand hardware can be pipelined intdtiple stages, it's bandwidth can be
maintained while consuming less power than a monolithieclogpck.

There are two possible opportunities for pipelining in ttrarsd hardware—the strand cache fill-unit

and the dispatch engine. Related work in fill-unit dynamitirojzation has shown that performance is
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Figure 16: Harmonic mean of IPC speedup for each of the three benchnuéds sand the overall
mean as the maximum strand size and maximum strand inpuasiesly

insensitive to thousands of cycles of fill-unit delay [43]Jur@xperiments confirm this, as strand cache
fill unit delays of thousands of cycles show no apprecialfiecebn coverage or performance either. As
our fill unit is far simpler than that proposed in [43], we fdgls range is more than sufficient to cover
possible design delays.

The latency of the dispatch engine is less predictable, ervdo analyze the performance sensi-
tivity to this delay, we vary the latency of the unit from zdoothree cycles, within the expected range
considering the parallel nature of the tasks to be perforniégure 15 shows these results as the IPC
speedup of the strand-enabled machine for each of thesdtioosd For this experiment the strand
model uses 32 strand cache entries, thus the zero-cycldigpeeidentical to the 32-entry bar in Figure
16.

Despite the additional latency required by the dispatchinenghe average IPC speedup changes
little. This is primarily due to the aggressive nature of timit, which eagerly inserts strands into the
stream many cycles before the component instructions wmeildispatched, and thus often sooner than
the result is needed. Extending the delay of this unit sesuésto lessen the aggressiveness, producing
slightly less speedup and very little effect on coveragenémy cases, performance actually increases
with longer delays due to errant strands being canceleddaisertion, thus avoiding wasted pipeline

resources and costly recovery penalties.
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2.5.5 Strand Size Sensitivity

Within the strand cache fill unit, it is possible to constrtie strands to a maximum number of opera-
tions and external inputs. As strands become longer, thagase the overall instruction-compression
effect within the pipeline, decreasing needed entries soueces to maintain an baseline instruction
window. Supporting longer strands has a cost, though. Mpegations per strands requires adding ad-
ditional fields in resources that hold the strand (issue gueorder buffer, etc.). Supporting more inputs
also requires extra fields and additional wakeup comparitothe issue logic as all possible inputs may
become ready in one cycle. These effects diminish the resarmpression effect of strands—resource
entries become larger despite there being fewer of them.

To analyze whether supporting longer strands or more iriputseful from a performance perspec-
tive, we plot the harmonic mean of speedup for our three beack suites for maximum strand sizes
of two, three, four, and five and maximum inputs of two andehreFigure 16. It should be noted that
inputsrefers to live register inputs, not immediates or the zegister.

In general,performance is not very sensitive to strand@izeputs. Overall IPC increases 12-15%
regardless of the strand size chosen. This insensitivituésto the rarity of strands longer than three
instructions and strands with more than two inputs. Alsostnad the IPC speedup is from the aggres-
sive speculative execution of strands, not the compresgfeat in resources or the double-speed ALUSs.
When executing strands on traditional 1-cycle ALUs, aversigeedup drops by only 3%. Though indi-
vidual instructions could also be cached and speculatergcuted in the same manner, the atomicity
and limited fan-out of strands makes them more amenablagdie of precomputation.

These IPC increases can directly translate to an instngtiger second (IPS) improvement as a
strand mechanism does nothing to lengthen cycle time. Wdtarely, these IPC gains can be used to
offset the penalties of multicycle issue [70, 109] and neyitie bypass [90] which affect dependent
instructions most severely. Though we do not quantify cyictee benefits in this work, previous re-
search has shown that fused dual-instructions are eféeetivecouping the IPC costs of multicycle
issue [51, 70]. We would expect better results for strand@ien which collapses up to three depen-
dent instructions, not just two. The more contention ther®li each issue queue slot, the more benefit
can be achieved from instruction grouping.

The figure also shows that floating point applications ardefsg amenable to strands than integer
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Figure 17: IPC speedup as the issue queue size is varied.

applications. The most obvious reason for this is that thieeati dynamic strand implementation only
collapses integer ALU instructions. Additionally, the $8p800FP applications tend to be highly dom-
inated by execution bandwidth (high IPC) or memory laten@ry low IPC), and strands have limited
effects in these cases. The MediaBench suite, however,sshigh speedups of 19% on average. These
applications are far more sensitive to branch penaltiedraader dataflow restrictions, and strands can
allievate both of these hazards. Interestingly, most ad¢happlications also have little sensitivity to
instruction window size, so increasing the maximum stramgyth or inputs has a negligible effect on

performance.
2.5.6 Issue Queue Sensitivity

However some applications are more sensitive to instmatimdow size. Generally the instruction-
stream compression effects of strands increases as resda@come more scarce. This is analogous to
the value of compression in low bandwidth network deviceglisas modems) where every bit must
be carefully utilized to deliver acceptable performandeilarly, turning a 4-entry issue queue into an
effective 16-entry one has far higher value than turning&dry into a 512-entry one.

To demonstrate this effect, Figure 17 shows our the IPC sgeeoin our benchmarks change as the
issue queue size is varied between 4 and 128 entries in poigrs. The 32-entry model is our baseline
strand configuration and thus these bars are identical setbithe 0-cycle delay configuration in Figure

15. As stated in the previous subsection, the MediaBenclicagipns are insensitive to instruction
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window size due to their high branch misprediction rates laigth cache hit rates. Spec2000int and
Spec2000FP applications, however, are highly sensitieetduhe frequency of load misses and far-
flung ILP.

Overall, the harmonic mean of IPC speedup increases fromt@2%£6 when the issue queue size is
reduced to 4 entries, and reduces to 11% when the issue gaeugiacreased to 128 entries. In the 128
entry case, the remaining speedup is mostly what is provigettie eager execution and double-speed

ALUs.

2.6 Conclusion

We have shown that linear chains of dependent instructioms@mmon in integer application code,
requiring unnecessary communication traffic within issné lbypass. In a conventional machine, these
communication-intensive resources are designed for thetwase, reside within the critical path, and
must operate atomically for full performance. As a restlytare often primary determiners of proces-
sor cycle time [87]. Additionally, managing an increasintirge number of in-flight instructions in-
creases power and delay for out-of-order pipelines, plyspiatracting cycle time as well.

However, our dynamic mechanism effectively collapses dderce chains into atomic entities,
reducing the need for fast issue, quick bypass, and largeuati®n windows. The key to its success
lies exploiting the characteristics of transient operatids plentiful temporary register values needed
in RISC instruction sets. These transients form strands @nty a small number of unpredictable live
inputs, which are easily speculated upon to generate adiiedPC speedup.

On-going strand research focuses on the content-addrasse of the strand cache and devising
more efficient methods of addressing this structure. A edlgal is to quantify the power effects of
a strand mechanism—whether the decreased communicatftio &and number of in-flight instructions
offsets the power demands of strand cache lookups. We atsimge to refine the replacement algorithm

for the strand cache, as previous refinements yielded signifiefficiency improvements.
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CHAPTER Il

STATIC STRANDS

Summary

Modern embedded processors are designed to maximize mreaificiency—the amount of perfor-
mance achieved per unit of energy dissipated while meetingmam performance levels. To increase
this efficiency we propose utilizingtatic strandsdependence chains without fan-out which are exposed
by a compiler pass. These dependent instructions are eseegito be sequential and annotated to com-
municate their location to the hardware. Importantly, thizdified application is binary compatible and
functionally identical to the original, allowing transgat execution on a baseline processor. However,
these static strands can be easily collapsed and optimizeihiple processor modifications, signif-
icantly reducing the workload energy. Results show that 8286 of MediaBench and Spec2000int
dynamic instructions can be collapsed, reducing issue legergy by 16 to 24%, bypass energy 17 to
20%, and register file energy 13 to 14%. Additionally, by @asing the effective capactity of pipeline
resources by almost a third, average IPC can be improved 1p%0 This performance gain can then
be traded in for a lower clock frequency to maintain a badével of performance, reducing energy

further.

3.1 Introduction

Over the past decades, instruction sets have become faraggressive in exposing application par-
allelism. Very-long instruction word (VLIW) sets rely onedtifying instruction-level parallelism—

operations safe for simultaneous execution. Similarlgtrirction set extensions such as Wireless
MMX ™explicitly describe which data can be processed simultasigoand aggressive compilers even
identify such data-level parallelism automatically with@rogrammer assistance [12, 32]. Despite
these efforts, little attention has been placed on expasggentiality. This orthogonal characteristic is
represented far more frequently in modern integer worlddéd, 99], and thus Amdahl’s Law suggests

it might affect performance more significantly.
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In this work, we focus on the sequentiality producedti@nsient operand$99]. These results
feed one and only one dependent instruction. The instmgtyoducing and consuming these tran-
sient operands commonly form chains, or strands, of contipataThis form is sequentiality is quite
prevalent in integer workloads and lends itself to sevematgy-reduction opportunities.

Identifying and collapsing dependence chains is an acte@ af research and has generated several
approaches, dividable into two distinct classes. Dynaetbniques [51, 70, 99, 121] are effective at
optimizing existing binaries, but come at a high complexibhd power cost, making embedded imple-
mentation impractical. Static techniques [15, 67] redbeehtardware cost, but sacrifice binary compat-
ibility in the process. Instead, we propose a hybrid teamaifipr identifying these strands statically and
optimizing them dynamically. Thus our technique incorpesathe best of both worlds—minimal hard-
ware complexity from static identification and binary cortipiéity from dynamic optimization—while
producing significant energy reductions.

For strand detection, we utilize a compiler optimizatiorsg#o identify chains of dependent in-
structions connected by transient operands. These itismgcare then rearranged in the binary to be
subsequent, and annotations are made identifying theastdiength of these strands. It is important to
note this subtle reorganization of the binary’s instrutsigroduces an application that is functionally
identical to the original, and the annotations are made ioraptetely transparent manner. Thus this
altered binary is completely and correctly executable anagified hardware.

With the addition of very little additional logic, howevesrocessor optimization of these strands
produces several significant benefits. For strands congpdsly of integer ALU instructions (about
90% of all strands), intermediate values never leave the Allis reduces bypass path and register
file energy significantly. Additionally, strands avoid ergive uses of the wakeup and broadcast during
issue, reducing wakeup comparisons and result tag braaddgsally, by compacting multiple opera-
tions into single reorder buffer and issue queue slots, ffieeteve size of these structures is increased.
As performance is usually secondary to power in the embeddethin, some or all of this IPC gain
can be exchanged for frequency reductions (and thus energy)

The sections are organized as follows. Section 3.2 intresluelated work in static and dynamic
dependence chain optimizations. Next, Section 3.3 previzbckground on transient operands and
strands. Our process of detecting static strands is destcitbSection 3.4, and our simple hardware

optimizations are described in Section 3.5. Section 3.8ildghe experimental setup and analyzes the
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energy and performance effects of our approach. Finallgti®e3.7 concludes with a description of

future work.

3.2 Related Work

The termstrand was first introduced by Marquez in [76], defined as an atomieigrof instructions
identified at compile time. Kim and Smith later refined thigigiéon to an atomic dependence chain
when proposing a new architecture, Instruction-Level fitisted Processing [67]. In their design, the
compiler divides the program into dependence chains @s$)amvhich are allocated to a distributed set
of accumulator functional units at run-time. The sequémi#ure of integer applications is thus suc-
cessfully exposed to the hardware. This observation ofesgdlity corresponds to other observations
that a majority of dynamic RISC instructions in modern banatks only require one or zero register in-
puts [21, 41, 69]. Later work by Kim and Smith added dynami@by translation, allowing unmodified
binaries to execute on the new architecture with the costostation overhead [68].

Clark et al. [26] propose to statically collapse macrofungions for execution on an efficient cus-
tom functional unit. Like our mechanism, groups of colldsiinstructions are identified with trans-
parent marker instructions, though the subgraphs beirigpsad in that work are far more complex.
Bracy et al. [15] also use the compiler to collapse dataflolagsaphs, but with the restriction that the
macro-instructions satisfy the interface of a single indion (two sources, one destination, one mem-
ory reference, one control change). This proposal, howeeaarifice binary compatibility to support
the annotations. For this work, we also use the notion offextes to minimize the additional hardware
complexity, but binary compatibility is maintained.

To maintain application compatibility, other researchase dynamic dependence chain detection.
Sassone and Wills [99] use a modified fill unit to identify clzabf transient operands dynamically
which are stored in a small cache. IPC speedup is achievedveidance of broadcast bypass dur-
ing execution and the aggressive insertion of chains basethta-dependence conditions. Yehia and
Temam [121] propose a similar approach, but collapse margtex dependence graphs dynamically
and execute them non-speculatively on a bit-sliced ALU.sRhat al. [95] propose a front-end detec-
tion of chains which permits a chain-based issue mechariBmspite the evolutionary nature of these

schemes, significant hardware additions are required t@walnstruction coverage and speedup on
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int sum ( int a, int b, int ¢, int d ) {
return a + b + ¢ + d;
}

add R1, R1, R2
add R1, R1, R3
add R9, R1, R4

Figure 18: Common compilation of four-way addition into strand dataflo
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Figure 19: Percent of all dynamic operands which are transients, amdrhany were eventually
grouped by our detection.

these designs. Any power or complexity moved away from igsgie or bypass is replaced with (prob-
ably greater) complexity elsewhere on the chip. Our progpaggroach, however, does the complex
detection at compile-time, removing the need for strandat&n and insertion hardware.

Based on the same principle of dynamic collapsing, Kim amasii [70] introduce macro-op fusion
to dynamically detect dependent pairs of instructions dadepthem in the same issue queue entry.
Similarly, the Intel Pentium M [51] combines some depengbaits of micro-ops which derive from the
same x86 instruction. Both of these proposals, howeveliraied to two-instruction groups, do not

avoid broadcasts of intermediate results and tags, andreampn-trivial detection hardware.
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3.3 Transient Operands and Strands

Transient operands, register values with only one consuoren the building blocks of our instruction
groups. We restrict the grouping algorithm to these valesibse, once passed to the single consumer,
these operands need not be committed to the architectattal st the machine. Figure 18 shows an
example of transient operands generated from four-waytiaddiln the top box, a simple C function
returning the sum of the four inputs is shown. We used seveoalern compilers on this code with
various optimization levels and all returned practicalig same assembly code, which is shown in the
lower box with its dataflow representation. Each instructias a true data dependence on the previous,
creating a critical path of three instructions. In this epéanthe intermediate R1’ and R1” values are
transient operands—they are produced, consumed oncejsaagddsd.

Transient operands are quite prevalent modern integeicatiphs. Figure 19 shows the percent
of dynamic integer operands (integer results) in Spec2(0@did MediaBench benchmarks which are
transient (experimental parameters defined in Sectiol)3.8.cross these applications about 72% are
transient, showing a high potential for exploitation. Thegh also shows the percent of these operands
which were eventually grouped by our mechanism; on aveia@ysyt half of them are. The other half,
as will be explained in more detail later, cannot provide ith #he execution advantages we seek.

There are three primary causes for the prevalence of transgerands in modern integer appli-
cations. Figure 18 is an example of the first: language sdcsarin the figure, the addition must be
evaluated from left to right according to the rules of C, iieqg an accumulation of the final value.
Adding two pairs of parentheses arounét b andc + d forces tree-form addition instead. Tree addition,
however, still uses two transient operands for the secointbpy cause: dyadic (two-input) ISAs. With
only two source inputs to the addition operation, there isvag to avoid using at least two temporary
registers in adding four numbers. The final cause is compgerristics, which are often focused on
conserving architectural registers. Accumulating a va&ggiires the fewest number of registers (one),
but each intermediate value of the output is a transientamykr

Often instructions producing and consuming transientam#s connect and form chains of compu-
tation, as in Figure 18. This arrangement is what we testrand A strand is a string of instructions
that are joined by transient operands (thus have no inté&anabut). This definition is slightly different

than the one introduced by Kim and Smith [67] who did not prdel fan-out in their strands. This
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R2 = R1 * 0x42 R11 = 0x1234

: 0x1234 R5 = load 24 [R5]
EH 1oad[R2] noop [strand:3]

R5 = load 24 [R5] R5 = load 24 [R5] R2 = R1 * 0x42
beq R3, RO, +88 beq R3, RO, +88 R3 = load R11 [R2]
beq R3, RO, +88
R2 = OxS8abc R2 = O0xSabc R2 = 0xSabc

R3 = Oxdef0 R3 = Oxdefo0 R3 = Oxdefo0 R2 = 0xSabc

R3 = Oxdefo0

B. But, R1 causes an C. The second R1 is renamed
/ antidependence- to a free register name A
A. RI,R2andR3 are dependence hazard. The [R11]. The RWR chain is D.  Static strand instructions
identified as transient shaded strand can neither broken, and the strand can are rearranged to be
operands. The longest chain go above nor below the be safely placed below the subsequent, and a prefix
is through R2 and R3. second instruction. second instruction. instruction is inserted.

Figure 20: Example of static strand discovery, creation, and antidégece-dependence correction.

restriction reduces the number of instructions eligibleifi@orporation in our strands, but allows us to
safely discard intermediate results. We also restricsteart operands to integer registers. Though there
is nothing inherent about strands which is restricted tegat instructions, collapsing floating point
instructions is of less importance in an embedded domain.

We also differentiate between strands composed entiralyteder ALU instructions (as in the ex-
ample) and those composed of a mixture of instruction tylmsrestingly, the former are far more com-
mon in applications and are also easier to optimize, as walisituss later. Mixed strands containing

loads and stores, even chained together, are rarer bydrssint interesting power-saving opportunities.

3.4 Static Strand Creation

Previous work has shown that dependence chains can be\effeatetected dynamically [51, 70, 99,
121] but incur micro-architectural overheads of transgtpower, complexity, and design time. For the
embedded domain, we require a static technique which insposg@mal hardware cost. We choose a
compiler approach to expose our sequentiality, analogooeethods for exposing data-level parallelism
(DLP) at compile time [12, 32]. The reader should note thjsegormed as the last compiler stage, after
register allocation, to avoid interfering with other opizations.

An overview of our algorithm on a small code segment is ittaigtd in Figure 20. We explain the

four primary phases in turn.
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Table 5: Data structure used to detect static transient operantissw@mple values.

Last Producer| Last Consumern Consumer
Reg Instruction Instruction Count
R4 - - -
R5 inst 1 - 0
R6 inst 2 inst 4 1
R7 inst 3 inst 11 5

3.4.1 Transient ldentification

As stated previously, transient operands are registeesatonsumed only once. As hardware opti-
mizations will not commit these transient results to théndectural state, no false positives can be per-
mitted. Thus, all possible control paths from a producetricsion must be enumerated to assure that
there is always one and only one consumer of this value. We paxdformed experiments with allowing
probabilistic transientsoperands which only on rare occasions have more than osemanand have
concluded it does not significantly improve coverage. Thidie to the nature of register access patterns
within and between blocks.

It is important to note that we allow transients to cross dasbck boundaries, but to make the
control path enumeration tractable, we do not permit cngssiiperblock boundaries. Thus the analysis
can proceed one superblock at a time.

To discover static transients, the compiler steps throwagih superblock and uses the data structure
shown in Table 5 to keep track of live operands. This striechas one entry per architectural register,
detailing the last producer instruction, last consumetriresion, and the number of consumers. We
start at the top of each superblock and, for each instructipdate the table’s data. A separate bit
vector notes which register values have been written tojmgakemlive. When a branch instruction is
encountered we must determine all live values which can & dewn this taken path. Thus all paths
are recursively followed from this taken branch, updatimglast consumeandconsumer counsf the
live values as if the original branch itself had read the @allhis recursion ends when all registers live
at the time of the initial branch have been overwritten. EBmemeration of all control-paths is also done
at the fall-through of the superblock to assure that alleizonsumers of live values are recorded.

When an instruction overwrites a live register, the presioperand with that name is now dead

1A superblock is defined as a collection of basic blocks wite onmore output arcs but only one input arc [60].
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and we can clear the last consumer and consumer count fogritrst However, if the consumer count
was one, the compiler first records that a transient operaistsebetween the producer and consumer
instructions. This check for transients is also performedalb live table entries at the end of the su-
perblock step-through. The result is a collection of indian-pairs indicating which instructions are

joined by transient operands, illustrated in Figure 20(a).
3.4.2 Strand Identification

Next the compiler discovers chains of candidate transipatands, otherwise known as static strands.
As the processor will collapse a strand’s instructions Bmoatomic macro-instruction, longer strands
seem ideal. Unfortunately, most current processors asededigned to internally handle instructions
with one op-code, two inputs, and one output. The number efages and inputs, however, will
rise with each additional instruction collapsed. Sectidhdetails the hardware costs and Section 3.6
presents the energy and performance effects of longerdstran

This creates two options for handling long strands: detedtidentify strands of any length and
let the hardware cut down strands into the maximum lengtbgperts, or set a reasonable maximum
which the static detection and hardware optimization shasestrands longer than five instructions are
infrequent and we wish to require minimal hardware changeszhoose the latter. Thus, we choose a
maximum op-code count and maximum external inputs (resultgvaluate maximum strand sizes be-
tween two and five instructions, and maximum inputs of twothinele) that both compiler and hardware
are aware of.

In order to maximize coverage of transients with strandsevaduated several complex heuristics
but concluded that a simple greedy approach is equallytefiecAs such, we iteratively search for the
longest chain of unincorporated transients, mark them @sred, search for the next largest, and so on.
Unfortunately, unincorporated transients are inevitatité this approach. For example, a dependence-
chain of length four with a maximum strand size of three wésult in a leftover instruction. Had
the maximum length been two, all four instructions would énéeen covered by two strands, but a
dependence chain of three would then produce a leftoverehergl, a maximum strand length &f
will produce a left over instruction with a chain of length+ 1 with a greedy approach. Later results
show, however, that total coverage is very weakly affectechbximum strand size (see Figure 22).

Far more dominant factors in coverage are unrelated todssae. The most important is the safety
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of the detection algorithm, which considers jump-registed system-call operations to be potential
consumers of all live registers. As only safe transientshmmcorporated, this restriction sacrifices a
significant number of possible transients. Additionallyy aransients which cross superblock bound-
aries are not detected, and any that are not sequentialtegidée are avoided (explained in the next
subsection). Finally, many transients share a consummenirig a “V” dataflow shape. As strands are

atomic and cannot share instructions, one of these trargienands will not be covered in the end. We
currently investigating strategic instruction duplicatito remove this hazard [84] and creating a more

thorough breakdown of ungroupable transients to help Wighothers.
3.4.3 Instruction Resequencing

This step rearranges the instructions in a strand to be gubse Although this property of static
strands could be relaxed, we wish to move as much of the sfaanthtion overhead from hardware.
Non-sequential strands would require more complex aniootdaechniques and decoding hardware.
Reorganizing the instructions is done with the restrictiloat the altered program is computationally
equivalent to the original code. In other words, the binanshproduce the same result whether hard-
ware optimizations are used or not.

A full enumeration of all true dependencies (read-aftdtayrand antidependencies (write-after-
read and write-after-write) must be done first to assurettf@program outcome is not altered during
reorganization. This is guaranteed by identifying therundtons which must come before the strand
(prerequisites) and after the strand (postrequisitesjhi@routputs to still be correct. The component
instructions can then safely be removed from the superldmckreplaced with the atomic strand, as-
sembled anywhere between the last prerequisite and th@dsstequisite. The remaining instructions
are kept in the same relative order.

