1,409 research outputs found

    Taking a look at small-scale pedestrians and occluded pedestrians

    Get PDF
    Small-scale pedestrian detection and occluded pedestrian detection are two challenging tasks. However, most state-of-the-art methods merely handle one single task each time, thus giving rise to relatively poor performance when the two tasks, in practice, are required simultaneously. In this paper, it is found that small-scale pedestrian detection and occluded pedestrian detection actually have a common problem, i.e., an inaccurate location problem. Therefore, solving this problem enables to improve the performance of both tasks. To this end, we pay more attention to the predicted bounding box with worse location precision and extract more contextual information around objects, where two modules (i.e., location bootstrap and semantic transition) are proposed. The location bootstrap is used to reweight regression loss, where the loss of the predicted bounding box far from the corresponding ground-truth is upweighted and the loss of the predicted bounding box near the corresponding ground-truth is downweighted. Additionally, the semantic transition adds more contextual information and relieves semantic inconsistency of the skip-layer fusion. Since the location bootstrap is not used at the test stage and the semantic transition is lightweight, the proposed method does not add many extra computational costs during inference. Experiments on the challenging CityPersons and Caltech datasets show that the proposed method outperforms the state-of-the-art methods on the small-scale pedestrians and occluded pedestrians (e.g., 5.20% and 4.73% improvements on the Caltech)

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Repulsion Loss: Detecting Pedestrians in a Crowd

    Full text link
    Detecting individual pedestrians in a crowd remains a challenging problem since the pedestrians often gather together and occlude each other in real-world scenarios. In this paper, we first explore how a state-of-the-art pedestrian detector is harmed by crowd occlusion via experimentation, providing insights into the crowd occlusion problem. Then, we propose a novel bounding box regression loss specifically designed for crowd scenes, termed repulsion loss. This loss is driven by two motivations: the attraction by target, and the repulsion by other surrounding objects. The repulsion term prevents the proposal from shifting to surrounding objects thus leading to more crowd-robust localization. Our detector trained by repulsion loss outperforms all the state-of-the-art methods with a significant improvement in occlusion cases.Comment: Accepted to IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 201

    UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking

    Full text link
    In recent years, numerous effective multi-object tracking (MOT) methods are developed because of the wide range of applications. Existing performance evaluations of MOT methods usually separate the object tracking step from the object detection step by using the same fixed object detection results for comparisons. In this work, we perform a comprehensive quantitative study on the effects of object detection accuracy to the overall MOT performance, using the new large-scale University at Albany DETection and tRACking (UA-DETRAC) benchmark dataset. The UA-DETRAC benchmark dataset consists of 100 challenging video sequences captured from real-world traffic scenes (over 140,000 frames with rich annotations, including occlusion, weather, vehicle category, truncation, and vehicle bounding boxes) for object detection, object tracking and MOT system. We evaluate complete MOT systems constructed from combinations of state-of-the-art object detection and object tracking methods. Our analysis shows the complex effects of object detection accuracy on MOT system performance. Based on these observations, we propose new evaluation tools and metrics for MOT systems that consider both object detection and object tracking for comprehensive analysis.Comment: 18 pages, 11 figures, accepted by CVI

    Occluded Person Re-identification

    Full text link
    Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from the conventional person re-id problem where it is assumed that person images are detected without any occlusion. We thus call this new problem the occluded person re-identitification. To address this new problem, we propose a novel Attention Framework of Person Body (AFPB) based on deep learning, consisting of 1) an Occlusion Simulator (OS) which automatically generates artificial occlusions for full-body person images, and 2) multi-task losses that force the neural network not only to discriminate a person's identity but also to determine whether a sample is from the occluded data distribution or the full-body data distribution. Experiments on a new occluded person re-id dataset and three existing benchmarks modified to include full-body person images and occluded person images show the superiority of the proposed method.Comment: 6 pages, 7 figures, IEEE International Conference of Multimedia and Expo 201
    • …
    corecore