Unfortunately, sometimes the last prerequisite instaucts the same as or is after the first postreg-
uisite instruction. The most common cause of this is showsigare 20(b). Here, the second instruction
must occur in the middle of our candidate strand for the outcto be correct. If the strand is put en-
tirely before this instruction, the R1 consumed in the finstiuction will be incorrect. If the strand is
placed afterward, the R1 consumed in the third instructidhbe incorrect. We term this situation an
antidependence-dependence hazdrstruction 2 overwrites the source of instruction 1, amstruc-

tion 3 reads the results of instruction 2. However, by ass@ga free register (a register assured to be
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Figure 21: lllustration of the three primary hardware changes presefur static strand optimization:
strand accumulation buffer (top left), closed-loop ALUsttbm left), and issue-queue entry modifica-
tions (right) . Changes from a traditional design are shaded

dead) to the true dependency, we remove the antidependeda@law a placement of the static strand
after the second instruction. This renaming is shown in l&f0(c), where the register name R11 is
used to break the chain. If there are no free registers thestifand is considered unplaceable, and the
strand identification algorithm is told to look for a diffetegrouping for these instructions. It should
be noted thaantidependence-antidependence hazaals similarly occur in strands, bdependence-
antidependencanddependence-dependence hazarasnot due to the nature of transient operands.
Often a gap between prerequisite and postrequisite ifgtnsccreates opportunities for moving
strands higher or lower within the superblock. For instartbe static strand in Figure 20(c) could
go above or below the fourth instruction. In general this ement has little perceivable effect on
performance, but a minor deleterious effect is observeddistihg strands above loads and another
for sinking strands which contain a load. Both of these maeis reduce the producer-consumer
distance after the load, possibly creating stalls. As aatitaumb, moving strands up or down reduces
performance more often than not, so we choose to leave stedinds as close to the location of the first

collapsed instruction as possible.
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3.4.4 Binary Annotation

The final step communicates the identified strands to theNsaed We consider two common methods
of annotation: instruction flags and prefix instructionsstiaction flags are the easier option, assuming
there is flag space built into the ISA. Unused bits are rareadem ISA encodings, but if this space
exists, one bit can be allocated asteand-nextflag. If this bit is set for an instruction, it tells the
hardware that the subsequent instruction is part of the saraed. This is superior to a simpé&and
flag, which would require logic to detect if two strands wetacpd subsequently. Interestingly, the
strand-nexflag also supports jumping into the middle of a strand as tha@vere would never construct
a one-instruction strand (unlike with a simpkirandflag). If control-path analysis has been correct,
though, this situation should never occur.

If there is no unused flag space in the ISA, the remaining ngia prefix instruction. These are
instructions that do not affect the control- or data-flove.(i.no-ops), but which can hold additional
information in their empty fields. A processor not designeditilize these additional fields should
ignore them, but future generations of processors can deaddbok for this hidden data. For example,
the ARMvV6 ISA has a flag for “never execute”, converting tmtiuction into a prefix instruction [16].
This approach provides additional functionality to mod&iRM cores while guaranteeing previous
generations of processors do not attempt to access infiamtaey cannot process. As with terand-
nextflag, this annotation also supports jumping into the middla strand though this feature is not
utilized.

For this work, we assume a simple prefix instruction placedrbethe strand which encodes the
length of the strand to follow in the unused fields. An exaniplehown in Figure 20(d), where the
prefix no-op indicates there is a three-long strand to falldtough this increases code size somewhat,
performance is rarely affected by the additional null instions. In fact, compilers such as the DEC
Alpha compiler purposefully insert no-ops to align branduidaries on cache lines for performance
increase [62]. For most modern processors, these no-oggpaiar from the pipeline after they are de-
coded, so only fetch bandwidth, decode bandwidth, and d smaunt of instruction cache are wasted.
Results show that code footprint increases only 6-7% dapgnoh the maximum allowable strand
length. As longer strands amortize this overhead cost ovee nmstructions, the more instructions

allowed per strand, the lower this overhead rate is.
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3.5 Hardware Optimizations

After static strand processing, the new binary is functiigndentical to the original. As instructions
have only been slightly rearranged, performance of the rigaryp on unmodified hardware is within
2% of the original (this includes the prefix instruction dvead). In this section, though, we propose
a small hardware enhancement which uses the additionaimateon embedded in the new application
to reduce pipeline energy. An overview of the additionaldiare for this enhancement is shown in

Figure 21. There are three primary modifications, which veeuss in turn.
3.5.1 Strand Accumulation Buffer

The first addition is in the dispatch stage. Here, after olisgra strand flag or prefix instruction,
the individual instructions will be combined in tis&rand accumulation buffeor STAB. The required
storage and logic is quite small, only enough to store theimmax instructions per strand. As strands
accumulate a single register output, intermediate ragiaienbers are irrelevant and do not need to
be recorded. The external sources and destination, as svéleaop-code and immediates from each
instruction, do need to be saved though.

Once the entire strand has been accumulated into the STABgllbcated the resources of a single
instruction (i.e., reorder buffer slot, issue queue slat,)e This allows several instructions to oper-
ate as one within the pipeline, greatly increasing the gffecapacity of the reorder buffer and issue
gueue. This is especially advantageous in embedded aurdef- designs, which have far smaller re-
order buffers and issue queues than desktop processors.

A consequence of atomic allocation is that strands must lastepd atomically at branch mis-
predictions. However, since the compiler guarantees thahds cannot be split by branches, this is
not a concern. The only scenarios that could benefit fromgbatrand quashing are interrupts and
exceptions, but experiments show that these events areateda justify complicating the quashing

logic.
3.5.2 Closed-Loop ALUs

Closed-loop ALUs are the execution target for strands thatcamprised of only ALU instructions
(about 90% of all strands executed across our benchmarnk) suihese units consist of a traditional

integer ALU with the addition of a self-bypass mode. Whes thbde is active, the outputs of the ALU
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are only forwarded back to the inputs and not bypassed orawriiack to the register file. The design
in Figure 21 illustrates the layout, and shows that no amlutiti inputs to the complex input multiplexers
are required. Only one set of pass-gates and a few inputrbyféemit this behavior.

Self-bypass is one of the reasons why transience must bargead by the static detection: any
intermediate values are lost upon usage and are thus uadatesfibr any later consumers. When a strand
is issued to an ALU in closed-loop mode, it is provided withr@lcessary inputs and op-codes. It then
spins on its internal results and produces a single outputinB this time, the ALU is busy and not
available for issue.

The use of closed-loop ALUs for collapsed-instruction exien was first introduced in [99]. These
were implemented on wide out-of-order processors and wiretile-pumped” for performance benefit.
Considering how much faster a self-bypass mode can be cdblem a wide bypass network [87, 99],
this double-speed operation is reasonable in the desktmgegsor domain. In embedded processors,
however, bypass delays are not so imposing and performaxeasgnot so critical. For these reasons
the ambitious double-speed execution would not be appiicdaére, so we assume single-cycle ALU
operation in this work.

That being said, the resultant reduction in writebacks fowsed-loop operation carries a significant
energy benefit. For one, intermediate values no longer @sbyhass network. Bypass wires are long,
wide, drive large multiplexers at the functional unit inpuand require significant drive power or re-
peater power [87]. Additionally, closed-loop operationame that intermediate values avoid the register
file completely. As register accesses also incur a signifigawver cost [91], it is clearly advantageous to

avoid unnecessary accesses. Section 3.6.4 evaluatesfitois® energy benefits of closed-loop ALUs.
3.5.3 Issue Queue Entries

In order to correctly issue strands, the issue queue emtriest be slightly modified. This change is
needed for both in-order and out-of-order machines, thaogirder machines have effectively only
oneV issue slots, wher&l is the width of the issue stage. The first trivial change isatidition of
extra op-code fields and immediate fields for each of the corpionstructions. The number of needed
fields is the maximum number of instructions allowed pemstra

Secondly, we add aoper-counterto store which operation is currently being considered $eueé.

This is only necessary for mixed-strands which contain afg@ns other than integer ALU instructions.
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These groups will be issued one instruction at a time to tipeaggpiate functional unit, as opposed to
the ALU strands which issue atomically to the closed-loogJ&L Thus, we must keep track in the issue
gueue entry which is the current contained operation.

Next we addper-id tags to identify which instructions the sources apply tahia manner, the two
wakeup comparators assigned to the two sources can be dbaréé entire strand regardless of the
number of contained operations in the strand. A couple of @ieggand small comparators assure that
the readiness of a source is only applicable wherotiex-countematches theper-id of the source.

A more straight-forward solution would havé — 1 comparators, one for each possible input to a
strand of sizeNV. The Intel Pentium M, for instance, incorporates three {apsut the three possible
inputs to a fused pair of operations [51]. To a lesser exteatcan add a third wakeup comparator and
share it using the counters above amongst any reasonablgenofrinstructions in a strand. Section 3.6
evaluates the benefits of adding a third shared comparaidnelend, the hardware cost of supporting
the third input in the register file makes it difficult to jUgtisupporting it in the issue queue. This is
acceptable, however, as most identified strands need werinpeits. This conclusion could have been
predicted from the the preponderance of zero- and one-inpuitictions in integer applications [41, 67],
which combine into strands with few external inputs.

A final modification to the issue entries allows tag broadtabe avoided for internal results. As we
have guaranteed that there are no other consumers thatewiitdrested in these intermediate results,
there is no need to broadcast their availability. The tagi®sst of long, wide, high-capacitance wires,
and by avoiding unnecessary driving of these lines, we casaroe additional power. A single transistor

per issue entry accomplishes this effect, reducing tagdmasis by about 20% in our experiments.

3.6 Experiments and Results

To measure the effect of static strands on performanceragegand sensitivity, we implemented static
strand detection and modeled the hardware enhancemeligsseEtion presents the experimental setup,

results, and sensitivity to key parameters.
3.6.1 Experimental Setup

For simplicity, we perform strand detection with staticdoiy translation augmented with profiled indi-

rect jump targets. However, a commercial implementatiostrba implemented with a compiler pass
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Table 6: Architectural parameters used for all simulations.

Feature | SH4a | PPC750FX
Fetch Width 2 wide 4 wide
Dispatch Width 2 wide 2 wide
Integer ALUs 1 unit 2 units
Integer Multipliers 1 unit 1 unit

FP Mult/Div 1 unit 1 unit
Issue order in-order out-of-order
Physical Registers 64 64
Reorder Buffer - 6 entries
Issue Queue - 6 entries
Load/Store Queue - 8 entries
Memory Ports 1 port 2 ports

L1 I-cache 16 KB (2way) | 64 KB (2 way)
L1 D-cache 32 KB (2way) | 64 KB (2 way)
L2 Unified - 512 KB (32 way)
Branch Predictor gshare gshare
Branch History Table| 128 entries 512 entries
Branch Target Buffer 64 entries 128 entries
Pipeline Length 5 stages 4 stages

as profiling cannot discover all possible indirect conteogets. Though jumping into the middle of
a strand has correct behavior, the unforeseen code mightoprands which were not written to the
architectural state (i.e., an operand deemed transieminsumed more than once). Thus, all control
paths must be known for static strands to be safe.

For extra safety, our binary translator is conservative wéeanning for transient operands. Most
importantly, we assume that indirect jumps and system oadld all registers; that is, no operand can
be transient if it could be read past an indirect jump or systall. As all possible destinations of
indirect jumps or system calls should be known by the compileesented coverage numbers should
be significantly improved when moving to a compiler-pass lemgntation. Additionally, as adding
instructions (and thus relocating code blocks) via bineapdlation is unsafe due to indirect references,
we do not insert the prefix instructions into the binary. éast, the simulator is modified to model the
front-end effects of the prefix instructions. We also sejgdyaevaluate the effect of increasing code
size by the 6% to 8% on the instruction caches and find the qpesgioce effects to be negligble: 1%
slowdown).

The hardware implementation is modeled on the cycle-ate@@npleScalar 3.0 simulator with the
PISA instruction set [19]. We evaluate our enhancement anhardware models—one based on the
Renesas (formerly Hitachi) SuperH SH4a embedded micrepsar [97], and one based on the IBM

PowerPC 750FX embedded microprocessor [61]. Table 6 eratesethe key architectural parameters
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Figure 22: Percent of dynamic instructions which were incorporatestiands with various maximum
strand sizes and maximum inputs. Each bar is broken downdtyugtion type, and the average size of
executed strands is shown at the top.

used for these models.

The SuperH in-order processor represents more low-poweedded designs, while the out-of-
order PowerPC represents higher-performance parts. Bodegsors, though, have far fewer pipeline
resources than modern desktop and server processors,gnbgin ideal candidates for the resource-
conservation effects of static strands.

Most of the benchmarks from Spec2000int and MediaBenchdm3lised for analysis. Any bench-
mark omitted from these suites did not compile cleanly uging 2.95.3 with O2 optimizations. For
brevity, results are presented as the average of these harich Spec2000 inputs come from the
testdata set, and the default MediaBench inputs were enlarg&hghen their execution. For each

simulation, we execute 500 million committed instructi@dfter skipping the first 200 million.
3.6.2 Coverage Results

A common metric used in evaluating any dependence-coliggeichnique is instruction coverage. Fig-
ure 22 shows the dynamic instruction coverage of statingsaaveraged across all evaluated Media-
bench and Spec2000int benchmarks. Instruction coverage age not architecture dependent, so these
results apply to both hardware models.

The total heights of the bars indicate the percent of dynanstuctions which were replaced by
strands. These bars are shown for each of the ten combigatiomaximum strand size and inputs
evaluated. It should be noted that these numbers are sifmilanot identical, to the coverage of tran-

sient operands presented in Figure 19. This is due to thedtoke-to-one correspondance between
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instructions and operands. On average, between 30% and 3% dynamic instructions are replaced
with static strands with little variation due to maximumestd size or inputs.

The stacked sections of each bar indicate which types alictgins were replaced, either single-
input ALU instructions, two-input ALU instructions, loadstores, or branches. The category of single-
input ALU instructions also includes any instructions whitave the zero register as a input. It can
be seen that a majority of the instructions are ALU instartdi which corresponds with the rate of
ALU-only strands (about 90%).

The final data in Figure 22 are the values at the top of the badicating the average size of
executed strands. It is clear that supporting long straoés dot increase coverage or average strand
size significantly. As would be expected, though, allowihgee inputs instead of two does permit a

noticeable boost in average strand size.
3.6.3 Activity Changes

The primary goal of this work is reducing unnecessary comaoation between dependent instructions
in the pipeline. This communication can take the form ofaasiactivities within the pipeline. This sub-
section presents the average reduction in activity lewelfife such operations—tag broadcasts, wakeup
comparisons, select cycles, register reads, and writsbd@kcourse, there are other resources which
have changed activity. For instance, the occupancy of tbelee buffer in the PowerPC 750 model
decreases with static strands by about 30%, reducing itstadével. A discussion of these and other
resources is omitted, however, to focus on larger energgsfielsewhere.

It should also be noted that that Section 3.6.5 will show IR€aases of 5% to 15% with static
strands. Though such increases in per-cycle efficiencyimdbiease switching activity throughout the
processor, this IPC increase can be easily traded in forquémcy decrease. As such, the average
activity of the chip can be reduced while maintaining a basdevel of performance.

Thebroadcastdine in Figure 23 indicates the average reduction of tagdirasts. The left graph
in the figure shows the average activity reduction acrosbachmarks for the PowerPC 750 model
and the right graph for the Renesas SH4a model. Tag broadaastraditionally performed to notify
all waiting instructions in the issue queue upon selectibanoinstruction for execution. This requires
sending the result tag of the selected instruction downekelttag bus of widthog, (num,.c4s) bits. As

we have assured during static strand detection that no wisteuction is interested in the intermediate
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Figure 23: Average activity level changes from the baseline in aff@gtipeline operations for the (a)
PowerPC 750 model and (b) Renesas SH4a model.

results (transient operands have only one consumer—theingsuction in the strand), we defer tag
broadcast in these cases. On average, broadcast activégiised between 16% and 22%, depending
on the processor model and static strand size.

For each active issue queue entry, each of the possiblesifipua or three, depending on the maxi-
mum number of inptus per strand) must then compare its tagsighe tags being broadcasted. These
loga(num,.4s)-bit comparisons (XNORs) are plotted on tivakeupdine in the graphs. For the two-
wide in-order Renesas SH4a model which does not have adrzaliissue queue, we assume an imple-
mentation similar to a two-entry issue queue with the retiom of in-order dequeuing. Thus at most
two instructions, each with two or three inputs, perform panisons on the broadcasted tags. Regard-

less of the model, static strands avoid the need for wakeuoppadsons for intermediate results. On
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average, wakeups are reduced 20% to 30% on the PowerPC 7%0, iavodi 30% to 40% on the Renesas
SH4a model.

When the issue queue is empty, there are obviously no irtigtnscto select for execution. When
there are instructions present, however, the select lagfopns an arbitration to match ready operations
and idle functional units. As static strands compress sdugstructions into one issue queue entry, it is
more likely that the issue queue will be empty on any pardicai/cle. The average reduction in active
select cycles is plotted in theelect cycleslata-points in Figure 23. On the whole, active select cycles
are reduced about 14% on the PowerPC model and between 3% #ndrlthe SH4.

As instructions leave the issue queue, they pick up neegbedsiin the register file before proceed-
ing to a functional unit. Though strands still pick up theitexior inputs in this manner, the intermediate
operands of ALU-only strands will never need to be. It is imignt to note that mixed-strands still pick
up their values from the register file or bypass network bgedntermediate results must be passed
between functional units. The relative reduction in reaflthe register file is shown in theegister
readsline of Figure 23—on average, static strands reduce regisaels by about 6% regardless of the
processor model or strand size. The next subsection, howsvawvs that register reads are far more
expensive on pipelines supporting three-input strands.

Finally, as the intermediate values within ALU-only strangever leave the closed-loop ALUS,
the number of result writebacks is significantly reducedcHeariteback consists of broadcasting the
computed result on the full bypass network and writing trsulteback to the register file. Each is a
significant energy burden, so their reductions are impotamotal processor power. Theritebacks

lines in Figure 23 shows their average reduction—about X8%dth processor models.
3.6.4 Energy Changes

To evaluate the energy effects of the activity reductionswshin the previous subsection, we now
guantify the energy costs of the register file, issue queyeads network, and Strand Accumulation

Buffer.

Register File. For the register file, we express the total dynamic energjndiuhe execution of a
benchmark using Equation 3. In this equatibn,., and E,,,;: are the energy on one register read and
one register write, respectively. Similarly,...q and N+« are the number of reads and writes to the

register file during the execution.
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Figure 24: Average energy changes from the baseline in related pgesources for the (a) PowerPC
750 model and (b) Renesas SH4a model. The Strand AccumuBdifber, not shown, requires less than
4% of the baseline register file energy.

Eregfile = (Eread : Nread) + (Ewrite : Nw'rite) (3)

To determine the per-read and per-write energy, we use eCEGTto model the register file. For
both processors, we model a 64-eftrggister file at 70nm. As both models can writeback up to two
values per cycle, we model two write ports. By default, bothdels can also issue two instructions per

cycle, requiring four read ports for all possible inputsisTitesults in a read energy of 77 pJ and a write

2The documentation for the PowerPC 750 [61] and Renesas SH}3agecifies 32 integer and 32 floating point physical
registers in addition to several control registers. Fog #nalysis, however, we assume these control registederestside
the central physical register file.
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Figure 25: Maximum, harmonic mean, and minimum IPC speedup acrossalli@ed benchmarks
on the (a) PowerPC 750 model and (b) SuperH SH4a model.

energy of 81 pJ. However, models supporting three-inpands are required to support three reads per
instruction—for a total of six read ports. This increasethlibe read and write energies to 130 pJ and
134 pJ, respectively.

The average energy change of the register file across alhbearks is shown in theegister filelines
in Figure 24. As with Figure 23, the left graph is for the Pa®@r750 model and the right for the SH4a
model. Itis clear that the per-read and per-write energighe six-port register file are critical. Despite
reducing register file access by 10% to 20%, models supgdtiiee-input strands increase register file
power by 40% to 45%. Restricting to two-input strands, havekeduces register file power by about
14%. As other energy results in this subsection and perfocmaesults in the next subsection show

little advantage to supporting three-input strands, ivident that a maximum of two inputs should be
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used.

Issue. For the issue logic, we express the total dynamic energyngulie execution of a benchmark
using Equation 4. In this equatiof,,;,, Ey.st, andE,; are the energy of one wakeup comparison, one
tag broadcast, and one active select cycle respectivatyilasly, Ny, Nycst, and N, are the number

of wakeup comparisons, tag broadcasts, and active seldesayuring the benchmark execution.

Eissue = (Ewkp : ka:p) + (Ebcst : Nbcst) + (Esel : Nsel) (4)

To determine the energy for each operation, we use SPICE delntize issue logic using a predic-
tive 70 nm technology transistor model provided by the Deviroup at UC Berkeley [23, 117]. Our
analysis shows that each wakeup comparison expends 5.1 @hah broadcast 27.6 pJ of energy re-
gardless of the processor model being used. The selectigdgighly dependent on the model, however.
Our analysis shows that the PowerPC 750 uses 0.18 pJ pet aetect cycle, while the the SH4a uses
only 0.01 pJ. It should be noted our model provides energg déh more significant digits than are
being shown here.

The average change in the issue energy total across all tmank$ is shown in théssuelines in
Figure 24. The data shows that issue energy is reduced betk68¢ and 24% for both models, with
greater reductions for larger strands. Regardless, thectied of issue energy by approximately one

fifth provides significant savings.

Bypass. For the bypass network, we express the total dynamic enengiygdthe execution of a bench-
mark using Equation 5. In this equatioh,, is the energy per bypassed value avgl,, is the number

of bypassed values during the benchmark execution.

Ebypass = Ebyp : bep (5)

As there is only one term in this equation, we can factor oatehergy per bypasg},, when
computing the average change in energy. In other wordse fsamo need to determine the energy of
a single bypass to determine the change in total bypassyen&ngs, the energy reduction plotted as

bypasdn Figure 24 is equal to the reduction in writebacks shownigufe 23. On average, the dynamic
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energy of the bypass network is reduced 17% to 20%, witk Biénsitivity to processor model or strand

size.

Strand Accumulation Buffer. It is important to also consider the energy required by tmarst Accu-
mulation Buffer (STAB). As it is not part of the baseline méjehis creates a purely punitive change
in energy for models with static strand hardware. We exptlesgotal dynamic energy of the STAB
during the execution of a benchmark using Equation 6. IndhisationE;,; is the energy per access

of the STAB andN,,,; is the number of STAB accesses during the benchmark exacutio

ESTAB = Estab : Nstab (6)

To estimate the energy per access, we use eCACTI to modellhB & an 8-entry direct mapped
cache with one read port and one write port at 70nm fabricatithough the STAB needs only to be
as large as the maximum number of instructions per strangbrefer to err toward overestimating this
cost. Results show a read energy of 11 pJ and a write energ® pf.1Combined with access rates
about half that of the register file, this results in total Bldynamic energy of about 3.4% that of the
baseline register file. In other words, this structure @®at noticable energy cost, but it is of much
lower magnitude than the savings to even just one pipelisguree, let alone the issue logic and bypass

network.
3.6.5 [IPC Speedup Results

As the capacity of the issue queue and reorder buffers aredased with strands, the effective issue
window on out-of-order processors is increased draméticAk such, we expect to see an increase in
the amount of instruction-level parallelism (ILP) expétite by the PowerPC 750 model. Indeed, Figure
25(a) shows that the average number of instructions whintbeacompleted per cycle (IPC) increases
an average of 17% on this design. It is clear that maximunm@tsize and maximum inputs have little
effect on average speedup. An anamoly is also clear in thenmuax speedup for the PowerPC 750
model. This maximum benchmark is MediaBench’s pegwit-decavhich spends a vast majority of its
execution in a single superblock. The variation in the stsacreated in this superblock has a dramatic

effect on coverage and performance.
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Figure 25(b) shows the speedup for the in-order SuperH SHatlen Despite the use of in-order
issue, there are also performance advantages to staticistia this processor because of its 2-wide
superscalar nature. By being able to issue a single groupstructions to a closed-loop ALU, the
issue unit is then allowed to issue the subsequent instrugtithe same cycle. Thus, the processor was
able to effectively issue more than the specified two ingitvas per cycle. This performance advantage
(about 8%) is less than that for the out-of-order procedmdrstill significant.

The narrow front end of the SuperH amplifies an interestingrptay with strand length. Longer
strands reduce the number of total prefix instructions rdseslkich adversely affects the narrower SH4a
front end. However, longer strands must accumulate for E@rawo in the STAB when they otherwise
would be able to continue through the pipeline. Thus longrangs create more bubbles in a pipeline,
and the narrow in-order SH4a is more sensitive to theseteftban the PowerPC 750. Regardless, it
should be noted that despite this effect, average speedtip @ose to 10% and maximum speedups of
over 20% are observed. This per-cycle performance can lsegadong as is or can be exchanged for

frequency reduction (and thus power reduction) while nadihg a baseline performance level.

3.7 Conclusion

Given the activity and performance results presented irpteeious section, it is evident that most of
the benefit of static strands can be achieved with even themalmdesign point—two instructions with
a maximum of two inputs. Certainly the register file costsltmveing three inputs is difficult to justify.
However, given the small hardware impact of supporting tiattil strand length (within the bound
of two inputs), thethree/two or four /two sizes might be more optimal. In the end, designers must
balance the trade-off between the power benefits of allowdnger strands and the marginal hardware
cost of such.

Of course, other methods of dependency collapsing can\acsieme of the same compression
and activity reduction effects. Static strands, howeverptduce a novel hybrid of static detection and
dynamic optimization which maintains binary compatigiland minimizes additional hardware com-
plexity. Of critical importance is the focus on transienemmds, which compilers frequently create
as a side-effect of architectural register conservatioogramming language semantics, and the limita-
tions of a dyadic ISA. The one-to-one producer-consumaticglship provides numerous opportunities

for using direct communication rather than broadcast duexecution, which static strands can simply
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exploit.

By avoiding broadcast on the bypass network, access of tistee file, activity within the issue
logic, static strands can significantly reduce the energgevkral key resources and buses within a
modern embedded processor. Additionally, the consotidatif several instructions into an atomic
strand effectively widens the instruction window, allogifor significant IPC gains. These gains can
be exchanged for frequency reductions to maintain a basekacution throughput, reducing workload
energy further. In the end, static strands provide energinga for embedded cores with very little
hardware or software cost.

Future work in static strands focuses on applying stat@nstrwork to desktop microprocessors
where frequent avoidance of bypass and issue can produciicgigt speedup. Static strands may
also provide a hedge against the penalties of pipelined iaad bypass which most drastically affect

dependence chains.
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CHAPTER IV

PIPELINING ATOMIC STRUCTURES

Summary

In modern superscalar out-of-order processors, the tigiptd of issue and bypass have been previously
identified as primary determiners of clock frequency ancklpie width. The complex and atomic
nature of these operations creates long critical pathshmbinty become relatively slower with each
technology shrink. Designing a processor with these stagésely pipelined is widely accepted as
unwise since the subsequent IPC penalties inherent in suidiods are significant. However, our
timing analysis and cycle-accurate simulations show thalledism costs are less than the frequency
benefits, even with the most trivial pipelining. A modernifevide machine with these stages pipelined
produces an overall instruction throughput 18% higher tharbaseline with atomic issue and bypass
across Spec2000int, Spec2000fp, and Mediabench apptisatiAdditionally, despite the increase in
frequency,BIPS3 /W att power efficiency on that machine is improved by 10% with thixdification,
and technology trends indicate a growing advantage as ldgveedelay of these loops increases.

Keywords: Pipelining, Atomicity, Issue, Bypass

4.1 Introduction

In the quest for microprocessor performance, architeegguintly must choose between parallelism
and frequency early in the design cycle [3]. Several differgerations within modern processors are
linearly or polynomially related to the superscalar widimjting either the cycle-time or width of such
designs. Simple pipelining can reduce some of these opesaitito smaller ones, but others (so-called
tight-loops[14]) are traditionally kept as atomic operations to avdgh#gicant instruction-per-cycle
(IPC) penalties. Itis generally assumed that the IPC lossried by pipelining these atomic operations
cannot be offset by frequency gains.
The two most complex operations in superscalar out-ofrgodecessors were previously identified

by Palacharla et al. as issue and bypass [86, 87]. These &gessare especially critical because they
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must be performed atomically to avoid introducing pipektedls [14], and continued technology scaling
only amplifies the relative length of their operation. Thedern processor frequencies are generally
set by the longer of these stages, and this dependence Wilimmmease with each technology shrink
[86, 87].

Previous research in optimal pipeline depth determingd6n56, 59, 108] did not consider pipelin-
ing these traditionally atomic structures. Instead, thesegks assumed that such operations could be
performed in a single cycle or future optimizations wouldwlpipelined operation without IPC penalty.
Many optimizations have indeed been proposed, howeverahggcur some penalty while adding com-
plexity and design time. No previous research, howevegeates trivially pipelining structures such as
issue or bypass. Hrishikesh et al. [59], for instance, stee"...a naive pipelining strategy that prevents
dependent instructions from being issued back to back woanttuly limit performance.” This work
proposes, however, that architects carefully examineabgsimption when designing new processors.

Rather than introducing additional complexity by fightiigQ penalties or decreasing processor
width to accommodate the increasing latency of these dpastwe examine a simple approach of
designing a processor with these two stages divided in ialtrivanner. Our results show that the IPC
penalties, though significant, are not overwhelmingly soturn, a processor designed with issue and
bypass pipelined can achieve much higher frequencies.ughrthe use of delay models and benchmark
simulations, we determine the optimal atomic-structupeliming for maximum instruction throughput.

Our results show that execution rates on Spec2000int, 8082 and Mediabench applications
can be increased by 18% on a four-wide processor by triviilliding issue and execute/bypass into
two stages each. Similarly, the average execution rate eigat-wide processor can be increased 49%
by dividing them into four stages each. Importantly, thessigh points are not excessively pipelined
or high frequency; they run at reasonable frequencies of@218GHz on 90nm processes. Though
average processor power does increase with additiondlpig BI1P.S3/W att power efficiency also
increases by 10% and 36% on the four- and eight-wide machionesto the significant instruction
throughput improvements. The raw power effects, howear, lie ameliorated by trading in perfor-
mance for lower power, utilizing additional clock-gatingpmrtunities, and optimization of our trivial
pipelining.

The sections are organized as follows. In Section 4.2 weigkedvackground on these two tradi-

tionally atomic operations, explore the trivial pipeligiof them, and discuss related work in addressing
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their complexity. Next, Section 4.3 derives cycle time resties for various extents of issue and by-
pass pipelining. Section 4.4 then presents IPC resulthéoconfigurations identified in the previous
section. These frequency and IPC estimates are then cothimirfeection 4.5 to produce instruction
throughput results showing the overall efficacy of pip&lgnatomic structures. Section 4.6 then esti-
mates the power and power efficiency impact of pipelined at@tnuctures via analytical and empirical

evaluation. Finally, Section 4.7 concludes and reitertitesassumptions of this work.

4.2 Issue and Bypass

Issue and bypass have been previously introduced as thargrsaurces of complexity in superscalar
processors, limiting cycle-time and processor width [88, ®ther resources such as the physical reg-
ister file or rename are also often cited as sources of coiitylewt these other stages are pipelinable—
thus not impeding cycle time. On the other hand, Borch etldl} point out that issue and bypass form
tight architectural loops due to the short feedback requérg—just a single cycle. Any longer and IPC
penalties must be incurred as dependent instructions domger able to issue or execute on subsequent
cycles. Itis also important to note that these two loopsagehlly connected. A processor which takes
multiple cycles to issue dependent instructions need raramodate single-cycle bypass as there can
be no instruction issued subsequently to use it. Thus, wbesidering the pipelining of these two
loops, it is logical to only consider equivalent pipeliniaglding equal number of stages to each loop.
The remainder of this section describes the logical straatfiissue and bypass, illustrates the trivial

pipelining approach taken, and covers related work on stibgehese stages’ atomicity.

4.2.1 Issue
4.2.1.1 Background

In most out-of-order processors, the issue stage is redperisr deciding which of the waiting in-
structions will be executed next. These waiting instrudigenerally reside in an issue queue, a com-
plex structure filled with content-addressable memorigs\ME€) for determining which instructions are
ready. The terngueue however, is a misnomer as instructions can be insertedeandved from any
part of the structure. Figure 26 (a) shows a traditionalesgueue slot and the logic for waking up and
selecting ready instructions.

In short, issue forms a loop. During wakeup, instructionsting for input operands check their
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Figure 26: Overview of issue on a sample issue slot with (a) no pipedin{i) two stages, (c) three
stages, and (d) four stages. Dashed lines indicated thelbopof stages where latches must be placed.
source tags against those of instructions which will be Hieisnext cycle. Any instruction no longer
waiting on any sources raises isguestline, indicating its readiness for execution next cycle.eTh
select logic then determines which of the ready instrustiare chosen for idle functional units via
the grant line. These selected instructions then broadcast thefrubtidgs to the instructions waiting
to be woken up. If all of these operations cannot occur in glsigycle, there is no trivial way of
waking up dependent instructions on dependent cycles. gihthere are often other ready instructions
to be scheduled instead, the dependence-chain natureegémtode [67] makes IPC penalties likely in
multicycle issue.

To quantify the delay of this stage, Palacharla et al. [87dlehthe basic structure to derive Equation

7, wherelV is the width of the issue stage.

CZjzl@sue:CO"|_cl’VV"’_CZ'I/VQ (7)
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Table 7: Delays for different blocks of pipelining logic in 180nm Wwia 32-slot issue queue [86, 87].
Pipeline Width
Area Stage 1 2 4 8
tag drive 20ps 26ps 3lps  42ps
wakeup| tagmatch | 53ps 72ps 91ps 118ps
match OR | 49ps  61ps 84ps 125ps
request prop 107ps 107ps 107ps 107ps
select root 141ps 141ps 141ps 141ps
grant 123ps 123ps 123ps 123ps

4.2.1.2 Pipelining

Palacharla et al. divide the analysis of issue into two kffie sections. For brevity, we combine them
as these operations tend to work as a unit. The wake-up logaed into approximately three regions:
the tag driving, the tag matching operation, and the “OR"ckheThe selection logic for the same
wakeup parameters is also broken into three regions: requasagation, root delay, and grant delay.
Approximate timing values for these stages are shown ineTalhssuming 4-wide with a 32-instruction
window in 180nm process. The “selection” stages appearragaat since they are a function of window
size, not issue width.

To divide this stage in half, the easiest location is betwtberwakeup and select logic, as shown in
Figure 26 (b). While this is not a perfect division—200ps paned to 370ps—it provides the cleanest and
simplest division with the least complexity. The longesthpdrops from 670ps to 370ps. Moving to a
more balanced three-stage pipelining, isolating the waksione block creates a delay of approximately
200ps. The second stage becomes the arbitration propagkgiays, approximately 250ps. The final
stage is the grant return, which accounts for approximéti2gps. This is shown in Figure 26 (c). The
longest path has dropped from 670ps to 250ps. The four-sta@gt, as shown in Figure 26 (d), divides
the arbitration and root propagation signals. The longast {3 now 200ps, through the entire wake-up
logic. While not perfectly balancing the delay of each stabese are the cleanest locations for trivial

pipelining efforts.
4.2.1.3 Related Work

Various research in industry and academia aims to pipetiseei yet alleviate the IPC penalty. For
instance, half-price architecture [69] and tag-elimiot[41] reduce the number of CAMs by assum-

ing that most instructions need only one CAM per cycle. Irstheases, the order of source operand

67



result buses
H cycle 1 4 H cycle2 i cycle1 i H cycle2 i cycle1 . H cycle2 | cycle1 i
. . . — 1] . . 1] . . — 1] .
gl » [ - e g |
8: T % H H g»lg—x: H H - H H H g»g—x: H
f<a] >3 ' ' > 203 ' ' LI S x| o ' ' > 203 " =
o0 » £ ' . »SHE[T ' [ » 23l ' [ » SHE[T v E
29 = ] L o ) ' ' »SHE|? d ! o) =
[} . . — 1] . [} H
-%n ALU > . — + |ALU > ' gtall ' ALU ' — » |ALU ™9
o) - o . ] ;2— 1] . [} — 1] " [} =£— 1] .
[ <b] [ [ o %" [ . <l ] [ ] <=kl [ e]
g [HLE2 : t THEESHE : CREElERs) : | THEEESHEN :
S |1 : V| Tre ZRED : VI ReEsnEn : HNE = <p=iulsH :
=i . : =P L PPRERY : : =",
- - = -
: ‘.- ..... -l : - ‘L ...... -l : — ;-:----: : L ‘L ...... -l
' [ [ Ll 0 ' Ll 0 ' Hx|[
e — g [} > H [
i egpx: H 1 L f_’7§: i 1 =f_’,§: i &f Og .
: Fen H > 30E H > 30E[] : #a )
+ - . [] >0 ’ [] >0 ’ [ N cccaba
: { AU H AU : ol |ALUT—> : cycle3 s |ALU—
e =Pl CRECElERs) L
! <k ' <EEEld ¢\ THE=5HE[: ' < EEp
Ol Ol aful]
H Nk e <Ll k= < inlSH ! =2 V| HEsngn
: : : = : b pERERY
- 2]
: : ] - : —
] [] - 0 ] ] H -l ]
b e flErEsHsN : s <HEPTk
R ' »5SHE| ' - ' »5HE
H < H >aH ) . > : =aH>
' gl ' T v |ALUE—» ' » R I i S
: ~l i <rEmE : § cycle4 | |ALUT—
: = H o005t : » : w0l
HINE S H ™30 : > H < fomi=1%
' " = ] ' [ ' LT SHE[
' [ PR [ - ] l ]
. . ., . . — 1]
[ [ — ’ ' [} - —
[ [ Ll 0 [ [} J— ]
: | q o5, E > < - i .
PR fpEEHa bR I EiE <hERTE
' > h > 305 ' > ' » SOET
> > 2 » ' >S5 p
. > H — \ |ALU— r > : g tig P
H » H <Pk : > : w0}
PR s b PR ' TR
' - [ - ’ ] | ] LT 5 H
! | i — P H | g 0
- 2]
1 H H (b) H
L] . . . .

Figure 27: Overview of the execution stage with (a) no pipelining, (btstages, (c) three stages,
and (d) four stages. Cycle numbers are from the perspedtive dop ALU. Dashed lines indicated the
boundary of stages where latches must be placed.

wakeups must be predicted, and any misprediction reque@s/ery and subsequent pipeline bubbles.
Several authors have proposed banking the issue queuester &ccess to a smaller subset of waiting
instructions [17, 59]. Stark et al. propose pipelining et adding grandchild tags to wakeup in-

structions two dependencies away, limiting the IPC imp&68]. Brown et al. [18] separate the select

operation from the more critical wakeup loop via dataflowgcheduling.

4.2.2 Bypass
4.2.2.1 Background

The other tight loop in modern superscalar processors ibypass path, which serves to deliver the
outputs of functional units back to the inputs. In most madaocessors, this is implemented afsila
bypassall functional unit outputs are delivered to all functiboait inputs. Unfortunately, this set of
communications requires a complex set of result buses g multiplexers. A basic illustration of a
full bypass is shown in Figure 27 (a), where four arithmétigic units (ALUS) are being bypassed.

The difficulty of this communication is further enhanced by ttemand fofreebypass—the transport

68



Table 8: Approximate ALU and bypass network delays at 180nm and 90nm.
Pipeline Width
Area 1 2 4 6 8

bypass| Ops 13ps 185ps 524ps 1057ps
ALU 524ps 524ps 524ps 524ps 524ps

of these operands as the latter part of the execute stags, Jimple ALU instructions can complete and
their results can be ready for consumption within a singldecyWithout such expediency, dependent
instructions could not execute on subsequent cycles, iregllleC as discussed earlier.

To quantify the delay of this stage, Palacharla et al. mabel&ull bypass network across different
process generations. They simplified its delay to the pathiabrelationship shown in Equation 8,
wherelV is the number of functional units being bypassed [87]. Tlisyg further detailed in the next
section, is dominated by the wire delay of the result buseshwiioes not scale with technology. The
result is bypass delays which are constant between probes&ss and thus are slowing relative to

surrounding logic.

Tbypass =Cp - W2 (8)
4.2.2.2 Pipelining

Physically, a basic bypass network is fairly straightfamdveEach functional unit routes its result to every
other unit and the register file/reorder buffer every cyd@e delays computed by Palacharla for the
bypass network are shown in Table 8, assuming that the nuphidérUs is equal to the processor width.
They point out that the long result bus wires maintain a @mslelay across process shrinks (they are
shorter, but narrower), thus the delay of bypass growsiveltd the surrounding logic as feature sizes
decrease. Though repeaters can electrically acceleese Wires, their inclusion in interconnect design
also adds complexity. Repeaters can be quite large relative wires themselves, widening the buses’
pitch and changing the floorplan significantly [58]. We shibalso point out that, according to this
model, the delay of the one-wide bypass network (with noltésis) is zero. Obviously, there is a small
delay to bring results back to the front of the ALU but it is tgusmall compared with the large delay of
the ALU.

To determine our ALU’s delay, we consider the 180nm Intetlilian 2 microprocessor. Intel reports

that this CPU spends half of its execute cycle on ALU exeoutiod the other half traversing the six-way
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full bypass network [45]. Thus Table 8 reports the delay &nb8 of this ALU as equal to the six-wide
bypass delay (524ps) and invariant of processor width. Tifyvthis estimate, this would make the
Itanium 2 cycle-time twice that, or 1048ps. This corresmotmda frequency of 954 MHz, which is close
to the 1GHz peak frequency of the 180nm part produced [63].

For pipelining we make the assumption that the ALU itself & trivial to pipeline. Thus, the
best first pipelining division is between the ALU output aheé bypass network, as shown in Figure
27(b). As certain input operands may arrive before otherthemesult buses, additional input buffers
are necessary to hold any early arriving values for the maxirtatency of the bypass network—in this
case, two cycles. Similarly, the additional stages requioe 2- and 3-cycle divisions equally divide the
bypass network itself, as shown in Figure 27(c,d). Whileimgroving on the cycle-time of the ALU,
further subdivisions continue to reduce cycle-time on widachines.

It is important to note that we are taking a trivial pipeligiapproach and avoiding the complexities
of heterogeneous bypass. The issue logic has no knowledge physical distance between producer
and consumer functional units when scheduling instrustitius all operands must incur the full bypass
delay. Any operands arriving at an ALU early must wait in théférs shown in Figure 8 until the
maximum bypass delay has transpired. Though this methadlipes the maximum amount of IPC

penalty possible, it requires the least amount of additibaedware.
4.2.2.3 Related Work

The most common architectural method of alleviating bypketay is clustering—dividing a processor’s
resources into logical groups. In this scheme, bypassittgma group is quick and efficient, but moving
values between clusters incurs an additional delay. Therbgeneous bypass requires intelligent steer-
ing of instructions into clusters to minimize global comriaation [90]. The Alpha 21264 and 21364
implement this techniqgue commercially with two identicgdglines, each with distinct register files and
bypass networks [53]. Academia has explored clustering mibre advanced steering approaches in
proposals such as as Multicluster [44] and CTCP [11].

Similarly, work into explicit bypass removes the all-td4atoadcast nature of the network. Ahuja
et al. [5] analyze the performance penalty of all possibpmplete bypass networks for a simple
processor. Transport-triggered architectures (TTAs) §&Rose the bypass and reservation stations to

the programmer for more explicit operand movement. Finglig-based processors such as TRIPS [82]
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Figure 28: The four different pipelining models studied with varyinggilees of atomic structure
pipelining.
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allow forwarding only to nearest-neighbor functional sninoving the burden of bypass from steering

to the compiler.

4.3 Cycle Time Estimation

For both of these atomic operations, we have presented qggearch which attempts to alleviate the
IPC penalties of pipelining. The assumption of these pralsos that naive pipelining is ineffective,
causing losses of parallelism that are not offset by ine®as processor frequency or are otherwise
undesirable. This is certainly true when modifying an exgtpipeline; dividing a couple of stages
amongst several that have already been carefully balancatilweave the other stages as the cycle time
determiners. Instead, we propose processors which amgnaeisirom the outset with trivially pipelined
issue and bypass. In this manner, frequency does have jabtentise, possibly offsetting any drop in
IPC. The rest of the stages are then pipelined to equalizetiise pipelined stages.

Before beginning our analysis, we first choose 4 specificlipipg models to study. These are
shown in Figure 28, ranging in pipeline depth from 11 to 33)e&a The critical stages of issue and
bypass are highlighted in the figure. The top model we consaee the baseline, based loosely on
the AMD Opteron architecture. The remaining models unilgrdivide the two target operations into
two, three, and four stages, respectively. Not shown in thedi are other resources not in the primary
pipeline, such as the branch predictor, which might alsairegadditional pipelining to balance the
stages.

Though there are sixteen possible combinations for pijpgiboth of our critical stages from one
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Figure 29: Estimated processor cycle-times for various processothsjcdtechnology levels, and
pipelining models.

to four stages each, pipelining both to an equal degree al#legical overlap of IPC penalties. Thus,
we only evaluate the four uniform possibilities. For eagbeined model, the remaining stages are also
divided to maintain a rough balance of cycle-times. As show8ections 4.4 and 4.5, performance is
insensitive to minor errors in this estimation. It is im@ont to reiterate that we are not proposing the
re-pipelining of existing processor designs; that wouldrbectably time-consuming and error-prone.
Instead, these choices would be considered at the eathgst af a processor’s design.

For the overhead of latching, clock skew, and jitter, we U determinations of Hrishikesh et
al. [59]. In that work, they estimate the total overhead ga@pmately 125ps at 180nm and 66ps
at 100nm. According to their assumption that these numlmzde svith technology, we extrapolate an
overhead of 60ps at 90nm.

We can now determine the cycle-times for each pipeline matdifferent superscalar widths and
process generations. Using the results of Palacharla ahdlthe assumption that the other stages can
be pipelined, cycle-times are easily computed at 180nm.sdhesults are shown in the left bars of
Figure 29. Interestingly, for all 4 models at all reasonatidths, the execute/bypass stage(s) determine
the machine clock frequency. Thus, the cycle-time of thehimacis the sum of the ALU, bypass, and
overhead delays for the baseline model, and the maximunedttges for the pipelined models. This
produces simple formulas for processor cycle-time in Equat9 and 10, wherelu is the delay of the
ALU, bypass is the delay of the bypass netwoikecad is the clocking overhead, andis the level of

pipelining (1-3 in the models evaluated).

cycletimeg = alu + bypass + ohead 9

72



bypass

cycletime, = max (alu, ) + ohead (20)

Though Palacharla et al. do not provide a more modern 90ntysasiathey do observe that the
bypass network does not scale across process generatibs, iTis reasonable to assume that the
execute/bypass stage(s) governs the cycle-time a tradityodesigned 90nm part even more so. Scaling
the logic of a 180nm 524ps ALU to 300ps at 90nm, we can derigieeymes for 90nm using the same
equations given above. These results are shown in the réghtdd Figure 29.

The large cycle-times for the 11-stage, eight-wide systdiostrate the growing bypass delay prob-
lems. As the pipelining increases, processor cycle-tineesedse until the minimum @tlu + ohead)
is reached. This minimum cycle-time of 360ns at 90nm prosladeequency of 2.78GHz, a feat already
achieved by commercial processors. Additionally, thougber results in Section 4.6 show power in-
creases over the baseline model, that baseline was chasendonservative low-power pipeline. Thus,
the designs chosen here do not represent excessivelynapaliesigns—processors which are so deep
and high-frequency as to be uneconomical to manufacturebfB5L08]. These are, instead, achievable
design points which explore the pipelining of traditiogadtomic structures.

As we are assuming each pipelining model keeps issue anddyniormly pipelined, sometimes
issue might appear “over-pipelined”; that is, it did not @awe be pipelined as much as bypass to not
affect overall cycle-time. Given the logical connectionvibeen the pipelining of issue and bypass as
discussed earlier, there is little IPC harm to keeping ol uniform, and any stage with timing slack

can utilize slower transistors to reduce the overall poveznands of the chip.

4.4 |PC Simulation

To determine the effect of naive pipelining on IPC, we meditihe SimpleScalar 3.0 cycle accurate sim-
ulator [19] to simulate the four pipeline models at four sgpalar widths and two process generations.
Simulation parameters are shown in Table 9.

We used eCACTI [75] to determine the cache access times fartbohnology levels, and an esti-
mated memory latency of 75ns is used. Using the cycle-tirtimates from Figure 29, these times are
converted to cycles for each of the 24 configurations. Thasale delays are used by the simulations
to reflect the increased number of access cycles neededhiartigquency designs. For the floating
point units, the delays shown in Table 9 are assumed for avigde machine at both process genera-

tions. The number of floating point stages for other confitjomna is then adjusted based on the relative
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Table 9: Architectural parameters used for all simulations.

Feature | Value

Integer ALUs equal to width

Integer Multipliers 2 units

FP ALUs 2 units

FP ALU Delay 2 cycles (4-wide)

FP Mult/Div/Sqgrt 1 unit

FP Mult/Div/Sqgrt Delay 4/16/19 cycles (4-wide)
Reorder Buffer 128 slots

Issue Queue 32 slots

Load/Store Queue 32 slots

Memory Ports 2 ports

L1 I-cache 64 KB, 2 way, 64B line

L1 D-cache 64 KB, 2 way, 64B line

L1 Delay 1530ps (180nm) 765ps (90nm)
L2 Unified 1024 KB, 16 way, 64B line

L2 Delay 4918ps (180nm) 3793ps (90nm)
Memory Delay 75000ps

Branch Predictor combining bimodal/gshare
Branch History Table 4096 entries

Branch Target Buffer 2048 entries (4 way)
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Figure 30: Average simulated IPC results across different procesgtithgvand pipelining. Error bars
indicate sensitivity to three fewer or three more front-stabes.

frequency of those designs in the same technology leveliheravords, we assume that the logic of
these units scale down during a process shrink, but in the ggmeration, the floating point units retain
the same temporal latency.

Most of the benchmarks from Spec2000int, Spec2000fp, artidBench [73] are used for analysis.
Any benchmark omitted from these suites did not compilerdieasing gcc 2.95.3 with O2 optimiza-
tions. For each run, we simulated 500 million instructiofieraskipping the first 200 million. Spec2000
inputs come from théestdata set, and the default MediaBench inputs were enlargkzhgphen their

execution. A list of all benchmarks analyzed, along withaded IPC results, is shown in Tables 11 and
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12 at the end.

Average IPC results for each combination of technologyelpie width, and pipelining are shown
in Figure 30. As would be expected, IPC increases with wideelmes and decreases as the atomic
operations are further divided. As technology level is padlifrom 180nm to 90nm, performance
per clock changes very little. Though cache latencies atace significantly in time, the change
measured in cycles is quite small. Additionally, the contstielay of memory between processes causes
an increased penalty on the faster-frequency 90nm designs.

Overall, adding one pipelining stage to the two atomic $tm&s creates a 11% IPC drop on the two-
wide machines, 20% on the four-wide, and 32% on the eighewidardless of process technology.
With this reduction in IPC, the intuitive reaction to redutmctional units to avoid idle capacity is
incorrect. We simulated various forms of reduction, andntbthat reducing functional units had a
substantial negative impact on overall throughput.

Also shown on Figure 30 are error bars indicating the vamnaiin IPC if the design had three more
(lower error bar) or three fewer (upper error bar) stagehénftont end of the pipeline. As one can
see, the sensitivity to the precise number of stages is $artlgan the sensitivity to more significant
changes like width, process generation, and critical spagedining. It should be noted that adding a
reasonable number of stages to the back-end (after wrikebas little perceivable performance effect
as the branch penalty is unchanged. Of course, if committisgguctions takes too many cycles, the
freeing of reorder buffer slots and physical registers mgjall the front end. Our experiments show,
however, that over ten stages must be added to the back-éore bas effect is noticed, thus we do not

consider error in our estimates for these stages.

4.5 Execution Throughput

Instruction throughput, measured in instructions per sécaneasures the total execution rate of a
processor. This final calculation, a simple division of diated IPC by calculated cycle-time, is shown

in Figure 31. As with the IPC results, the figure also indisatee sensitivity to the precise number of

pipeline stages. The upper error bars indicate the ingruttroughput if the model had 3 fewer stages,
and the lower error bars indicate throughput with 3 moreetagis with IPC, the precise number of

stages chosen for the four models does not affect relatwvel$rin the data.

As would be expected, total execution throughput increasgsificantly with a process change
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Figure 31: Estimated instruction throughput across technology, gssaor widths, and pipelining. Er-
ror bars indicate sensitivity to three fewer or three mooatrend stages.

from 180nm to 90nm. Also expected is that on the two-wideesysino pipelining of issue and bypass
achieves the highest instruction throughput. More intergly, designs which are pipelined produce
the highest instruction throughput for the four- and eigide designs. For the four-wide, dividing the
atomic structures into two stages produces highest thpmigB% higher than the baseline processor
at 180nm and 18% higher at 90nm. For the eight-wide machia8@im, dividing each structure into
three stages produces the highest throughput—45% higrethie baseline. For the eight-wide machine
at 90nm, dividing each structure into four stages producesighest throughput—49% higher than the
baseline. Regardless of processor width, though, the tretleen 180nm to 90nm results shows that
these optimal design points are becoming more pronouncshifting towards additional pipelining.
Also of interest is that the four-wide designs achieve higheoughput than eight-wide designs,
especially at more modern technology levels. The fastggtt-evide design is 17% slower than the
fastest four-wide design at 180nm, and 41% slower at 90nraudhit is intuitive that wider machines
could be lesgfficient it is less so that they would tstower The high delay of a wide broadcast bypass
network, however, forces architects to choose betweenddipgal bypass with low IPC and a zero-cycle
bypass with a high IPC. Either option results in limited fastion throughput, placing a bottleneck on

performance.

4.6 Power and Power Efficiency

The previous section has shown that the performance of @gsocwith pipelined bypass and issue can
surpass a processor without such divisions. The reasoeas. dividing these stages produces a fre-

guency benefit greater than the IPC penalty. However, impbiionsiderations when architecting the
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pipeline depth are power and heat. Deeper pipelines mighmdvantageous in performance but pro-
hibitive in energy. Previous work by Hartstein and Puzal fi#s shown that the most energy-efficient
depth of a pipeline is heavily dependent on the optimizatiairic used. According to their models,
BIPS/Watt and BIPS?/W att are both maximized with a pipeline depth of one (no pipetiiin
These results motivate us to study the effect on both powepaver efficiency for our designs. As
such, the remainder of this section presents an analyivedli&ion of dynamic and static power, and

then an empirical power and power efficiency evaluation.
4.6.1 Dynamic Power

A casual observer might warn that the designs with the higR&sin the previous section have approxi-
mately twice the frequency as the baseline machine and tuesrtearly twice the dynamic power draw.
Indeed the general equation for dynamic circuit power, shimEquation 11 (where is average gate

activity, f is clock frequency( is total gate capacitanc#, is the supply voltage), indicates that power

is directly proportional to frequency:

denamic =a- f -C- V2 (11)

However, the frequency increases being evaluated in thik e not simple changes in clock
frequency, but rather a reorganization of the pipeline egdagAs such, we must evaluate changes to
every term in the above power equation. We start with theatgpece term, which can be broken down
into C, - N: the average gate capacitance times the number of gatekeAsrictionality (i.e., number
of ALUs, branch predictor, etc.) of the pipelined modelshis same as the baseline model, the total
number of gates between models mostly varies by the additlatcthes. According to Shivakumar et
al. [106], pipeline latches represent 2% of the total gates highly pipelined processor (8 FO4 gates
per stage). Consequently, the additional gates and camdapy chip capacitance created by these extra
latches is minimal. Similarly, the supply voltageshould be unchanged. As higher frequencies are a
result of reducing the number of gates per stage, not rurtheggansistors faster, increases to the supply
voltage should be unnecessary.

Of course, we have already shown that frequency increasbsaddlitional pipelining. However, it
is also clear that the average gate activity levels decne#@headditional pipelining for our models. A

large part of this activity decrease is due to the insertioextra pipeline bubbles with each successive
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Figure 32: Average activity rates (accesses per second; i) of various processor resources for each
of the evaluated models. Results are normalized to theibagabchine for each width and technology
level.

division to issue and bypass. Thus the likelihood that amtiquéar gate is switching on any particular
cycle should decrease with additional pipelining. To gifarthe effect on both of these terms, we

extract the average activity rates (defined as the numbecadsaes of a unit per second, @r f

in Equation 11) across each of the models for twelve impom@ocessor resources. These include

78



the number instructions processed in the front end (L1usstn cache, fetch, decode, rename); the
number of instructions committed; the number of accessdsuadates to the branch predictor; the
number of reads and writes of the register file; the numbengifuctions sent to the integer ALUs and
floating point units; the number of accesses of the loaddsiaeue, the L1 data caches, L2 cache. These
average of these numbers across all evaluated benchmaritsearplotted in Figure 32, normalized to
the baseline machine for each width and technology level.

Itis clear from the figures that the activity rates do notéase at the same rate as frequency. Instead,
they are far more correlated to the IPS numbers shown in &iglir For instance, the activity factors
for the 90nm four-wide pipelined machine increase by abd% 2n average, compared to the 18%
increase in execution throughput and the 56% increase quérecy. Of course, the important increase
in clock-tree activity and additional control logic is natdressed in these activity factors. Thus we use

a chip power simulator to emperically evaluate power efféater in this section.
4.6.2 Static Power

With modern deep sub-micron VLSI designs, static power isng®rtant as dynamic power. A simple
equation for static power from Butts and Sohi [20] is showrEguation 12 (wheré/ is the supply
voltage, IV is the number of transistoréy.;,, iS a design parameter, arg, is the per-transistor

leakage current).

Pstatic =V.-N- kdesign : Ileak’ (12)

As with dynamic power, we go through the terms individuadievaluate changes on the static power
total. The first term, the supply voltagé should be unchanged as explained in the previous subsectio
Similarly, I;.qx is @ constant dependent on the process technology and shaultk affected by the
reorganization of the stages. Thus the only variant ter@shar average design parametgg,;,,, and
the number of transistorgy. The design parameter takes into account that certain CM@Q&res,
such as SRAM cells, are more susceptible to leakage than géibes, such as dynamic logic. As the
functionality of the chip is the same regardless of the jmggj, the only change in transistors between
designs of the same width are due to additional latches. t8kda are usually implemented as SRAM
cells, we need to investigate both the number of transistodsthe overall average,.;,, which should

now be more skewed toward SRAMS.
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Table 10: Sim-Panalyzer parameters used for all simulations.
Feature | Value

Frequency value from Figure 29
Clock Skew | 125ps (180nm) 60ps (90nm)
Logic Woltage | 1.8V (180nm) 1.0V (90nm)
1/0 Voltage 1.2v

Clock Tree balanced H-tree

However, as stated in the previous subsection, Shivakuimal: EL06] estimate that only 2% of
modern processors’ transistors are latches. If we assusnmithber of additional latches is proportional
to the increase in stages, thaéhonly increases by a percent or two and should only affect veeage
design parameter slightly. Tsai et al. [116] confirm thisalosion with their observation that latches
only represent 13% of the die leakage at 70nm in an aggréssieelined processor. Thus the total
static power increase for the four-wide two-stage modetihias 54% more stages than the baseline is
54% of 13%, or just 7%. It is important to note that the thisneate assumes 70nm fabrication where

leakage is noticably worse than at 90nm.
4.6.3 Total Power and Power Efficiency

To supplement the dynamic and static analysis, we now ecaflirievaluate atomic structure pipelining
with Sim-Panalyzer [118], a power analysis tool based orofd@impleScalar 3.0 [19]. We altered this
simulator also to model pipelined bypass and issue, and eeugad the benchmarks using the simu-
lation parameters from Table 9 and the additional Sim-Baealparameters shown in Table 10. We
choose an I/O voltage of 1.2V to approximate the low-voltdgierential swing (LVDS) of a Hyper-
Transport off-chip connection.

Figure 33 presents results across four different powericse®ach averaged across our benchmark
suite. Figure 33(a) in the top left presents average powéWatts (both dynamic and static). It is
clear from this plot that the increases in clock frequen®ated by issue and bypass pipelining have a
significant power cost. For instance, the 90nm four-wide eh@dth pipelined issue and bypass has a
49% higher average power draw than the baseline model. Tieeattice between this number and the
average activity rates earlier in the section is almostegtdue to increased clock-tree energy.

These power results come with many caveats, however. Bitiei naivety of pipelining which
incurs the maximum amount of IPC penalty possible for eagfsidn. Any optimizations to this

pipelining would likely improve performance, power, andyeo efficiency. Second is the increased
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opportunity for clock gating as lower IPCs increase theliliaod of idle stages. The activity rate
data suggests several possible targets, but examiningphi@tunity is beyond the scope of this work.
Finally, the chosen baseline model is conservatively pipdl (11 stages) compared to other modern
desktop processors and thus exhibits a low average powspdi®n (30W for the 90nm four-wide
model). As such, there should be more headroom for powegaisers, especially considering that some
IPS gains can be traded in for lower power. Finally, the tactpek rates of the pipelined designs (2.4 to
2.8 GHz on a 90nm process) are well within the range achiey@adalern commercial microprocessors.
Thus the power demands of the designs presented here slui@goeed what is already commercially
viable.

The remaining graphs in Figure 33 present three power eftigimetrics BI P.S/W att, BI PS? /W att,
andBIPS3 /W att, all averaged across the evaluated benchmarks. As statent gathis section, pre-
vious work in maximizing power efficiency via pipeline depthanges had shown that the first two
power efficiency metrics are maximized with one pipelingstfb6]. Only when instructions per sec-
ond is weighted three-fold is a pipelined processor moreiefft. Though this prior work never directly
addressed pipelined atomic structures in their IPC arglys present the same three metrics for com-
parison.

As predicted, theB1 P.S/W att metric in Figure 33(b) shows that designs with the minimaban
of pipelining (the baseline models) prove the most poweciefiit at all evaluated widths and technolo-
gies. It is noteworthy how comparable the numbers are ateatsology generations and superscalar
width—all models have an avera@d P.S/W att of between 0.06 and 0.11 with clustering in the middle.
These results show a relatively constant energy-perdcistn (or power-per-instruction in this case)
cost for all reasonable designs. The less reasonable tlgnddmices (excessively wide or excessively
pipelined), the higher the cost and the lower BhePS/W att efficiency.

As we place more emphasis on performance inBti& 52 /W att metric of Figure 33(c), pipelining
is still not advantageous, also confirming the data in [5&f T80nm eight-wide designs, however, are
a slight exception. Here the model with three stages of iaaddypass is 7% more power efficient than
the baseline machine. This advantage disappears when gnm/®0nm technology or to a narrower
pipeline, but it is a foreshadow of the effiency results fa filmal metric. The efficiency advantages of
90nm two- and four-wide machines are also now evident inrtiesric. This, of course, is predictable

from IPS results shown earlier and the abundance of comalgnwicessors designed as such.
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With the BIPS3 /W att measurement in Figure 33(d), the anticipated power effigidrenefits of
pipelining are finally seen. Interestingly, the 90nm foudevmodel with two stages of issue and bypass
presents a 10% higher power effiency than the baseline, @@0ihm eight-wide machine with three
stages of issue and bypass shows a 36% increase. Also dicagnoe is a technology trend similar to
that for IPS shown in Figure 4.5: the power effiency benefitpipélining atomic structures grow as

fabrication technology progresses.

4.7 Conclusion

We do not present this analysis as a proposal for future psocelesigns per se, but rather a motivation
for further pipelining studies without the fear of signifitdPC losses. Though previous work has shown
that the IPC penalties of dividing these stages can be pagéifihe cost of additional complexity, the
current difficulty of validation for modern microprocessanakes such additions costly. Our results,
however, show that naively pipelined atomic structures lwa beneficial to a processor’s throughput
and efficiency despite these IPC reductions. On a 90nm fade-machine, instruction throughput is
increased 18% while increasiig)y PS® /W power efficiency 10% over a baseline machine with atomic
issue and bypass. Furthermore, technology trends indicateas feature size decreases and the non-
scalability of wires becomes more dominant in performatioe benefits of pipelining these resources
grows. Altogether, processors designed from the grounuktlp pipelined bypass and issue in mind
could have clear advantages as technology progresses.

Of course, itis important to restate the assumptions whiodyced our results. First is the atomic-
ity of the ALU. Though the pipelining of an ALU is not intradike, removing this assumption generates
frequencies which are unreasonably high for commercialempntation. Second is the ability of the
other stages to be pipelined and pipelined evenly. Thowgyleiand bypass have gotten the most atten-
tion in academic literature, pipelining other resourceshsas the register file or the branch predictor
might prove troublesome during physical design. And as tiralrer of stages increases, the chances
of asymmetries within the pipelining also increases, raduthe potential for frequency gains. Ad-
ditionally, our work assumes that this pipelining is fedsifrom a power perspective. Section 4.6.3
elaborates the caveats of the presented power increasesi@sdhe increase in power efficiency in the
BIPS3/W metric. Finally, large design variations between architexs makes definitive conclusions

difficult—-what is beneficial for one processor may prove tdnaanful to the next.
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At least, it is clear that the asssumption of atomic pipefitagyes should be challenged. Architects
must decide the degree of issue and bypass pipelining bastte @wombination of metrics which are
valued highest, not on preconceived notions. It is well kmakat pipelining is about moderation: too
few stages and the clock rate is low, too many and the IPC isot@oOur work fits supplements this

optimization problem by removing the restriction that agrtresources are taboo to divide.
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Table 11: Detz;lil_(dad IPC Results at 1804nr_11.

1 wide wide wide 8 wide
two three four two three four two three four two three four
baseline stages stages stagpsbaseline stages stages stagpsbaseline stages stages stagpsbaseline stages stages stages
Clock Freq (GHz) 1.54 1.54 1.54 1.54 151 1.54 1.54 1.54 1.21 1.54 1.54 1.54 0.59 0.85 1.53 1.54
Overall IPC Avg 0.64 0.61 0.58 0.56 ‘ 111 0.99 0.89 0.76 ‘ 1.73 1.40 1.13 0.93 ‘ 2.12 1.60 1.18 0.93
jpeg encode 0.73 0.71 0.67 0.68 1.36 1.24 1.25 1.00 2.35 2.04 1.54 1.56 2.83 2.41 1.70 1.30
jpeg decode 0.77 0.75 0.73 0.73 1.48 1.38 1.27 1.15 2.64 2.22 1.81 1.40 3.25 2.55 1.89 1.44
epic encode 0.71 0.70 0.69 0.67 1.36 1.28 1.15 1.10 2.36 2.24 1.74 1.72 2.85 2.46 1.71 1.54
< epic decode 0.51 0.49 0.45 0.48 0.60 0.54 0.50 0.45 0.63 0.57 0.51 0.47 0.72 0.64 0.52 0.47
E 9721 decode 0.74 0.68 0.63 0.59 1.27 1.08 0.91 0.75 1.89 1.42 1.10 0.83 2.40 1.58 1.16 0.86
3 g721 encode 0.75 0.68 0.63 0.59 1.27 1.07 091 0.74 191 1.40 111 0.81 2.40 1.56 1.14 0.84
] mpeg2 decode 0.78 0.74 0.72 0.68 1.45 1.29 1.19 1.00 2.49 2.03 157 1.23 3.19 2.34 1.63 1.27
B mpeg2 encode 0.66 0.59 0.54 0.51 1.07 0.90 0.79 0.64 154 118 0.94 0.72 1.76 1.27 0.96 0.72
= pegwit decode 0.72 0.72 0.72 0.72 1.43 1.43 1.43 1.43 2.86 2.86 2.63 2.33 3.67 351 2.89 244
pegwit encode 0.78 0.77 0.77 0.77 1.54 1.52 1.44 1.22 2.99 242 1.80 1.41 3.58 2.60 1.86 1.43
adpcm encode 0.63 0.49 0.42 0.37 0.86 0.63 0.51 0.38 1.05 0.72 0.57 0.40 1.14 0.74 0.56 0.41
adpcm decode 0.57 0.41 0.35 0.30 0.71 0.52 0.40 0.29 0.84 0.55 0.42 0.30 0.88 0.57 0.43 0.31
Mediabench avg 0.69 0.64 0.61 0.59 1.20 1.07 0.98 0.85 1.96 1.64 1.31 1.10 2.39 1.85 1.37 1.09
bzip 0.65 0.64 0.62 0.62 117 1.05 0.87 0.72 171 1.26 0.99 0.79 2.10 1.44 1.00 0.79
13 gce 0.60 0.56 0.52 0.49 0.99 0.85 0.74 0.61 1.39 1.06 0.87 0.68 1.73 1.24 0.91 0.70
g gzip 0.70 0.67 0.64 0.62 1.28 111 0.96 0.81 1.96 1.49 117 0.91 2.43 171 1.23 0.94
< mcf 0.58 0.55 0.51 0.49 0.92 0.79 0.67 0.55 1.18 091 0.75 0.59 1.50 1.09 0.76 0.60
2 parser 0.57 0.54 0.49 0.46 0.97 0.79 0.67 0.54 1.32 0.98 0.78 0.59 1.53 1.08 0.80 0.60
(% vortex 0.57 0.55 0.52 0.49 0.97 0.88 0.79 0.65 1.43 1.12 0.96 0.77 1.71 1.34 1.01 0.79
vpr 0.63 0.61 0.57 0.57 1.15 0.99 0.82 0.66 1.73 1.21 0.92 0.71 2.03 1.32 0.93 0.72
Spec2000int avg 0.61 0.59 0.55 0.54 1.06 0.92 0.79 0.65 1.53 1.15 0.92 0.72 1.86 1.32 0.95 0.74
o ammp 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.14 0.13 0.13 0.13 0.22 0.22 0.13 0.13
S art 0.61 0.59 0.56 0.55 0.85 0.79 0.75 0.64 1.02 0.90 0.82 0.70 1.30 112 0.84 0.71
IS equake 0.67 0.63 0.58 0.56 1.12 0.95 0.82 0.70 1.56 1.23 0.99 0.79 2.06 1.45 1.05 0.82
9 mesa 0.70 0.69 0.67 0.66 1.28 1.29 1.25 1.10 231 2.07 1.75 1.47 2.94 2.46 1.86 1.55
% wupwise 0.72 0.72 0.70 0.69 1.44 1.32 1.13 0.92 231 1.70 1.27 0.97 2.68 1.83 1.28 0.97
Spec2000fp avg 0.56 0.55 0.53 0.52 0.96 0.90 0.82 0.70 1.47 1.21 0.99 0.81 1.84 1.41 1.03 0.84
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Table 12: Detzai_lded IPC Results at 90r}m.

1 wide wide wide 8 wide
two three four two three four two three four two three four
baseline stages stages stagstaseIine stages stages stagstaseIine stages stages stagstaseIine stages stages stages
Clock Freq (GHz) 2.78 2.78 2.78 2.78 2.68 2.78 2.78 2.78 1.87 2.78 2.78 2.78 0.71 0.90 1.70 2.43
Overall IPC Avg 0.60 0.60 0.56 0.52 ‘ 1.08 0.97 0.87 0.75 ‘ 1.72 1.36 1.10 0.91 ‘ 212 1.61 1.23 0.92
jpeg encode 0.71 0.71 0.67 0.65 1.35 1.24 1.25 1.00 2.39 2.04 154 1.56 2.83 241 1.73 1.30
jpeg decode 0.75 0.75 0.73 0.70 1.48 1.38 1.27 1.15 2.69 222 1.81 1.40 3.25 2.55 1.95 1.44
epic encode 0.70 0.70 0.69 0.67 1.36 1.28 1.15 1.10 2.39 224 1.74 1.72 2.85 2.46 2.03 1.54
< epic decode 0.43 0.43 0.39 0.37 0.52 0.47 0.43 0.40 0.54 0.49 0.45 041 0.72 0.63 0.51 0.43
E 9721 decode 0.68 0.68 0.63 0.55 1.27 1.08 0.91 0.75 1.93 1.42 1.10 0.83 2.40 1.58 1.18 0.86
3 g721 encode 0.68 0.68 0.63 0.55 1.27 1.07 091 0.74 1.95 1.40 111 0.81 2.40 1.56 1.15 0.84
] mpeg2 decode 0.75 0.75 0.72 0.66 1.42 1.26 1.25 1.13 2.45 1.95 1.55 1.20 3.19 2.36 1.64 1.26
B mpeg2 encode 0.59 0.59 0.54 0.47 1.05 0.89 0.78 0.64 155 1.16 0.93 0.71 1.76 1.27 0.98 0.72
= pegwit decode 0.72 0.72 0.72 0.72 1.43 1.43 1.43 1.43 2.86 2.86 2.63 2.32 3.67 3.51 3.07 2.44
pegwit encode 0.77 0.77 0.77 0.76 1.54 151 1.44 1.22 3.00 2.42 1.80 1.40 3.58 2.60 1.88 1.42
adpcm encode 0.49 0.49 0.42 0.33 0.86 0.63 0.51 0.38 1.05 0.72 0.57 0.40 1.14 0.74 0.57 0.41
adpcm decode 0.41 0.41 0.35 0.27 0.71 0.52 0.40 0.29 0.86 0.55 0.42 0.30 0.88 0.57 0.44 0.31
Mediabench avg 0.64 0.64 0.60 0.56 1.19 1.06 0.98 0.85 1.97 1.62 1.30 1.09 2.39 1.85 1.43 1.08
bzip 0.61 0.61 0.59 0.55 1.08 0.98 0.83 0.69 1.58 1.16 0.92 0.75 2.09 1.43 1.03 0.76
€ gce 0.55 0.55 0.50 0.45 0.94 0.81 0.71 0.59 1.39 1.00 0.84 0.66 1.72 1.25 0.95 0.69
g gzip 0.66 0.66 0.63 0.57 1.26 1.09 0.95 0.80 1.99 1.46 1.15 0.90 2.42 1.71 1.28 0.93
IS mcf 0.50 0.50 0.47 0.42 0.80 0.69 0.60 0.50 1.02 0.78 0.66 0.54 1.49 1.08 0.78 0.56
2 parser 0.53 0.53 0.48 0.42 0.95 0.78 0.66 0.53 1.33 0.96 0.77 0.58 1.53 1.08 0.83 0.60
(% vortex 0.53 0.53 0.51 0.47 0.93 0.84 0.76 0.63 1.41 1.06 0.92 0.74 1.71 1.36 1.07 0.78
vpr 0.61 0.61 0.57 0.51 1.15 0.99 0.82 0.66 1.85 1.20 0.92 0.71 2.03 1.33 0.98 0.72
Spec2000int avg 0.57 0.57 0.54 0.48 1.02 0.88 0.76 0.63 1.51 1.09 0.88 0.70 1.86 1.32 0.99 0.72
= ammp 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.21 0.21 0.12 0.09
S art 0.52 0.52 0.50 0.46 0.68 0.65 0.62 0.56 0.78 0.71 0.66 0.61 1.28 1.12 0.84 0.63
IS equake 0.60 0.60 0.56 0.49 1.04 0.89 0.78 0.67 1.46 1.14 0.93 0.75 2.05 1.45 1.09 0.80
o mesa 0.69 0.69 0.67 0.61 1.35 1.30 1.24 1.10 2.34 1.98 1.71 1.44 291 2.46 2.02 1.54
5’;‘ wupwise 0.73 0.73 0.71 0.67 1.41 131 1.13 0.92 2.43 1.70 1.27 0.97 2.68 1.83 1.33 0.97
Spec2000fp avg 0.52 0.52 0.50 0.46 0.91 0.84 0.77 0.67 1.42 1.12 0.93 0.77 1.83 1.41 1.08 0.81
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CHAPTER YV

SCHEDULE PREDICTION

Summary

Modern out-of-order processors expend a great deal of yrdgngamically scheduling instructions.
Unfortunately, these orderings are discarded upon usdtdeablp high likelihood that these same in-
structions will be scheduled identically in the near futufe address this shortcoming, we propose the
Execution Schedule Predictor (ESP) which exploits thisperal locality to reduce the use of the ag-
gressive issue logic. Rather than use front-end dataflolysisaredundant VLIW instruction-caches,
or single-instruction predictors for pre-scheduling finstions, ESP stores and predicts wakeup vectors
generated from the conventional issue logic. These listgafup times are then used to speculatively
schedule whole groups of future instructions, avoidingaaassary uses of the wakeup logic. In the
end, an ESP prediction system with only 7KB of storage cadigtigely schedule 36% of the dynamic
instructions across Spec2000 and Mediabench, reducingupatomparitor activity by 39% and broad-
casts by 37%. Importantly, IPC reduced less than 3% via fuscach due to the original schedules
being generated by the traditional dynamic issue logicattmuracy of the wakeup predictor, and the

ability to defer predictions in low-confidence situations.

5.1 Introduction

Though the concept of selecting ready instructions for etxeg is intuitively simple, the typical im-
plementation of out-of-order issue logic in silicon is cdexpand high-power: waiting instructions
compare their input tags to the output tags of issuing isstras; if all inputs are satisfied, the in-
struction requests execution; selection logic choosestwihstructions match up with which functional
unit; all selected instructions broadcast their outpus tegbegin another round. Each of these steps
requires large amounts of dynamic power, and decliningufeasizes will continue to increase their
leakage power as well. However, most programs spend a iyagbtheir time in a steady state (highly-

predicted branches, low cache-misses), where this dyniasuie results in the same execution schedule
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for each dynamic instance of the instructions. As the répethature of branches motivated the use of
branch predictors, the repetitive nature of execution deles motivates the use of schedule predictors.

To that end, we propose a mechanism called the Executiord8ighBredictor (ESP) which caches
wakeup schedules for groups of instructions and uses tf@imation to avoid later dynamic issue
of the instructions. The concept of predicting wakeup tirimegiself, however, is not novel. Most
previous proposals suggest the replacement of the issieuatly front-end wakeup prediction logic,
usually based on dataflow analysis [18, 22, 79]. Rather tllshsach complexity to the front end
of the machine, ESP uses the existing aggressive issuettogienerate tight schedules the first time
which are then applied to later iterations of the instrutdio In this manner execution proceeds as
efficiently as dynamic issue even though the traditional eugklogic is turned off. Thus ESP only
reduces performance for benchmarks across Spec2000 andBéeadh by less than 3% while reducing
wakeup comparitor activity by 39% and broadcasts by 37%.

Ehrhart et al. also suggest the history-based predictionateup times, but on a per-instruction
basis [37]. Instead, ESP schedules whole groups of ingingctat once viavakeup vectoraminimizing
the size of the additional storage (ESP uses only 7KB of SRAM) access energy for retrieving the
information. As our goal is to reduce the energy consumpticthe workload, this is an important con-
sideration. Our mechanism is also highly agnostic to the tyfdssue logic actually used. Any wakeup
system that includes timers (most alternative designsdtely compatible with ESP. The principle
of ESP is simply to remember how groups of instructions weheduled previously (regardless of how
that was done), and use that information later.

Additionally, as the cached schedules were generated byrtwessor’s issue logic, the schedules
have already been verified as correct for previous iterati@ur results show that only about 0.05% of
instructions speculatively scheduled by ESP violate apkraadiness. Thus popular mechanisms for
recovery of mis-scheduled instructions such as replay eamfplaced by simple course-grain pipeline
flushes. This is important as more sophisticated correctienhanisms can be complex, high-power,
and prone to stall-inducing corner cases.

The sections are organized as follows. Section 5.2 intresluelated work in wakeup prediction
and caching. Section 5.3 introduces the concept of schedualt wakeup vectors. A description of how
schedules are accessed and applied to dispatching instgiet found in Section 5.4. Then Section 5.5

describes how those schedules are detected and storedfirstipgace. An experimental evaluation of
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ESP is found in Section 5.6. Finally, Section 5.7 concludes.

5.2 Related Work

ESP is a hybrid between two popular areas of research: VLIgWecdill-units [13, 47, 83, 111, 112]
and wakeup-free scheduling[18, 22, 37, 42, 79, 87]. Botasae#m to reduce processors’ dependence
on the tight [14] issue-loop for power and/or frequency ioy@ments. This section will review these
two areas of research in turn, and contrast our work with them

Chronologically, the first work in dynamically-filled VLIWazhes was the shadow cache [47]. In
this work, a scalar front end fetches instructions from diti@nal instruction cache during the first
iteration of a code segment. Parallel to execution, theunsons are organized into scheduled groups
and stored in the shadow instruction cache. Later iteratmfnthe instructions would then issue in
parallel from this store, allowing the machine to achiev€sRyreater than one without a superscalar
front end. Nair and Hopkins [83] also use a parallel fill ubiif use a second set of execution hardware
for the pre-scheduled instructions to use. This hot-pattider and shallower than the default pipeline
as itis fed by a pre-renamed, pre-scheduled instructiomoEcalar [13] also uses an alternate pipeline
for executing pre-scheduled instructions from their siadache equivalent, but fills that cache after
commit on the default pipeline. Finally, Talpes and Marsulés execution cache [111, 112] fills a
VLIW cache after commit but uses the same set of resources@mution. It is important to note that all
of the above proposals except the shadow cache utilizeadpegister files and renaming mechanisms
due to the interaction of scheduled and unscheduled iniginsc More importantly, all proposals require
two instruction caches to maintain binary compatibilityiltsimultaneously storing schedules.

The other area of research that ESP draws upon is wakeugdheeluling [18, 22, 42, 79, 87]. In
these proposals, issue is divided into two independenéstiagpreak the wakeup/select loop in an effort
to increase clock frequency. The first such stage performsgheduling, where the wakeup times of
each instruction are estimated, usually using dataflowioelships. These instructions are then usually
placed in an array indicating their relative wakeup timesrhart et al. [37], however, use a history-
based prediction table instead of dataflow analysis. Theitiption table, however, must be accessed
for every issuing instruction. Regardless of the pre-saliegl mechanism, most proposals fall back on
replay to recover from scheduling errors.

Also related is work by Valurri et al. [119], who propose treewf compiler analysis to assist in
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r3 = r2 + rl
r3 = r3 * rd
rd = rl - r0
rl =rd + 1
rd = rl + rl
5 =14 * 2
r2 = r3 << 3
1 r9 =15 >> 2
9: r6 = rd + rl
10: r7 = r2 - r4
11: r8 = r5 * 3
12: rd =17 + 4
13: rd = rd * 2
14: r3 = r3 >> r4d
15: r3 =r3 - 1
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Figure 34: Dynamic instruction schedule example. Synchronizatiatrirction 1 begins a valid ESP
schedule.

dynamic scheduling. In their mechanism, the compiler augsie binary with scheduling information
for regions of code with high parallelism. Instead of beimgpdtched into the traditional issue queue,
these portions of code are placed into the S-Buffer, a stredor holding instructions pending execution
in a pre-scheduled order. Our algorithm also applies sdbsda groups of instructions, but this is done

dynamically via history not compiler analysis.

5.3 Schedules and Wakeup Vectors

Before we begin a discussion of how ESP works, we first definéesminology. We define a schedule
as a transformatio§ {i,,...i, } — {cs...c;} which maps the set of instructiorng, throughi,, onto the
wakeup cycleg; throughc,. We define this series of instructions aschedule groupand the range of
execution cycles as trechedule durationThe schedule group must be monotonically increasing—that
is, the dynamic instruction count must only increase frigyrto i,,. However, neither the instructions
nor the cycles need to be continuous as instructions canippeskand wakeup cycles can be idle. We
also define avakeup vectoas an enumeration of this transformation in the fdim...c,, } wherec,, is
the cycle on which instructiom issued and so on.

An example is shown in Figure 34. On the left is a sample sempen fifteen instructions and
on the right is how they issued on a four-wide machine. Theesponding wakeup vector for these
instructions is then shown in the lower portion of the figurkis vector indicates that instruction O will
issue on relative cycle 0, the second will issue on relatjatecl, and so on.

We also add the restriction that only one scheduled groupegest on any given cycle (in other
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words, schedule durations cannot overlap). As we will dbsclater, we will declare certain issue
cycles as entirely pre-scheduled or entirely dynamicailyesiuled. Though it is conceivable to design
issue logic to handle both classes of instructions simatiasly, it would add tremendous complexity

to the already complicated issue logic.

5.4 Accessing and Applying Schedules

Now that we have defined a schedule, we can describe how tbegcaessed and applied. Figure 35
shows an overview of the hardware changes needed for ESPvittblocks shaded. As an overview,
the front end of the machine accesses the schedule cachayag@icable wakeup vector will be sent
to the dispatch stage. Here the schedule is applied by gldb&instructions in the issue queue with

wakeup timers set according to the vector. When all theuostmns prior to this schedule have issued,
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the wakeup logic is powered off and the select logic choossisuctions based only on their wakeup
timers. During these cycles, the issue stage resemblesftaat/LIW machine, blindly accepting the
schedule previously given to these instructions. When thespheduled instructions have completed,
the wakeup logic turns back on for any instructions subseigiaethe schedule group.

The remainder of this section describes the three primamypoments of schedule application—
accessing the schedule caches, execution of pre-schadstagttions, and verifying the schedule. The

subsequent section then describes the update of the caithewew scheudules.
5.4.1 Schedule Cache Access

Working from the same example in Figure 34, we start by tgtlie execution of instruction 1. As in
a typical processor, the front end of the machine requeststache returns the instruction. With ESP,
each I-cache block is also annotated with a hint bit indigativhether this instruction might be the start
of a wakeup vector. If the bit is set, each instruction in tashe block will access th&/akeup Tag
Array (or WTA), which is shown in more detail in Figure 36.

It should be noted that the I-cache hint bit is not necessargdrrectness, but dramatically reduces
unnecessary accesses to the predictor tables. We donthisehddition precludes implementation—
processors such as the AMD Opteron maintain pre-decodamation for instructions in the I-cache.
Results in Section 5.6 show that removing the hint bits mak8P underdesirable from an energy
perspective.

The Wakeup Tag Array is indexed with a hash of the current PiCtha PC of the last control
instruction. If this cache hits and the tag matches, it wolitain a set of information about a schedule
including its length including skipped instructions, thember of instructions not counting skipped
instructions, and its duration in cycles. It will also cantéghe number of times it has been verified
(passes) as a saturating 3-bit counter. The most-signiflitief this counter is used as the valid bit
for this access; thus, a schedule with 4 verified passes id f@l a schedule read. If this entry is
indeed valid, a pointer into the direct-mappéékeup Vector Buffgor WVB) is followed. The WVB
contains wakeup vectors organized into lines of 32 entiaes eEach entry indicates a wakeup time for
an instruction. The lines in the Wakeup Vector Buffer areusegjal-that is, a vector of size 160 will
span 5 adjacent lines. If the tag of the WVB entry matchesabkedight bits of the WTA entry tag, the

wakeup vector is valid. An illustration of this buffer is alshown in Figure 36.
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There are two important attributes of the schedule cachest, 5 the two-level cache structure
which supports a variety of wakeup vector sizes without fihgethe cache. The data labels on Figure
40 show the average size of schedules generated acrossrmimierk suite. It is evident that some
applications are best scheduled with long vectors; othgliGgtions are best scheduled with many more
short ones. A unified cache with a few entries of long caclesloould support applications in this first
group, but the cache would thrash on the second group. $iyndaunified cache with several small
lines could fit the applications with small vectors, but lorggtors would have to be trimmed down for
the other group. A naive solution would have many cacheesjteach with long lines. Of course, this
solution would leave most of the cache bits empty most of ithe,twasting unnecessary power and
occupying valuable chip real-estate. An important insigtihat the total size of applications’ wakeup
vectors is roughly constant-the smaller the vectors aespribre are needed. Thus the Wakeup Vector
Buffer is organized as a circular buffer of wakeup vectoet Bupport any size vectors. Any vectors
longer than 32 simply span to the next line, wrapping arodimeecessary. For our benchmarks, we
found that a Wakeup Vector Buffer of 256 lines (5KB) was mdrant sufficient for these applications.
We also found that the Wakeup Tag Array need not be largeretB8-set 2-way (2.4KB) is sufficient
for near-limit coverage on the the benchmarks.

The other important aspect of the cache is differential dimgp Rather than store the absolute
wakeup cyclesin each vector entry, instead each entry stores the differbetween the previous cycle
and this one. As wakeup vectors can be up to 512 instructimmg, this allows us to represent high
absolute cycle numbers with only small difference valuesgpdtimentally we have found that 5 bits
is sufficient for each entry, allowing differences from -16+#15 with one value (11111) reserved for
entries that are skipped (not pre-scheduled). This imghiat in steady state, instructions usually issue
within 15 cycles of the instructions before and after therpriogram order.

The Wakeup Vector Buffer then sends the vector four entries tame (or whatever the dispatch
width of the machine is) to the dispatch stage, where it wélktrup with the instruction that requested
it. It is important that there is ample time between fetch dispatch to provide sufficient time for data
from the two-level schedule cache to be used expedientlyhése stages are often several cycles apart

on modern processors, our eCACTI [75] analysis shows tieagtis ample time to retrieve the data and

1Absolute wakeup cycles refer to cycle numbers relative édobginning of the schedule (e.g., 0, 2, 3, 1, 6, etc), noecycl
numbers relative to the start of program execution.
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return it to the dispatch stage.
5.4.2 Execution of Pre-Scheduled Instructions

In the dispatch stage, the instructions meet up with thedsdbgorovided by the Wakeup Vector Buffer
and the schedule info provided by the Wakeup Tag Array. Bilyidn the dispatch stage, operations
are placed in the issue queue (or analogous structure) tib@vesands and selection for execution. We
make some minor modifications to this process, and Figuréusirates the hardware for the changes.
First is storing some additional information in the issuewgl entry: the wakeup timer, a pre-
scheduled flag, and the schedule group number. The wakew@p ignthe corresponding entry from
the wakeup vector which has been expanded from its diffedeabhcoding into an absolute nhumber.
The first instruction in a schedule has a wakeup timer of zanad, the subsequent instructions have
timers relative to that. The schedule detection logic, &xgld in the next section, ensures that the first
instruction does indeed start with zero and that all insioas in a schedule have positive timer values.
This timer is reduced each cycle by a decrmentor. When itesazero (the NOR of the counter bits
is true), the readiness condition for this pre-schedulstruction is met. It should be noted that most
modern processors already contain decrementors for tasttimers (i.e., broadcast the tag for a load
in NV cycles). As pre-scheduled instructions do not broadcast tifigs, designers could choose to use a

single decrementor for both purposes, compacting the ilesig
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The pre-scheduled flag indicates whether or not this instmuds to be issued in a timer-driven
manner. If so, there is no need for the wakeup comparatorgjggoe 37 shows that they are power
gated off in this case. The pre-scheduled flag also contretaal multiplexer choosing the readiness
condition of this entry between 1) traditional operand neask or 2) the wakeup timer. Finally, the pre-
scheduled flag also blocks the tag broadcast for timer-gliiivgtructions. It is assured these instructions
will issue before any subsequent instructions, so the tibdagic pre-emptively sets the input-ready
flags for any inputs dependent on pre-scheduled instrugtimother words, instructions that dispatch
after a schedule assume that all prior instructions haveptzied.

This sequentiality is assured by ordering schedule grodpsy instruction in schedule grou@
must issue before schedule gradpt 1, so groups are non-overlapping and sequential. Thus, thke fin
piece of information added to the issue queue entry is thepgmumber. We also add a small global
Group Control to the issue stage to track schedule grougs.sithple logic indicates the current group,
the number of instructions remaining in each group in thedsgueue, and moves to the next when a
group completes. It should be noted that the issue queueatdais instructions from several different
groups simultaneously. By using this Group Control, wevaliwe-scheduled instructions which are not
in the current group to power off their request logic and thentdown timer. It also prevents normal
(not pre-scheduled) instructions from requesting salacithen they are not in the current group.

For instance, the dispatch stage might currently be asgjgimistructions into group 7. When a
pre-scheduled group is begun by dispatch, those instngtidll be assigned into a new group 8. In-
structions after the schedule group will be assigned grqugs Qvell as instructions that were skipped
(an X in the schedule) by the schedule for group 8. Duringeissill group 7 instructions must issue
before group 8, and group 8 must complete before group 9. ghags are entirely pre-scheduled or
entirely dynamic-issue. As we don't wish to impair the ILPtloé machine, there is no restriction that
group 7 instructions come before group 8 instructions irptloegram. We can in-order dispatch a group
7 instruction, then a group 9 instruction, then a group @umsion. In other words, the schedule groups
are linear in time, not necessarily in program order.

As the dispatch stage transitions to a new schedule grouy &wee a schedule starts and stops,
the number of groups seen during execution can be quite Rigtvever, only so many groups are ever
present in the system at once, so only a small wrap-arounateois needed. We have found that a

mod-4 group system is sufficient—groups count from 0 to 3 hed trap around to O.

95



dl/dt

N N S

instantaneous device gating

\ \
'_|dI/dt -

gradual device gating

Figure 38: lllustration of the dl/dt noise for instantaneous and gedgwwer gating.

The result of this monotonic movement through the groupspiaessor which alternates between
dynamic and pre-scheduled issue. Some groups are notlpedided and thus proceed with the normal
wakeup-select logic. The other groups are pre-schedulddiretructions wakeup based on timers.
In the first cycle of this group, all instructions with an anigl wakeup timer of O issue and all other
instructions decrement their timers; on the next cyclenatructions which now have a timer of 0 issue,
and the rest decrement; and so on. Only when all instrucfioms a group are issued are instructions
from the subsequent group.

As these timers are blindly accepted as correct during gineekiled mode, it is obviously important
that they be feasible. For example, if the machine can ordydm& multiplier, a wakeup vector should
not indicate that two multiply instructions issue on the saryicle. However, this is a key advantage
of ESP over related schedule prediction mechanisms: asupakectors are snapshots of how these
instructions dynamically issued previously, they arellike be correct this iteration.

We would like to elaborate on our references to power gafiiigning off idle processor resources is
well studied, but one important concern in a dynamic-issaehime is unpredictability and dl/dt noise
[39, 89]. Generally, it is difficult to know when to turn a resoe on, so designs either 1) turn on the
device quickly when it is needed, causing a noise spike iptieer grid, or 2) turn the device on slowly
to avoid power noise but lose cycles waiting for it to turn d@ither choice diminishes performance—
power spikes increase the clock’s noise margin which reslotximum frequency, or wasted ramp-up
cycles cause losses in IPC.

Thankfully, our ESP schedules provide the needed predlityator low-noise power gating. If
groupd is pre-scheduled, then the Group Control knows exactly hamneycles untits’s instructions
will complete (the schedule duration was provided from thek@up Tag Array). Thus we can slowly

ramp-up the wakeup logic for the issue queue entries cantaigroup G + 1 instructions knowing
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exactly what cycle they will be needed. Figure 38 shows amgka of this voltage ramping and it's

effect on dl/dt noise.
5.4.3 Schedule Verification

As with any speculative scheduling mechanism, there iskahet instructions are mis-scheduled. There
are various commercial and academic solutions to such tbidgm. The The most common solution
is replay [71], which re-issues instructions that were meously selected for execution. Flea Flicker
[9] adds a tail-end execution engine to VLIW processors texecute instructions which were mis-
scheduled and their dependents. Similarly, DIVA [7] adde@adary execution engine to the back-end
of an out-of-order processor, addressing a variety of efrom scheduling problems to alpha particles.

Interestingly, our experiments have shown that the acgund&SP is so high as to make a mis-
scheduling recovery mechanism unnecessary. Across ochityamk suite, only about 0.05% of pre-
scheduled instructions violate operand readiness. Wighiov rate, it becomes practical to initiate a
pipeline flush (as if the instruction was a mis-predictecdnblg at mis-scheduling events. Results in
Section 5.6 will show the minimal advantage of using a rephechanism instead of a pipeline flush.
Regardless of the mechanism used, any instructions hawibg te-executed will be flagged as mis-
scheduled in their reorder buffer entries. Upon commitséhigags will trigger the Wakeup Tag Array
to reduce the number of passes for this schedule to 0, forciadpe verified before it is used again.

A more pertinent problem for ESP is a sub-optimal scheduler example, a certain series of
instructions might be scheduled identically for severatations, causing a confident schedule to be
cached and used for future iterations. At some point latkrad in the schedule starts hitting in the L1
cache instead of the L2 as it was previously. Unfortunatilky,instructions are being scheduled as if
the load was still hitting in L2. Though no instruction is hedcally mis-scheduling, these instructions
could have been executed faster if pure dynamic schedulagybsing used.

There are several possible solutions to this issue. Firsddvbe to detect changes in schedule
characteristics, such as where the loads hit and whethdeadeng branches were correctly predicted,
and use that to invalidate schedules. This does work mosiedirne but requires storing a significant
amount of metadata about the scheduled instructions tatdétese changes. Another possibility is
to defer schedule application every so often, allowing tistructions to schedule dynamically and be

confirmed against the existing schedule. This is also éfsdbut in some cases, sub-optimal schedules
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Figure 39: Overview of schedule detection algorithm.

are confirmed if two schedules are back-to-back and only efersl

Thus a better solution is to defer all schedules at one poitinie. For simplicity, ESP does this via
a schedule cache flush eveNyinstructions (for our benchmarks, every one million instions works
well). Atthat point, all valid bits in the Wakeup Tag ArraycdiWakeup Vector Buffer are cleared, and all
schedules are relearned from scratch. Though this shigtireing time causes ESP to miss some pre-
scheduling opportunities, the coverage loss is minimalutati% fewer instructions are prescheduled.

However, the periodic cache flushes allow ESP limit the parémce effect of sub-optimal schedules.

5.5 Schedule Detection

Now that we have described how schedules are accessed abitteeid of the machine and how
instructions are executed in pre-scheduled mode, we noarideshow schedules are created in the
back-end and stored into the schedule caches. We divideliddassion into three phases—start point
detection, schedule determination, schedule storage.vArview of the algorithm is shown in Figure

39.
5.5.1 Start Point Detection

An important challenge in isolating scheduled groups isothteof-order nature of issue. This execution
behavior, of course, is to be encouraged as it increasegplatable ILP of the machine. Unfortunately,
this is also makes it difficult to determine a good startingppan instruction schedule. For illustration of

this point, we refer back to the example in Figure 34. Suppiosénstructions were issued dynamically
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Figure 40: Average number of instructions between syncronizatiotructions, inset with the average
size of detected schedules.
as is shown, and we extract a schedule starting at instrugtid his produces the wakeup vector:

{0,1,2,3,1,6,3,3,5,5,6,...}

This is a valid wakeup vector, but instructions 1 and 2 wilate a problem during dispatch. Suppose
dispatch is assigning grouf to instructions 1 and 2. Instruction 3 then begins a new pheduled
group,G + 1. However, as we discussed in the previous section, scheedubeips must issue in-order
though their instructions can issue out-of-order. So alugrG instructions must issue before group
G + 1 can begin to issue. So on cycle 0 instruction 1 will issuen i cycle 1 instruction 2 will issue.
It is not until cycle 3 that the pre-scheduled group beginsiéeh, the issue of instructions 1 through 13
will take 2 extra cycles due to the in-order constraint ofup®

Instruction 3 is a poor choice for a schedule start becawstrittions before it in program order will
issue after it or at the same time as it. Instead, schedutelest started at what we tesynchroniza-
tion instructionswhich loosely order the program’s execution. Any instroigtinst exhibiting the two

following qualities is such an instruction:

e Any instruction beforenstin program order issues on a cycle beforst

e Any instruction aftetinstin program order issues on the same or a later cyclasis

As a result, these synchronization instructions occur it fppogram and issue order, though in-
structions between them maybe be out of order in either. @hawe could force any instruction to
exhibit these qualities, these qualities occur naturallg significant number of instructions. The bars
in Figure 40 shows the rate of synchronization instruct@ac®ss our benchmark set. On average, these

occur about every 33.5 instructions, though there is a higfakility across benchmarks. This data
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is a primary motivation for ESP’s two-level schedule cachech efficiently supports short and long
schedules.

To determine these synchronization points, we add a cirgquaue called thdéistory vectorand
related logic to the commit stage of the pipeline. As indious are retired in program order, they are
placed at the tail of the history vector, which is set to thee 33f the reorder buffer plus 32. As they
are placed in, the cycle on which the instruction issued mpared with the maximum issue cycle
seen thus far. If it is not the new maximum, there is no polisitthis instruction is a synchronization
instruction—there are instructions prior in program onaidich issued after this instruction. If it is the
new maximum, the entry in the history vector is marked witioasible synchronization fladf is only
a possiblesynchronization instruction at this point because latstruttions not yet retired might have
issued before this instruction.

Periodically, the oldest 32 instructions in the vector ariégal from the history vector into a separate
buffer and scanned for true synchronization points. Thadoise by working from the newest instruction
backward, disqualifying any possible synchronizatioriringion which is not is not the new minimum
issue cycle. This process is why the history vector must besike of the reorder buffer plus 32—we
need to assure that no instruction that has yet to commgdsbafore any of these 32 instructions. This
process of scanning for start points is illustrated in theed step of Figure 39.

As we are concerned with issue reducing energy, we takeutaige of how much additional power
we are using in this computation. Reducing the energy okiséa schedule prediction is moot if we
expend more energy creating the schedules in the first pldeestimate this by counting comparisons,
in this case, each instruction in the buffer is compared @éwance for the maximum issue cycle at
insertion, once for the minimum cycle during scanning. Lataver results will tally these comparisons

and compute their energy cost for real benchmarks.
5.5.2 End Cycle Determination

These 32 instructions are then simplified into a zero-basbddaille and moved to the next buffer to
scan for end cycles (separate buffers are used for thediff@nalysis stages to allow pipelining of the
schedule detection). At this time an access is also madestediedule cache to retrieve any schedule
with this PC and path. If there is a hit, the first 32 entriese(tvakeup Vector Buffer line) is sent here.

This process is illustrated in the first step of Figure 39.
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Though the start of schedules should be an instruction igrpro and issue order, the end of a

schedule is merely the first issue cycle where one followitliedule stoppeisccurs:

e A branch miss.

A discrepancy with the cached schedule.

The issue cycle of an instruction is not within -15 to +15 @& irevious instruction’s issue cycle.

A schedule length of 512 instructions is exceeded.

A schedule duration of 2048 cycles is exceeded.

If a stopper is seen at issue cydlg it indicates that instructions up to cycté — 1 should be
included in the schedule. Thus we make a parallel access tautfer, flagging any instructions issuing
afterC — 1 to be skipped. By stopping at a certain cycle rather thantaiognstruction, we ensure that
awaiting the issue of this scheduled group will not delayiisee of subsequent instructions. In other
words, we avoid the sequentiality issues described by agtadrpoint in the previous subsection. This
detection of stoppers and exclusion of instructions isitated in the third and fourth steps of Figure
39 respectively.

It is clear from the stoppers above that the detection logpperts schedules far larger than the
current working buffer of 32 instructions. Schedules lantpan the buffer are simply constructed 32
instructions at a time and stored into the Wakeup Vectoréufjut the corresponding valid bit is not
set in the Wakeup Tag array until the schedule constructi@oiinpleted.

For this phase of detection there are 4 comparisons needeaxhipg for stopper detection—one for
the branch miss flag, one for the discrepancy with the cactteedsile, one for the differential, and one
for the maximum cycle. We assume that the maximum length eastebected by simply watching the

ninth bit of a the current length counter.
5.5.3 Final Schedule Storage

Now that we have a schedule, we need to mark it as covered araisin the schedule caches. These
steps are illustrated in steps 5 and 6 of Figure 39. We set\gfed” flag in each instruction in entry
of the history vector up to the stopper instruction. If antimstion is marked as covered or is part

of a group of instructions that was pre-scheduled during iteration, these detection phases will not

101



proceed. This avoids overlapping schedules clogging theesaand unnecessary comparisons during
detection. Thus the more instructions are pre-schedutedess the cost of detecting schedules will be.

Then the Wakeup Tag Array is updated with information on tee schedule. If the cache access
during the previous phase hit, that WTA entry is updated itk new schedule, and its corresponding
Wakeup Vector Buffer line is updated. If the tag array misgedn a new WTA entry is created, the
head pointer of the Wakeup Vector Buffer is stored in thatyeaind that WVB line is replaced with this
cache entry. Some applications overflow the WVB and oveewrdtlid schedules as the buffer wraps
around. This is why the WVB entry stores a tag to ensure thatioi WTA entries point to it, which is
the valid schedule. Thankfully, the benchmarks that overilidakeup Vector Buffer tend to do so only
during highly irregular phases, where the schedules bergied would not have repeated consistently
enough to be applied anyway.

It is important to note that, if the schedule discerned framttistory vector differs from one already
existing in the cache, what results from end cycle detertimnas the common sub-schedule between
the two. As this sub-schedule is, by definition, smaller ttr@nexisting cached schedule, its Wakeup
Vector Buffer lines can be replaced without risk of overimgt any subsequent schedules. The only
ill-effect of this common sub-schedule storage is wastedB/¢@ace, which is rarely at a premium.

The final task for the schedule detection mechanism is toteptie hint-bits in the I-cache. ESP
does so when this schedule’s saturating counter for “passdhe Wakeup Tag Array reaches four,
indicating it has been seen identically four passes in a r@anceivably, this hint-bit update either
requires a new write port into the I-cache or sharing thetiexgjswrite port from L2. We believe the
latter is the better choice, as the steady-state behaveppiications creates little traffic from L2 to the
L1 I-cache. Even if there were traffic, these hint-bits catolepriority without effect on pre-scheduling
coverage. It should be noted, however, that these bits doapagate beyond L1 and thus are lost upon

cache replacement.

5.6 Experiments and Results

To determine the effect of our Execution Schedule Predimtoperformance and processor energy, we
implemented our structures and algorithms on the cyclevate SimpleScalar 3.0 simulator with the
PISA instruction set [19]. Table 13 enumerates the parametammon to all designs evaluated in this

section. Most of the benchmarks from Spec2000int, Sped2@0&nd MediaBench [73] are used for
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Table 13: Architectural parameters used for all simulations.

Feature | Value
Pipeline Width 4 wide
Integer ALUs 4 units
Integer Multipliers 2 units
Floating Point ALUs 4 units
Flouting Point Mult/Div 1 units
Reorder Buffer 128 entries
Issue Queue 16 entries
Load/Store Queue 16 entries
Memory Ports 2 ports
L1 I-cache 64 KB (2 way), 3 cycles
L1 D-cache 64 KB (2 way), 3 cycles
L2 Unified 1024 KB (16 way), 8 cycles
Memory infinite size, 160 cycles
Branch Predictor combining bimodal/2level
Bimodal Predictor 4096 entries
2-Level Predictor 4096 entries
Branch Target Buffer 2048 entries (4 way)
Branch Penalty 10 cycles
1.00 =
0.98 +
0.96 -
50.94 -
g0.92
§_o.90 E
0.88 -
So.86 |
0.84
0.82 +
0.80 - - -
OESP o° ) ° ° o|E o @ ; 3
B ESP + replay Mediabench Spec2000int spec2000fp
O ESP + no hints
O ESP + big queues

Figure 41: IPC Speedup for default ESP model, ESP with replay, and E&®util-cache hint bits.

analysis. Any benchmark omitted from these suites did noigle cleanly using gcc 2.95.3 with O2
optimizations. Spec2000 inputs come from thstdata set, and the default MediaBench inputs were
enlarged to lengthen their execution.

We use SPICE to model the energy of the issue logic using agtiked70 nm technology transistor
model provided by the Device Group at UC Berkeley [23, 11He Goal of ESP is to reduce the total
energy of these items by reducing their activity, but ES8lfiiscurs energy penalties. We modeled the
Wakeup Tag Array (128 sets, 2 way set-associative, 10B per i R/W port, 1 R port) and Wakeup
Vector Buffer (256 sets, direct mapped, 20B per line, 1 R/\WW,doR port) using eCACTI [75] at 70nm.
We also use the same SPICE model for the schedule detectiopacitors as the wakeup comparitors.

Modeling the slow ramping behavior of clock-gating showtrigure 38, however, is beyond the scope
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Figure 42: Percent energy change for default ESP model (equal to ESPReiplay), ESP without
I-cache hint bits, and ESP on a machine with large out-o&ogiieues.

Table 14: Breakdown of issue energy for the default ESP model. Totahtoand energies are across
the duration of our benchmark execution—-500M instructions

unit baseline total ESP total
component energy (pJ)| count (M) energyfJd) | count (M) energy£J)
IssueQ Comps 6.0 9,792.4 58265.0f 5,956.7 35442.3
IssueQ Bcasts 32.2 559.5 18015.7 352.8 11360.8
IssueQ Selects 0.1 265.3 31.3 259.0 30.6
WTA Accesses 112.0 114.9 12863.5
WTA Updates 114.0 1.0 108.8
WVB Accesses 191.7 16.9 3244.0
WVB Updates 191.6 5.2 987.7
ESP Comps 0.9 2,1115 1794.8
Energy Total 76312.1 65832.5
Energy Change -13.7%

of this work.
5.6.1 Default ESP Configuration

We first evaluate the default configuration for ESP. In thisigewe use I-cache hint bits and pipeline
flushes at mis-scheduled instructions. Full schedule clubbes occur every million instructions to
evict sub-optimal schedules. As Figure 40 shows, synchation instructions occur every 33.5 in-
structions on average, and the average schedule lengthmigadnfiguration is 61.

The first set of bars in Figure 41 shows the speedup resultssaaur benchmark suite. If the
implementation of an energy-saving mechanism degraddsrpemce significantly, it is often simpler
and more effective to employ voltage and frequency scabrachieve the target energy savings. Prior
work such as Ernst et al. [42] and Ehrhart et al. [37] incurarage IPC penalty of about 10% across

Spec2000 benchmarks, but they are targeting clock frequenteases by breaking the wakeup-select
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loop. ESP, on the other hand, leaves the wakeup-select laiogvbids it for energy savings. Thus the
IPC penalty must be very small for ESP to be competitive.

On average, IPC loss varies between applications from 0%%a An interesting outlier impeg2-
encodefrom MediaBench. This application is plagued by sub-optisthedules (discussed in Section
5.4.3) due to the frequently changing memory-access ti@#ser applications, such agipwisefrom
MediaBench see almost no slowdown in IPC. These benchmagkéha most predictable, with high
branch prediction accuracies and predictable memorysadagencies. In general, IPC is only reduced
by 2.5%, showing how effective dynamically-created schesiare for pre-scheduling.

Figure 42 shows the percent change in issue energy for eattraged benchmark from the baseline
model. The average energy case for the “ESP” line in thistgiagoroken down in Table 14. As
is shown, issue energy is computed as the wakeup compansrgyeplus the tag broadcast energy
plus the select energy. As even pre-scheduled instructemsre selection, the change in this number
is small. On average, ESP reduces the number of wakeups desonsby 39%, the number of tag
broadcasts by 37%, and the number of selections by 3%. Thiftweduce the issue logic energy by
almost 40%, but we must include the ESP energy costs for adaiparison. Even after these accesses
of the ESP caches and fill-unit comparisons are incorporatedissue energy savings are still almost
15%.

Interestingly, Figure 42 shows that there is strong vammabtietween applications, some of which
show increases in energy consumption such as Mediabeadp&m Future work for ESP is to recog-
nize application phases where ESP is not beneficial and poffiéne prediction logic. The current

version of the logic has no such feature, however, and thusiglibe seen as a worst-case situation.
5.6.2 Replay Implementation

The second set of bars in Figure 41 shows the performance effasing a replay mechanism instead of
full pipeline flushes during mis-scheduling events. Fosthexperiments, we implement a replay queue
of 16 instructions, which is filled from writeback with misteduled instructions. These instructions
are then re-injected into the issue queue at a higher pritréin new instructions are dispatched. To
keep the numbers comparable, we do not use the replay meohmimplement speculative scheduling
for other purposes; it is only used as a recovery mechanisfa$®. As the data demonstrates, there is

almost no performance advantage to using replay insteadl diishes. Though such flushes are costly,
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only 0.05% of instructions are mis-scheduled across ouchmeark suite. Thus a full replay system is
not only unadvantageous, but is also an extra energy comghatecan be avoided.

The use of replay also has very little effect on issue enagyhe energy line for the default ESP
configuration in Figure 42 applies to this configuration a#i.vildhis analysis, however, does not include
the energy cost of the replay hardware itself. Quantifylig humber is beyond the scope of this work,

but it would likely erase all gains of schedule caching if éne not already present in the pipeline.
5.6.3 I-Cache Hint Bits

Another deleterious effect can be seen in the third columhetable, showing the energy delta when
I-cache hints are not used. As every instruction must acuessthe Wakeup Tag Array at least once
(sometimes a second time at during our tail-end scheduktieh), WTA activity increases dramat-
ically (approximately ten-fold), consuming more energgrths saved in the wakeup logic. This ESP
configuration increases average issue energy by 65%, timdjctihat I-cache hint bits should always
accompany an ESP implementation.

Thankfully, the L1 instruction cache and schedule cachéegelsteady state at similar points, so
there are few missed opportunities for pre-scheduling wistng hint bits. The third set of bars in
Figure 41 show the IPC effect of not using the I-Cache hirg.biThus all fetched instructions are
checked against the Wakeup Tag Array. This increases avemgrage of the instructions from 35.5%
to 38.2% due to the occasional schedule start-point whithali have a hint-bit set (the I-cache replaced
it and it is brough back in without the bit set). Interestinghe IPC of the machine is slightly increased
with these brute-force accesses. As the hint bit is also dsgdg commit time for schedule checking,

this means that some sub-optimal schedules are not digzbver
5.6.4 Large Queues

The final set of bars in Figure 41 and the “ESP + big queues”ilinEigure 42 show the effect of
guadrupling the reorder buffer to 512 entries, quadrupirissue queue to 64 entries, and quadrupling
the load/store queue to 64 entries. By increasing the cotddr execution abilities of the pipeline, we
have dramatically reduced the frequency of natural symihation points, making schedules harder
to detect. With this model, these ordering instructionsuo@nly 100 instructions instead of every 34

with the default machine. MediaBenchgipwiseis the most severely affected here, and does not find
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a single synchronization instruction during its execution

Average instruction coverage for this model drops from 36tb just 17%, mostly due to the high-
parallelism MediaBench applications which now issue irhsarc out-of-order manner as to prevent the
schedule detection logic from identifying where to startheslule. However, as the average activity
of the issue logic has increased, savings here weigh moréhhegainst the costs of ESP hardware.
In the end, ESP reduces the issue energy by about 3% over lnbasanfiguration. As mentioned
before, however, a more realistic implementation of ESRikhimclude “futility logic” which shuts
off schedule detection and access if the current programphase of the program) is not amenable to
pre-scheduling. The implementation studied here is alvpaysgered on, and thus should be viewed as

worst-case.

5.7 Conclusion

An on-going goal for ESP is increased coverage. Varialilityontrol flow creates most of the coverage
loss seen in our experiments, and more aggressive schewattoa could handle this at the cost of
sub-optimal schedules. In general, schedule predictioasfa pure tradeoff—all instructions can be
pre-scheduled without violating operand readiness if veepaepared to accept sub-optimal schedules.
Of course, at some point the performance has dropped so nsuichraake simple voltage/frequency
scaling a better option. But as ESP’s commit-time checkesdwt analyze instructions which were
pre-scheduled, the power benefits of pre-scheduling ictatins are two-fold. Future study is needed
to pin-point precisely the aggressiveness is needed towsthe optimal point for performance and
energy.

Another direction of future study is relaxing the wakeupestloop into two cycles. Most previous
research in wakeup prediction is motivated by alleviatihng IPC penalty of two-cycle issue. ESP
currently has no such goal, but it is conceivable for sctesitd be created by two-cycle issue logic and
compressed into tighter one-cycle scheduling before ogctlore research is required to determine if
efficient logic can be designed for this purpose.

It is evident, though, that in its existing form the Executichedule Predictor can eliminate the
need for traditional issue for large portions of moderndeteapplications. Results in the previous
section show that over 35% of instructions are pre-scheduike the predictor, cutting the number of

wakeups and broadcasts by 35% to 40%. Additionally, duedditfint schedules originally generated
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by the issue logic, ESP incurs less than a 3% IPC drop ovetifiodl dynamic issue.
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CHAPTER VI

RAPID FLOORPLANNING

Summary

As the size and complexity of VLSI circuits increase, thedhise faster floorplanning algorithms also
grows. In this work we introduce Traffic, a new method for tireawire- and area-optimized floorplans.
Through the use of connectivity grouping, simple geomedng a constrained brute-force approach,
Traffic achieves an average 18% lower wire estimate thanI&tediAnnealing (SA) in orders of mag-
nitude less time. This speed allows designers to rapidlyoex large circuit design space, evaluate
small changes to big circuits, fit bounding boxes, and predunitial solutions for other floorplanning

algorithms.

6.1 Introduction

Despite the amount of academic and industrial researcheitba, the challenge of block packing is
even tractable by a child: given a set of rectangles, arrémgm into the smallest area. This problem
is relevant to many fields, from truck loading to OS proces$®daling. Additional constraints such as
wire-minimization or fixed-position blocks make the chatie more complex for VLSI circuit floor-
planning. However, even without these additional constsaifloorplanning is difficult and requires
heuristics to efficiently solve.

We introduce a two-phase algorithm for VLSI floorplannindiexh Traffic (Trapezoidal Floorplan-
ning for Integrated Circuits), which seeks to floorplan tigb constrained brute-force techniques. The
first phase groups blocks by global and local connectiviipgiae modified partitioning algorithm and
simple heuristics. The second phase forms trapezoidakshapm these grouped blocks. Trapezoids,
with similar slopes on their diagonals, are easily tileable use this principle to tessellate these shapes
across the floorplan. By primarily addressing connectiwityhe first stage and addressing packing in
the second, Traffic divides-and-conquers the complexitylo®l floorplanning. Since the algorithm

and data structures are very simple, each run is severatsoofianagnitude faster than a Simulated
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Annealing (SA) run and achieves very good results. Takiegost of many Traffic runs improves the
solution quality further while still taking far less timeath even a single SA run.

An important philosophy of Traffic is the exploration of thesin space through constrained brute
force techniques rather than complex heuristics. In séasmects of floorplanning, we find it is more
efficient to try a reasonable number of options rather thimmgit to discern which option is best a priori.
Though this gives the illusion of finding a result accidelgtat is only through important constraints on
the possible solutions that a good one is found quickly.

The quality and speed of Traffic indicate many applicatiofdrst is as a final floorplanner, as
taking the best of hundreds of runs achieves high resulityuala reasonable amount of time. More
significantly, our algorithm allows the circuit design spao be appraised quickly. Engineers using
Traffic can quickly evaluate the physical implications dffetient circuit configurations (i.e., 10 large
blocks versus 1000 smaller blocks) or different architedtdetails (i.e., 16-entry register file versus 32-
entry). Traffic can also be used to produce initial solutimm®ther floorplanning algorithms, mitigating
their prohibitive run-times and improving their result ttya

The sections are organized as follows. Section 6.2 addrgss®ious work in the area of floor-
planning. Sections 6.3 and 6.4 describe the two phases dfr#tiic algorithm. Section 6.5 presents
the experimental parameters we use for our results. Segtshows area and wire-length results for
Traffic compared against Simulated Annealing. Finally,t®ec6.7 concludes and addresses future

work.

6.2 Related Work

Floorplanning has been studied extensively in the past weades due to its theoretical and practical
importance. Given a VLSI circuit consisting of both fixed axible blocks (some of the blocks can
be pre-placed at some locations) and a net-list intercdimgethese blocks, floorplanning constructs a
layout indicating the position and shape of each flexiblekkuch that all nets can be routed and total
layout area is minimized.

There are two types of floorplans: slicing and non-slicingsliging floorplan [34, 85, 110, 120] is
one that can be obtained by recursively cutting a rectamgetivo parts by either a vertical line or a
horizontal line. A non-slicing floorplan [24, 52, 81, 88] is@that is not necessarily slicing. In general,

a non-slicing floorplan can describe any type of packing.
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Most of the existing floorplanning algorithms are iteratingnature—start with some initial solution
and gradually improve its quality by performing variousdbmoves. A popular choice for exploring the
solution space has been Simulated Annealing [72], whereraolkition is selectively accepted based on
some probability in a cost function. Moreover, the majou®of recent advances on floorplanning has
been on the development of an efficient solution representf4, 52, 81] and its fast evaluation [113]
for SA-based optimization approaches. In addition, soroemeworks [2, 114, 122, 123] address how
to satisfy various user specified geometric constraint;gutoorplanning. Unfortunately, however, it
has been a widely accepted fact that SA-based algorithrfesr $tdm a prohibitively long runtime and
require tedious parameter tuning.

To address these concerns, many authors have introdudeifb@aplanning algorithms for ASIC
[10, 35, 49, 54, 93, 103, 104] and FPGA [40, 115], which quiadtimate the area and wiring needed
by a completed floorplan. Though these algorithms are oftegy fast and accurate, they are only a
heuristic—there is no guarantee that a floorplan can beett®éth the output results.

Ranjan et al. [96] propose improving the speed of Simulatedealing by computing the cost
functions a priori in a predictor. They then use these valakmg with top-down slicing and a final
stage of SA, to quickly produce floorplans. Their result dgyas comparable to SA, and their speedup

is significant.

6.3 Connectivity Phase

The first phase of Traffic addresses wire-length while difgrblock packing until the second phase.
A complete overview of the Traffic algorithm is shown in Figu4¢3, where lines 1-3 represent this
connectivity phase. The connectivity phase itself is dididnto two sub-stagesgjlobal net grouping
andlocal net groupingthough the distinction between these terms is vague. Giatg connect distant
blocks in a floorplan; however, given a different floorplartte# same blocks, a different set of nets may

be considered global.
6.3.1 Global Grouping

To minimize longer wires that will be present in any floorplave first partition the blocks using a
method called Linear Partitioning and Placement (LPP)ctvig similar to the partitioning algorithm

introduced in [31]. Pseudocode for this stage is shown infeig4. In this scheme, a block-level netlist
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connectivity phase

01: partitions[] = globalgroupingblocks);
02: for (part from 0 to numpartitions)
03: localgroupingpart);

physical phase
04: for (run from 0 to numruns)
05: for (part from O to numpartitions)

06: rows = initial_placementfart);
07: for (step from 0 to 25)

08: mutategart.rows);

09: if (no_change) break;

10: squeezefrt.rows);

11: is partitionbestpart.rows);

12:  all_rows = mergepartitions();
13: istotalbest@ll_rows);

Figure 43: Traffic algorithm pseudocode.

global grouping(N L, K)

01: NL = block-level netlist;

02: K = number of partitions desired;

03: while (num.partitions is notk)

04; P =visit partitions in top-down BFS order;
05: Cp = multi-level clustering hierarchy faP;
06: hgt = height ofCp;

07: Bp(hgt) =random bipartitioning at levélgt;
08: for (¢ = hgt downto 0)

09: move clusters id'p () to reduce linear WL;
10: Bp(i) = new bipartitioning at leved;
11: projectBp(i) to Bp(i — 1);

12: return Bp(0);
13:return K partitions;

Figure 44: Global grouping pseudocode.

is divided into multiple partitions, but the partitions {ribe blocks in the partitions) are assumed to be
placed onto a line. Thus, a connection from partition oneoto fncurs a higher cost than a connec-
tion from partition one to two. This produces linearly orggmpartitions, which is analogous to block
linear ordering [65]. In our approach, however, we performitirievel partitioning [66] by building

a multi-level clustering hierarchy using ESC algorithm][a@d performing cutsize minimization via
declustering and refinement. We use terminal propagati6hifSLPP to reduce the linear length of
wires connected to other partitions during each bipartitig. As the next section will show, this linear

order is advantageous to us since the Traffic physical dtgonivill operate on each partition separately
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then stack them together to form a final floorplan. Figure ¥8iaws an illustration of global grouping.

p:é\/ﬁ—z (13)

We round the result from Equation 13 to determine the bestoeurof partitionsP for N blocks.
This formula, derived by regression analysis of the beditjwar counts for various circuits, has been
validated for accuracy on circuits up to thousands of blotksiitively, this equation prescribes a square
chip layout with each partition consisting of only one roa#p(explained in the next section). This
allows maximum use of the partitioner without sacrificing #irea efficiency of the created trapezoids.
Also prescribed by this equation is that, for circuits oklésan 12 blocks, only one partition should be
used.

Section 6.6.5 analyzes the effect of grouping on circuitgoibus sizes. In general, global grouping
provides more benefit for larger circuits, reducing wiregth by up to 75% on the biggest circuits
tested. Additionally, the runtime of this optimization istrburdensome—partitioning a 1000 block
circuit takes under three seconds on our test platform. A fadd that this time is completely offset
by the speedup of the physical layout phase of Traffic. Sinaedspect’s runtime is roughty(n?) on
the number of blocks in the partition being worked on, exegubn many small partitions is faster than

running on one large partition.
6.3.2 Local Grouping

For shorter wires, Traffic bindsighly connected pairtogether before the physical placement begins.
Highly connected pairs are two blocks within the same pantitvhich have significantly more inter-
block nets than average for that partition. For instancéhénGSRC benchmank3003 blocks 57 and
76 are connected by 14 different nets. These are the modyhighnected blocks in the circuit, and
their distance apart in the final floorplan will make a notldeampact on the total wiring estimate.
Instead of forming macro-blocks or complicating the phgkjghase with a cost function to assure
these pairs have high proximity, we choose to use a sideteaffethe physical algorithm. As will be
explained in more detail in the next section, blocks of theesaeight will have high spatial locality in
each partition. To persuade these highly connected blacke tdjacent to each other, we expand the
shorter block to the height of the taller. Then we lock theghlli connected blocks so that they may

not rotate. Thus they will remain of identical height untiettermination of the physical algorithm. As
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(b)

Figure 45: lllustration of connectivity phase. (a) global groupindeve the linear arrangement of the
partitions depicts our linear placement result, (b) localging.

these blocks will be very close in the final layout, they sdaubt contribute significantly to the wiring
estimate.

However, this grouping has two detrimental effects. Fgshe addition of false area to these blocks,
effectively increasing the white-space of the layout. Aiddially, locking down too many blocks will
restrict the physical algorithm from exploring large aredighe solution space, possibly excluding
the optimal floorplan. Thus, the threshold number of blockspto group must be chosen wisely.
Experimentally we have determined the best threshold tdb&-that is, 10% of the blocks are bound
to another. Also, to mitigate the additional area being dddeblocks, the algorithm first rotates the
blocks such that the minimal amount of padding is needed.

Experiments have also shown that binding more than two bltagether slightly degrades results—
average wire-length in produced floorplans increases byoappately 1% when removing the pair-wise
restriction. The effect is negative because of the largeuentnof padding that must be added to make
all blocks the same height, but the impact is small due todhety of highly-connected block groups of
three or more.

Figure 45(b) shows an example of local grouping of the segamtition in Figure 45(a). Here three
sets of blocks are determined to be highly connected. Eaichispatated to minimize the amount of
padding added, then the shorter block is expanded to théathefghe taller. These blocks are then

locked to assure their heights will remain equal.
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On most benchmarks the execution time of this optimizat®ominimal-under a second for 1000
blocks on our test platform. As with the global groupingstls a one-time cost as all runs will utilize
the same bindings. In general, local binding further reduwge-length by approximately 5% beyond
just partitioning. A quantitive analysis of the effect obghl and local wire optimizations can be found

in Section 6.6.5.

6.4 Physical Phase

After the blocks have been grouped both globally and locditaffic begins its physical layout phase
(lines 4-13 in Figure 43). Though wire-minimization is thiéiroate goal of Traffic, a floorplan that
is packed more tightly together will tend to have a lower wastimate. This phase of the algorithm
ensures a final layout with as little white-space as possisewire-length has been addressed within
the first phase, this stage need only address the packingprobhough we could modify the physical
algorithm cost functions to address wires as well, this plsaadvantages come from the divide-and-
conquer approach to floorplanning.

Incidentally, the physical phase does end up minimizingllegres by picking the layout with the
lowest wire estimate when wire-optimization mode is used. tfousands of possible floorplans will
be evaluated, the likelihood of finding a layout with goodesfiength characteristics is quite high. As
mentioned earlier, constrained brute force techniques aeeurrent theme of Traffic. By limiting the
solution space to legal Traffic layouts, the number of pdssabrangements is quite tractable. Without
this constraint the number of possible solutions quicklgdmees unwieldy, making a full brute-force
approach impractical.

We start our explanation of the physical algorithm with ahhigvel overview of the algorithm, then

elaborate on the details.
6.4.1 Overview

Figure 46 is a graphical representation of what Traffic gbtisrto do for each partition. In (a), each block
is placed into one of many buckets depending on height. rTalteks will go in the top rows, shorter

blocks in the bottom rows. This initial placement is done manner that the row widths are somewhat
even. Buckets are then sorted alternating ascending acdrftiag, and lined up in contiguous rows in

(b). Thus each bucket is now a single row and should resentodgpazoid. Since there is a one-to-one
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Figure 46: Traffic physical phase illustration. (a) buckets, (b) roge$,layout for one patrtition, (d) all
partitions stacked together.

correspondence between buckets and rows, we use the teaamchangeably from here onward. In (c),
we move blocks between rows to even their lengths out, anthiigven rows over so that we form row-
pairs (i.e., 1-2 and 3-4 in the figure). These row-pairs aea $gueezed together tightly, leaving only
small gaps between. This is repeated for all partitionspeddently. Finally, the partitioned floorplans
are placed atop each other to form a total floorplan in (d) r&feno guarantee the partition floorplans
will be of the same width, so the bounding box becomes thédbip area.

In the pseudocode of Figure 43, line 6 is the initial buckeétige Evening of the rows’ lengths is
done on line 8, and line 10 does the flipping of the even-nuetbesws. The evening and squeezing of
the rows is how Traffic explores the local solution spacet gdone iteratively. This is done for each
partition, so line 12 merges all partition floorplans intatat floorplan.

The evening of the rows, also called mutating, usually agsiesven row balance within 3 or 4
steps. This leads to very tight layouts with very little vehgpace. However, it is advantageous to let
the mutations continue many more times. As blocks are moxaghd, the trapezoids change shape,
possibly creating tighter fits between row-pairs or bettigewstimates. Empirically, we found that the
best results are usually found within 25 steps, thus thetaots the inner loop of the pseudocode.

One run is somewhat significant in its exploration of the sotuspace, but Traffic does several runs
iteratively to explore a larger space. We evaluate eachasedon cost (currently, a weighting of wire-

length and area), and save the total floorplan with the loa@stt A run normally begins with a random
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first run
1: block arrayjnum_blocks] = readblocks();
2: adjmatrix[num_blocks][num_blocks] = readnets();

every run

num_buckets = getoptimalbuckets();

bucketshum _buckets];

ideal _row_width = sqrt(total block_area);

for (bucket from O tonum_buckets)

while ( bucketspucket].width < ideal row_width )

blocktemp = getnexttallestblock();
bucketspucket].add¢emp);

NI RW

Figure 47: Initial placement algorithm pseudocode.

.J. |l| N
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Figure 48: Initial placement of a Traffic partition.

rotation of the blocks and then proceeds with the determigrisutations. A recent modification to our
algorithm is the addition of a special run at the beginninthwil the blocks upright (taller than wider).
This special case handles circuits with mostly elongatedhs, which are sometimes a byproduct of
partitioning algorithms.

The remainder of this section explains the three most ilmpbigteps in this algorithm—the initial
placement, the mutations, and the squeezing. These aret@@aeh partition individually and once
completed, all partitions are stacked to form the total leyd he remainder of the algorithm is mostly

file /O, wire-length estimation, and bookkeeping for sgvihe best floorplans.
6.4.2 Initial Placement

Line 6 of the pseudocode in Figure 43 encapsulates thelinitiek to create the buckets/rows: set up
of data structures, creation of buckets, and placing blotksbuckets. Figure 47 shows more detailed
pseudocode for this step.

The data structures for Traffic are very simple and statier&lare no lists, vectors, graphs, or other

dynamic structures present. Instead, all of the work is ip@lane on a 2-D array representing the rows
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and a 2-D adjacency matrix representing the nets. The foofmghich contains pointers to a 1-D array
of blocks, which are C structs holding very basic informatimuch as width, height, and two lock bits
(explained in the next subsection).

As Figure 47 shows, the block array is filled once upon reattinbe data files and never modified,
but the row array must be recreated at the beginning of eaafficTrun. To create this 2-D array, we
must first know the optimal number of buckets to be used foctheent partition. The Traffic algorithm

determines this with Equation 14.

(14)

Buckets,, = -
P ’V HeZghttwg Ntotal

\/ZAreab' N, —‘
2

To derive this formula, we start with an ideal Traffic layoudavork backwards to the number of
rows needed to make it. This perfect floorplan is one-parjtsquare, row-based, and without white-
space. The square’s area is simply the sum of the individioakb’ areas since it is completely filled
by non-overlapping blocks. Consequently, the height &f $lguare would be equal to the square-root of
this block area sum. If block heights were uniformly distitdd, the number of rows would be roughly
equal to the height of the square divided by the average hefghblock. We then multiply this number
of buckets by the ratio of blocks in this partition versuswiele circuit. This will reduce the rows and
flatten the partition so that, when later stacked, the tatalrfilan will be relatively square. Finally, we
wish to have an even number of rows to form pairs with, so wadaup to the next even number.

The next step is to randomly rotate the blocks @@t (except the highly-connected blocks, which
have been locked) to create entropy for this run. As the nomgtare deterministic, this is the only
source of difference between runs. It is important to notd, ths we padded the heights of highly-
connected blocks to be equal and they did not get rotateg atteelikely to end up in the same bucket.

Finally, traffic then places the blocks into the buckets. Asdesire rows of roughly equal width,
we fill the each row with blocks until they are near the widttihad ideal floorplan computed above. As
we wish to keep the slopes of the opposing trapezoids asssiaslpossible for the tightest fit, we would
like the blocks in each row to be similar. Thus Traffic plackxks in order of descending height into
the rows. Thus the first row will have all the tallest blocksl dne last row all the shortest blocks. We
sort descending because an odd number of rows is used forflidagdlanning (see Section 6.6.2) and

we wish that last unmatched row to be as slender as possible.
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Figure 48 illustrates a typical result of Traffic initial plement. Each of the four rows is roughly
equal in length, all the tall blocks are toward the top, ahdtedrt blocks toward the bottom. The white-
space of this layout is about 10%, fairly low by modern floarpling standards. Yet the overhead to
set up the data structures and create the buckets is just mifé®econds on our test platform. Since
our algorithm relies on doing tens or hundreds of runs toaepihe solution space, this setup speed is

important. This is the overhead of a Traffic run—the real pgegis made in the mutations and squeezing.

6.4.3 Mutations

After initial bucket creation, we start calling them rowsiltastrate how the buckets will appear in the
layout. The focus is now on evening their widths, which weltough mutations (line 8 in the Figure
43).

There are four types of mutations which even out rows by nwhiocks in different ways:

Shrink widest row: moves blocks from the widest row to adjacent rows.

e Grow narrowest row: moves blocks into the narrowest row from adjacent rows.

Shrink widest row via rotation : takes blocks from the widest row, rotates th@dA, and places

them in the rows matching the height ranges of these blocks.

Grow narrowest row via rotation : takes blocks from wider-than-average rows that, whenedta

90°, match the height range in the narrowest row.

Detailed algorithms for the mutation methods are given guké 49. For brevity, only two of these
are shown in this pseudocode, but the remaining two aredtigisimilar. Traffic does one shrink and
one grow mutation per step. The non-rotating functions ae¢epred so they are called first. If the
adjacent rows were already too wide to accept blocks or tomwato remove blocks from, we call
the rotate versions instead to get blocks to/from non-adjgcows. The rotate versions identify the
matching rows by comparing the average heights of blocksahrow with the block in question. If all
four mutation functions cannot identify any moves to makeyfahe blocks must have both their locks
set. Thus there is no work to do and this run is completed .early

To prevent endless loops, each block is assigned two loaksve-lock and a rotate-lock. Once a

block is moved to another row without rotation, its movekigset, and once it is rotated and moved its
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mutate:

01: shrank = shrink widestrow();

02:if (shrank == false)

03: shrank = shrink widestrow_rotate();
04: grew = grow_narrowestrow();

05:if (grew ==false)

06: grew = grow.narrowestrow_rotate();
07:return (grew or shrank);

shrink _widest.row:

08: shrank = false

09: source_row = find_widestrow();

10: while (rows[source_row].width > ave_width)
11: short = shortestunlockedblock(source_row);
12:  target_row = min(rowsfsource_row + 1].width,
13: rowsfource_row — 1].width);

14: if (rowsftarget_row].width > ave_width)

15: break;

16: moveblock(short, target_row);

17: shrank =true

18:return shrank;

grow_narrowest_row_rotate:

19: grew =falsg

20: target_row = find_narrowestrow();

21: while (grew ==false)

22:  source_row = find_nextwidestrow();
23: if (source_row ==null) break;

24:. foreach (block in rows[ source_row])

25: if (block.locked)continue;

26: if (heightfits_row(block.width, target_row))
27: block.rotate();

28: moveblock(plock, target_row);

29: grew = true;

30: if (rowsftarget_row].width > ave_width)
31: break;

32: markrow.visited(source_row);
33:return grew;

Figure 49: Mutation algorithms pseudocode.

rotate-lock is set. These locks prevent further movemetmiden rows or rotation, respectively. Highly

connected blocks which were bound by the local wire grougpiage had both their move and rotate

locks preset, so they are guaranteed not to participateyimamation.

It is important that mutations are deterministic and bliadHe floorplan they will create. Whereas
Simulated Annealing uses complicated cost functions aabghilistic swaps, Traffic's mutations only
strive to even row widths regardless of how this might aftbetlayout. However, it is not coincidence

that floorplans with even row widths tend to produce less evifiace in Traffic and thus lower wire
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for (row from O tonum_rows)

if (row mod 2 ==0)
sortascendingfow);
flip _upsidedown(row);

else
sortdescending(ow);
gap = find_gapbetweenfow, row — 1);
shift upward(ow, gap);

Figure 50: Squeezing algorithm pseudocode.

e _|q_‘j

.—_l_]_

Figure 51: Sample Traffic partition after mutations and squeezing.

estimates.
6.4.4 Squeezing Rowpairs

The final step (line 10 in the pseudocode of Figure 43) encesgsasorting even rows ascending and
odd rows descending, flipping the even rows around, and ggeéhe row-pair trapezoids together.
A more detailed algorithmic overview of this procedure i®wh in Figure 50. As this process only
involves small quicksorts and simple arithmetic, squegtime is negligible.

By alternatingly sorting and flipping rows, smooth trapesaire formed with the slopes facing each
other. After compressing these together, the only sourcesite-space in the layout are the gaps at the
ends of rows and the crease between trapezoid slopes. Aionatkeep the row lengths even and row
slopes shallow, white-space is kept to a minimum. It is ingoarto note that the mutations are ignorant
of the squeezing process; as such, a mutation might causerthers of two facing blocks to touch and
prevent squeezing. In keeping with the philosophy of Traffics situation is handled by taking the best
floorplan of multiple mutations for each of multiple runs. Melieve this to be a superior option to
complex mutation heuristics.

Figure 51 shows a sample partition after mutations havelizgdahe rows and squeezing has com-

pressed the trapezoids together. The rows infringe on ehel pet do not overlap, and the trapezoids
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Table 15: Block and net counts for GSRC circuits.

ckt | blocks  nets

nl0a 10 118
n30a 30 349
n50a 50 485

n100a 100 885
n200a 200 1585
n300a 300 1893

tile together very tightly. In this example, the floorplarshander 3% white-space, an excellent block-
packing result. Additionally, the time required to credtés tfloorplan (including initial placement,
mutations, and squeezing) is only 0.0009 seconds on outZ4@on testbed.

Since highly-connected blocks have the same height, gontilh leave them adjacent. This is why
Section 6.3 states that the side-effect of Traffic is sufficte bind these pairs. They started out in the
same row, were pre-locked to avoid mutations, and are sadgaently in the final squeezing.

After squeezing is complete, statistics are gathered ardhibut and the Traffic step is completed.
If it is the best of the 25 layouts produced at each step, tiisiclered theartition bestfor this partition.
After each partition completes this run, each partitiort lggut will be stacked to form a total floorplan

for that run. If it is the best of all total floorplans, it is thatal best

6.5 Experimental Setup

All performance evaluations were done on an Intel Xeon 2.2®lth 512MB of memory running
Linux. Timing results are user-level time as measured byt timecommand which has a resolution
of 10ms. We use the half-perimeter method of wire estimation

The Traffic code is written in ANSI C. To avoid comparing padg@ment algorithms, wiring results
do not include nets going to pads. Thus, a net that connectkdlA, B, and a pad is reduced to a
connection between A and B. We also assume that all connectice made at the center of a block.
Traffic is compiled with GNU gcc 3.3.2 with “-O3” and “-funialoops”, and no parameters are tuned
between executions.

For comparison, we chose the Parquet Simulated Annealiagpfeinner [2] dated 4/11/2002 which
is written in C++. The choice of this annealer over others s to source-code availability and good
performance. We also modified the code to similarly ignomneations to pads and connect all wires to

the center of the block. All other code is left the same, aediésfault cooling schedule and “-compact”
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Table 16: Statistics for ISPD and MCNC circuits before and after piariing into 300 and 1000
blocks.

original 300B | 1000B
ckt cells nets nets nets

avg-large | 25178 25384| 2600 | 5229
avg-small| 21918 22124| 2686 | 5194
golem3 | 103048 144949 10935 | 21485
ibmO1 12752 14111} 4524 | 6558
ibm02 19601 19584| 9106 | 10812
ibm03 23136 27401 8670 | 11942
ibm04 27507 31970| 11264 | 14814
ibm05 29347 28446| 12859 | 15808
ibm06 32498 34826| 10501 | 14633
ibm07 45926 48117| 14489 | 19239
ibm08 51309 50513| 14642 | 19484
ibm09 53395 60902| 14703 | 22382
ibm10 69429 75196 22040 | 25000
ibm11 70558 81454| 19609 | 28271
ibm12 71076 77240| 22142 | 34589
ibm13 84199 99666| 23341 | 33607
ibm14 147605 152772 35802 | 48745
ibm15 161570 186608 39300 | 56453
ibm16 183484 190048 41974 | 58893
ibm17 185495 189581 54937 | 71395
ibm18 210613 201920 38785 | 55169
industry2 | 12637 13419] 3633 | 5495
industry3 | 15406 21923| 7254 | 10763
s13207P 8772 8651 958 1898
s15850P | 10470 10383 1092 | 2041
35932 18148 17828| 1505 | 2748
s38417 23949 23843| 1587 | 3037
38584 20995 20717 2056 | 3671

(which was found to appreciably improve results withoutgn#icant time penalty) are used. Unless
specified, we do not force fixed outlines—output floorplang tr&of any aspect ratio. Per the Parquet
Makefile, it is compiled under GNU g++ 3.3.2 with “-O3” optirations. The “-funrollloops” switch
was not used for Parquet since it made the execution run nawys As with Traffic, we do not tune
any parameters between executions.

For evaluation, we use the GSRC, ISPD, and MCNC benchmariitsr Table 15 lists statistics for
the GSRC circuits, showing the number of blocks and netsdrcittcuit. The ISPD and MCNC circuits
have been partitioned from standard cells into 300 and 1@@ké using Flare [29]. Table 16 shows the
net and cell counts for the original circuits and the netergfartitioning. The reader should note that
not all ISPD and MCNC circuits are used since some contairfideccells to produce sufficient blocks

for our experiments.
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6.6 Evaluation

As stated earlier, Traffic produces high quality floorplamily a fraction of the time of Simulated

Annealing. We first compare the performance of Traffic andjietron simple area minimization and
fixed-outline floorplanning. We then evalutate wire miniatinn for each algorithm separately and
both algorithms cooperatively. Finally, we explore theeeffof the connectivity phase on these Traffic

floorplans.
6.6.1 Area Minimization

Area minimization is sometimes referred to as the blockparproblem—place a set of various-sized
blocks into the smallest encompassing rectangle possitdéle 17 shows area-optimization results
for Traffic and Parquet with data for execution time (in set)rand white-space (as a percentage of
floorplan). For this experiment, we execute the Traffic atbor for 10 runs and the Parquet Simu-
lated Annealing algorithm for 5 runs, and choose the best srsults. Runtime includes all aspects
of execution including file I/O, and all experimental paraeng are as described in Section 6.5. Since
wire-optimization is not needed, Traffic does not perforny hlock grouping, thus only the second
phase of the algorithm is executed.

Table 17 shows that Traffic produces floorplans with signifilyaless white-space than SA in far
less time, especially for larger numbers of blocks. Theselrars are flexible since we could have only
done one SA run instead of 5, or done 100 Traffic runs insted@.ofowever, these counts were found
to be roughly the point of diminishing marginal returns.

Since modern circuit floorplanning places more emphasisimminimization than area minimiza-
tion, these numbers are no longer relevant to VLSI desigis &tperiment shows, however, that Traffic

is exceptional at solving the 2-D block packing problem.
6.6.2 Fixed Outline Floorplanning

A somewhat more pertinent floorplanning case is enforcinguading-box constraint. Top level designs
of large chips may include outlines of modules which havetgdie laid out. Though these outlines
usually have a reasonable amount of built-in white-spadixed-outline floorplanner must be flexible

enough to fit any aspect ratio.
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Table 17: Area minimization comparison. Data for Traffic and Simutb#ennealing run-time (in
seconds) and white-space (as floorplan percent) is given.

Traffic SA
ckt cpu (s) ws (%) | cpu (s) ws (%)
nl0a 0.00 4.6 0.1 12.0
n30a 0.00 3.2 0.4 10.6
n50a 0.00 4.4 1.0 9.6
nl00a 0.00 34 45 9.1
n200a 0.00 22 17.0 11.4
n300a 0.00 1.8 55.6 12.6
avg-large.300 0.02 6.1 65.0 23.3
avg-small.300 0.02 7.1 53.6 254
golem3.300 0.02 6.7 57.1 237
ibm01.300 0.02 7.0 53.9 29.7
ibm02.300 0.02 5.6 56.5 275
ibm03.300 0.01 6.3 57.1 27.3
ibm04.300 0.02 6.3 451 271
ibm05.300 0.02 7.3 58.5 26.7
ibm06.300 0.02 6.8 455 24.0
ibm07.300 0.02 7.1 58.8 24.3
ibm08.300 0.02 5.8 47.2 24.0
ibm09.300 0.02 6.7 47.3 23.4
ibm10.300 0.02 6.8 61.5 235
ibm11.300 0.02 7.4 47.8 23.7
ibm12.300 0.02 6.3 55.0 211
ibm13.300 0.02 6.6 62.7 23.6
ibm14.300 0.02 6.0 72.0 22.8
ibm15.300 0.02 6.7 56.0 23.0
ibm16.300 0.02 5.0 69.8 226
ibm17.300 0.02 57 73.8 231
ibm18.300 0.03 54 68.8 21.7
industry2.300 0.02 8.4 545 30.7
industry3.300 0.02 6.8 55.1 28.4
s13207P.300 0.01 52 40.7 305
s15850P.300 0.02 7.3 415 29.4
$35932.300 0.02 7.1 414 27.8
$38417.300 0.02 6.4 41.8 251
s$38584.300 0.02 6.1 53.4 26.7
avg-large.1000 0.13 6.6 910.6 42.2
avg-small.1000 0.12 57 716.8 433
golem3.1000 0.10 4.8 750.5 47.4
ibm01.1000 0.11 6.0 910.0 49.6
ibm02.1000 0.09 54 913.8 44.4
ibm03.1000 0.12 6.6 928.5 43.5
ibm04.1000 0.12 7.0 719.0 41.9
ibm05.1000 0.09 6.9 923.2 41.4
ibm06.1000 0.10 6.1 923.0 40.6
ibm07.1000 0.10 6.3 928.3 38.0
ibm08.1000 0.12 5.8 732.3 37.3
ibm09.1000 0.09 6.1 730.6 37.0
ibm10.1000 0.11 5.2 746.5 35.3
ibm11.1000 0.13 53 734.4 33.9
ibm12.1000 0.13 55 947.6 34.9
ibm13.1000 0.10 58 934.2 343
ibm14.1000 0.13 55 956.8 31.0
ibm15.1000 0.13 57 756.6 31.0
ibm16.1000 0.13 52 958.9 295
ibm17.1000 0.13 51 982.8 29.6
ibm18.1000 0.13 53 959.8 28.9
industry2.1000 0.09 6.9 913.5 49.4
industry3.1000 0.10 7.0 911.4 47.6
s13207P.1000 0.10 5.7 887.8 52.9
s$15850P.1000 0.13 7.0 899.7 51.9
$35932.1000 0.11 6.8 708.6 45.7
$38417.1000 0.10 6.2 708.1 43.2
$38584.1000 0.12 6.0 713.1 43.6

The Traffic algorithm is easily adaptable to fixed-outlinghly changing the the number of buck-
ets used. Equation 15 provides an initial guess at the nunoler needed during fixed outline floor-

planning:

Height fizeq ' N,
Heightavg Ntotal

Buckets, = (15)

This formula is similar to Equation 14 except we don’'t neeccatculate the height of the ideal

floorplan since it is given. We also don’t round up to the nstaesen number. Though this may leave
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Table 18: Fixed outline comparison. Data for average Traffic and Satea Annealing run-time (in
seconds) to achieve various aspect ratios with 10% whaeesfs given.

Traffic SA
ckt ‘ 2:1 3:1 4:1 ‘ 2:1 3:1 4:1
nl0a 0.0 0.0 0.0 0.0 - -
n30a 0.0 0.0 0.0 0.0 0.0 0.1
n50a 0.0 0.0 0.0 0.2 0.1 0.4
n100a 0.0 0.0 0.0 0.9 1.2 1.6
n200a 0.0 0.0 0.0 85 8.1 9.0

n300a 0.0 0.0 00| 217 20.0 17.9
avg-large.300 | 0.5 0.1 0.1 - - -
avg-small.300 | 0.1 0.1 0.0
golem3.300 0.1 0.1 0.1
ibm01.300 0.1 0.0 0.0
ibm02.300 0.2 0.1 0.1
ibm03.300 0.1 0.1 0.1
ibm04.300 0.1 0.1 0.1
ibm05.300 0.1 0.1 0.1
ibm06.300 0.1 0.1 0.1
ibm07.300 0.1 0.1 0.1
ibm08.300 0.2 0.1 0.1
ibm09.300 0.1 0.1 0.1
ibm10.300 0.1 0.1 0.1
ibm11.300 0.1 0.1 0.1
ibm12.300 0.1 0.1 0.1
ibm13.300 0.1 0.1 0.1
ibm14.300 0.1 0.2 0.2
ibm15.300 0.2 0.2 0.2
ibm16.300 0.2 0.2 0.2
ibm17.300 0.3 0.2 0.2
ibm18.300 0.2 0.2 0.2
industry2.300 0.1 0.0 0.0
industry3.300 0.1 0.1 0.1
s13207P.300 | 0.0 0.1 0.0
s15850P.300 | 0.1 0.0 0.0
$35932.300 0.1 0.1 0.0
$38417.300 0.1 0.0 0.0
$38584.300 0.0 0.1 0.0
avg-large.1000 | 0.3 0.2 0.2
avg-small.1000 [ 0.7 0.4 0.3
golem3.1000 | 0.6 0.3 0.4
ibm01.1000 0.8 0.6 0.3
ibm02.1000 0.6 0.4 0.4
ibm03.1000 0.4 0.3 0.3
ibm04.1000 0.6 0.5 0.3
ibm05.1000 0.6 0.4 0.2
ibm06.1000 0.6 0.3 0.4
ibm07.1000 0.2 0.3 0.2
ibm08.1000 0.5 0.3 0.3
ibm09.1000 0.5 0.5 0.3
ibm10.1000 0.3 0.3 0.4
ibm11.1000 0.3 0.3 0.2
ibm12.1000 0.2 0.4 0.3
ibm13.1000 0.5 0.2 0.3
ibm14.1000 0.3 0.3 0.4
ibm15.1000 0.5 0.5 0.4
ibm16.1000 0.8 0.4 0.4
ibm17.1000 0.5 0.4 0.5
ibm18.1000 0.6 0.4 0.3
industry2.1000 | 0.9 0.5 0.5
industry3.1000 | 0.5 0.5 0.3
s13207P.1000 | 0.4 0.1 0.1
s15850P.1000 | 0.5 0.3 0.3
$35932.1000 0.4 0.1 0.1
$38417.1000 0.2 0.2 0.2
$38584.1000 0.6 0.5 0.2

us with an unmatched odd row, the flexibility is needed to eahimore outline sizes. This equation
provides a reasonable guess at the needed number of buckéte ffirst run. After that, Traffic will
increment or decrement the number of rows depending on whétle last run produced a floorplan
which was too wide or tall respectively. As such, Traffic dgiyclearns the proper number of rows
regardless of the accuracy of the initial estimate.

Table 18 shows the average amount of time the Traffic and SAplxaners take to satisfy the given

aspect ratio with 10% white-space allowance. For Trafficewecute the algorithm 100 times (each of

126



which would involve multiple runs) and average the amountinog it takes to fit the given bounding
box. For Parguet we specify the aspect ratio option (-AR) ntlaximum white-space option (-maxWs),
and since it does not stop when it has found a matching soluti@0 runs. Thus the average time to a
satisfactory solution is then given as 100 runs divided yrtmber of successful runs multiplied by
the time per run. For example, if there were 20 successfid oun of 100, that would mean an average
of 100/20 =5 runs was needed to achieve the outline, and acdhds per run would give an average
time of 50 seconds. If an algorithm could not fit the boundig kvithin an hour, the table entry is
marked with a dash. All other experimental parameters agivas in Section 6.5.

It is evident that the Simulated Annealer can adapt to somihne@fGSRC bounding boxes, but
cannot satisfy the constraints for the ISPD and MCNC cissugten given unlimited time. Only when
the allowable white-space is raised to 30% are most of thecdspn most of the benchmarks achieved
by the Annealer. When these boxes are fit, though, the avéirageequired is usually longer than that
for the area-minimization experiment from the previousssdiion.

Traffic, however, fits all of the aspects at 10% white-spaceafoof the benchmarks in under a
second. This is due to the rapid adaption of the bucket fartmidifferent aspects and the generous
whitespace allowance. Thus Traffic usually fits these bayghibxes in less than the 10 runs used for

the previous evaluation.
6.6.3 Wire Minimization

Table 19 presents results for the relevant case of wire niaiion. The first pair of columns indicates
the run-time (in seconds) and half-perimeter wire estiniatenm.) for 10 runs of Traffic. The second
pair indicates the run-time and wire estimate for 5 runs afjiet. The remaining columns will be
described in the next subsection. Setup for this experirigeas described in Section 6.5, except we
add the “-minWL 1" switch to Parquet and the analogous switchiraffic to move the focus to wire
reduction rather than white-space. Results are once agatiabie by doing more or less runs of either
algorithm. No fixed outlines were used, though both algorgrsupport wire minimization within an
outline. It is important to note that results are not complardoetween 300- and 1000-block circuits.
The wire estimate given is for only inter-block wires—wireentained within a single block are not
included. Thus with fewer inter-block nets in the 300-blogksions, there will naturally be a lower

wire estimate.
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Table 19: Wire minimization comparison. Data for Traffic, Simulatedirealing, and Cooperative
Floorplanning run-time (in seconds) and HP wire estimatioomm.) is given.

Traffic SA Cooperative
ckt cpu (s) wires [ cpu(s) wires [ cpu(s) wires
nl0a 0.0 14 0 6 10 8
n30a 1.0 37 3 30 30 27
n50a 1.0 85 10 81 50 60
nl00a 2.0 122 40 130 100 94
n200a 21 258 144 293 200 218
n300a 3.2 400 614 443 300 334
avg-large.300 3.5 121 894 187 300 107
avg-small.300 34 117 3048 183 300 91
golem3.300 35 1427 1357 1742 300 1262
ibm01.300 33 159 3186 197 300 136
ibm02.300 35 408 2878 524 300 398
ibm03.300 33 546 3413 644 300 489
ibm04.300 34 646 4188 804 300 553
ibm05.300 3.7 1166 3570 1229 300 1061
ibm06.300 34 721 4103 1017 300 716
ibm07.300 3.6 1084 4307 1420 300 1050
ibm08.300 3.8 1248 3991 1775 300 1150
ibm09.300 3.8 1126 6424 1396 300 978
ibm10.300 4.0 1831 5041 2225 300 1784
ibm11.300 3.8 1717 6776 2328 300 1540
ibm12.300 3.9 1871 7505 2330 300 1623
ibm13.300 4.0 2067 9000 2342 300 1908
ibm14.300 4.2 4280 9732 5184 300 4188
ibm15.300 4.3 5217 10514 6794 300 4828
ibm16.300 49 5742 13900 6826 300 5155
ibm17.300 5.0 7608 10410 10171 300 7338
ibm18.300 6.0 5559 1186 7252 300 5453
industry2.300 35 130 2170 152 300 116
industry3.300 42 278 328 310 300 246
$13207P.300 3.1 26 230 30 300 20
$15850P.300 3.1 32 639 35 300 25
$35932.300 3.2 49 598 60 300 41
$38417.300 3.2 65 729 86 300 55
s$38584.300 3.2 79 262 106 300 66
avg-large.1000 8.6 169 8290 296 1000 153
avg-small.1000 8.4 162 7046 261 1000 145
golem3.1000 8.3 161 6990 259 1000 143
ibm01.1000 7.7 199 8207 215 1000 183
ibm02.1000 11.7 463 14182 537 1000 448
ibm03.1000 8.8 623 12640 715 1000 550
ibm04.1000 8.7 730 16301 991 1000 729
ibm05.1000 9.3 1286 20757 1433 1000 1187
ibm06.1000 9.8 839 17877 1043 1000 783
ibm07.1000 9.0 1315 20782 1492 1000 1198
ibm08.1000 12.3 1466 22757 1840 1000 1337
ibm09.1000 9.9 1370 21349 1940 1000 1290
ibm10.1000 10.3 1533 25605 2510 1000 1440
ibm11.1000 10.8 2092 | 30971 2725 1000 1949
ibm12.1000 13.1 2910 | 35148 3576 1000 2822
ibm13.1000 11.9 2602 | 34154 3207 1000 2517
ibm14.1000 12.0 5199 | 40765 7458 1000 5595
ibm15.1000 13.2 6410 | 57019 8850 1000 6168
ibm16.1000 16.5 6827 | 53923 9346 1000 6543
ibm17.1000 15.7 8828 | 72315 11934 1000 8487
ibm18.1000 17.7 6932 | 54471 9341 1000 6693
industry2.1000 8.1 158 7163 197 1000 150
industry3.1000 12.1 308 10492 379 1000 280
s13207P.1000 7.0 35 2736 45 1000 31
s$15850P.1000 7.3 42 3048 57 1000 38
$35932.1000 7.2 71 5431 113 1000 58
$38417.1000 7.6 95 4479 128 1000 81
$38584.1000 8.1 110 5913 153 1000 97

On average, Traffic produces floorplans with an 18% lower w#timate than Simulated Anneal-
ing. The only cases where Traffic does worse are the small8RCcircuits, where the algorithm is
hampered by the limitation of the row-based layout. Givemdihowing complexity of VLSI circuits,
however, it is reasonable to place less emphasis on thesbldak-count designs which are tractable
enough to be hand-optimized. The next subsection will adsivess this issue by using a short Simulated
Annealing refinement step to remove the row-based resinicti

For the larger block-count designs, Table 19 shows thattivadl annealing can easily take several
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Figure 52: (a) Traffic-generated initial floorplanning, (b) after Sikemed Annealing-based refinement.

hours on a modern machine. Traffic, on the other hand, coagpial of the experiments in less than 20
seconds (an average of 1314X speedup over Parquet) amutatilices better results. It is important to
note that these winning Traffic floorplans are not atypit¢ed-quality of an average run is usually within
5% of the best run. Thus Traffic can produce a very good floorfddll far better than SA) with only
a single run. Predictors can also give us these numbersiguick Traffic produces valid floorplans in

the same order of time.
6.6.4 Cooperative Floorplanning

Prior work has shown that the quality and speed of Simulatedealing can be greatly improved by
providing a reasonable quality initial solution [96]. Asaffic produces high-quality layouts in a min-
imal amount of time, we analyze the effect of feeding Traffigduts into Parquet. This should allow
the limitations of Traffic layouts to be relaxed, producingedter final floorplan. To illustrate, Figure
52 shows the circuit n100a after Traffic-based floorplanin@) and after Simulated Annealing-based
refinement in (b). The shades of the blocks are kept constapétiveen illustrations so it is clearer
where each block moved.

As the Traffic floorplans are already highly optimized and wshwto return results in a reasonable
amount of time, we constrain the total floorplanning time t@ second per block. Thus we give a
300-block circuit 300 seconds of floorplanning time betw@eaffic and Parquet. We experimented
with different time allocations but found this guidelinetie simple and sufficient. We use the 100-run
result from the previous subsection for the Traffic allamatiand the time remaining is given to Parquet
for refinement. Since this limit is usually less than SA'smal runtime, the execution is sped up. Like
many SA implementations, when Parquet is given a time lies$ Ithan a run, it reduces its move time

to fit one full run exactly within the limit. For instance, thime limit does not cut-off the SA algorithm,

129



but rather hurries it along. On average, this setup resulibout a 1:99 division of time between Traffic
and Parquet. The experimental setup is as described inoBe&h, except we add “-takePI” to the
Parquet command line to use the Traffic output as the inikdgament and “-startTime 0” to skip to the
final phase of the cooling schedule.

The final pair of columns in Table 19 shows the time allocafiarseconds) and wire-length results
(in mm.) for this cooperative floorplanning approach. Orrage, the annealing pass reduces the wire
estimate by 10% over the Traffic-only solution—a total 28%uion from the SA-only solution. The
biggest improvement is found in the smaller GSRC circuitsere the row-based Traffic layouts were
too restrictive. Adding the SA refinement step relaxes tloisstraint, producing better results than
SA on all but the smallest 10-block circuit. For the largePI5and MCNC circuits, only a marginal
improvment in floorplan quality is observed due to the highligy of the Traffic initial-placement. In

these cases, the Traffic-only solution has a much lowerlmyséfit ratio.
6.6.5 Connectivity Phase Impact

Table 20 shows the effect of wire-optimizations performgdTbaffic—the global minimization (parti-
tioning) and local minimization (pair binding). As in Semti 6.6.3, we execute Traffic for 10 runs—
approximately the point of diminishing marginal returns fesult quality. The run times for all of the
presented cases are nearly identical to that in Table 19rasopiimizations take a negligible amount of
time (less than 3 seconds on our test platform for even tigesarcircuits).

The first column shows Traffic's wire-length result in pureaminimization mode, which simply
chooses the smallest floorplan. As would be expected, tioas@sns will often have high wire estimates
as the algorithm is choosing to ignore nets. The remaindéneotolumns show Traffic's wire-length
result when choosing the minimum wire-length solution. Tingt of these columns applies neither
the local nor global minimization techniques and simplyases the floorplan with the smallest wire
estimate. Despite the mutations proceeding identically asea-minimization mode, these results are
about 10% better.

The next column applies only local minimization which birdghly-connected block pairs, but the
circuit remains unpartitioned. On average, wire-lengthetuced by about 5% over no optimizations.
Though this is not a large reduction in wire-length, the bead cost of local minimization is very

small and incurred only once for all Traffic runs. Intereghin on the smallest GSRC benchmakrs, the
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Table 20: Effect of Traffic wire optimizations. Data for HP wire estititan (in mm.) is given for
best-area mode and best wire-length mode with no, locabadjland both optimizations respectively.

area-min wire-min
ckt noopt | noopt local global both opt
nl0a 18 16 15 16 14
n30a 75 44 46 41 37
n50a 211 100 99 86 85
n100a 449 165 164 127 122
n200a 1351 367 365 271 258
n300a 2599 606 606 414 400
avg-large.300 241 262 263 124 121
avg-small.300 265 258 259 120 117
golem3.300 2620 2317 2318 1507 1427
ibm01.300 405 373 367 163 159
ibm02.300 1157 1035 1033 467 408
ibm03.300 1098 1039 1010 555 546
ibm04.300 1449 1321 1310 665 646
ibm05.300 1941 1877 1819 1186 1166
ibm06.300 1625 1492 1531 790 721
ibm07.300 2679 2377 2348 1191 1084
ibm08.300 2912 2577 2549 1414 1248
ibm09.300 2663 2556 2557 1178 1126
ibm10.300 4688 4392 4341 1982 1831
ibm11.300 4131 3899 3840 1807 1717
ibm12.300 4781 4298 4209 1991 1871
ibm13.300 5698 5070 4897 2238 2067
ibm14.300 11078 10079 10148 4504 4280
ibm15.300 13048 11200 11047 5452 5217
ibm16.300 13684 | 13145 13412 5990 5742
ibm17.300 18485 | 17713 17698 8321 7608
ibm18.300 14309 | 13303 13313 5915 5559
industry2.300 342 305 313 135 130
industry3.300 674 627 627 288 278
s13207P.300 68 62 62 27 26
s15850P.300 84 77 76 33 32
$35932.300 143 132 130 53 49
$38417.300 187 176 173 73 65
$38584.300 232 202 204 84 79
avg-large.1000 536 502 497 174 169
avg-small.1000 509 468 463 164 162
golem3.1000 501 464 461 162 161
ibm01.1000 577 520 532 201 199
ibm02.1000 1237 1206 1183 466 463
ibm03.1000 1455 1351 1372 620 623
ibm04.1000 1883 1773 1833 728 730
ibm05.1000 2389 2247 2218 1284 1286
ibm06.1000 2150 2068 2069 846 839
ibm07.1000 3328 3184 3133 1309 1315
ibm08.1000 3750 3415 3519 1511 1466
ibm09.1000 4015 3825 3794 1401 1370
ibm10.1000 4511 4257 4230 1593 1533
ibm11.1000 5574 5397 5452 2126 2092
ibm12.1000 7136 6894 6833 2927 2910
ibm13.1000 7990 7595 7581 2673 2602
ibm14.1000 14606 | 14246 14274 5047 5199
ibm15.1000 17331 | 16813 16801 6381 6410
ibm16.1000 19685 | 19455 19285 6906 6827
ibm17.1000 25494 | 23742 23992 8931 8828
ibm18.1000 20573 | 20083 20092 7084 6932
industry2.1000 466 448 431 162 158
industry3.1000 906 839 872 310 308
s$13207P.1000 101 127 126 36 35
s$15850P.1000 135 132 131 43 42
$35932.1000 240 222 221 71 71
s38417.1000 315 304 302 100 95
s$38584.1000 394 365 360 112 110

solution space is small enough that the highly connectedkblavill end up adjacent by coincidence
without the need for binding. Thus local minimization iswedant on these small circuits.

For the next set of results, global minimization (partitiag) is applied but local minimization is not.
This has a tremendous effect on wire-length, dropping tleeage wire estimate by about 50% from no
optimizations. As larger circuits are too unwieldy to betbrforced (even under the constraints of
legal Traffic floorplans), LPP partitioning limits Traffic & set of small solution spaces. Given the

roughly O(n?) complexity of the physical algorithm, working on many piotis actually increases the
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performance. Additionally, the linear-order partitiogimethod of LPP is very effective and allows the
final stacked floorplan to have excellent global wire chandstics.

The last column, applying both local and global minimizasipis identical to the results from Table
19. Adding local to global minimization produces approxieiathe same 5% improvement as adding
it to the no-optimization case. This cumulative effect afdband global minimization implies that these

two techniques are mostly orthogonal.

6.7 Conclusion

As stated earlier, Traffic derives its advantages from ttee afsconstrained brute force techniques.
Whereas competing algorithms such as Simulated anneadirdully choose each move, Traffic con-
strains the solution space to a tractable number of posigibiand rapidly evaluates several of them
blindly. The constraints, of course, are the key. By linggrrtitioning the circuit at the beginning,
we assure that every evaluated solution already has redjaled wires. By binding highly-connected
block-pairs together, we remove a great number of unddsifidorplans from the solution space. Fi-
nally, by keeping blocks within sorted row-pairs within Bamartition, we can constrain the number of
legal floorplans considerably without losing too much fldkoin block placement. The end-result
is an algorithm capable of besting Simulating Annealingrigaaand wire-length while taking several
orders of magnitude less time.

Moreover, we believe the importance of this floorplanningexpwill only increase. As transistor
integration continues to grow, rapid feedback on desigmgbsa is needed at all levels of design. At the
highest level, architects can no longer assume that theéqathgkesign is an independent stage, separate
from their concerns. Thus these designers require a wayysigdlly evaluating small changes to large
chips, such as changes in buffer sizes and bus width. Foagmukcation, Traffic can produce viable
floorplans for very large circuits in seconds rather tharrsiogiving immediate feedback to the architect
in similar time as a predictor.

At the block level, engineers must also make educated desisioncerning layouts. Choosing 10
large or 1000 small blocks will make a significant impact outability, timing, and similar concerns.
Traffic gives layout designers a way to generate and evalageits for all points within this solution
space in a practical amount of time and thus improve theigdeshoices.

At the final stage of design, run-time is less critical. Hoars a reasonable investment of time
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for floorplanning a completed chip, thus SA is a reasonabtecehhere. In these situations, however,
Traffic can provide an excellent initial floorplan for Simidd Annealing to quickly improve. Results

show that Traffic floorplans can be improved by over 10% wittS&nrefinement of only one second

per block.

Our ongoing investigations include timing, thermal, andalgling capacitance [124] optimization
during Traffic. We feel strongly that our constrained brigese philosophy will be applicable to these
difficult issues with only minor alterations to the core alton. In addition, we plan to handle recti-
linear shapes and fixed blocks to our algorithm, as well asldo€ks. Traffic-based 3D floorplanning

[105] and microarchitectural floorplanning [38] are als@eninvestigation.
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