2 research outputs found

    Multi-Label Logo Classification using Convolutional Neural Networks

    Get PDF
    The classification of logos is a particular case within computer vision since they have their own characteristics. Logos can contain only text, iconic images or a combination of both, and they usually include figurative symbols designed by experts that vary substantially besides they may share the same semantics. This work presents a method for multi-label classification and retrieval of logo images. For this, Convolutional Neural Networks (CNN) are trained to classify logos from the European Union TradeMark (EUTM) dataset according to their colors, shapes, sectors and figurative designs. An auto-encoder is also trained to learn representations of the input images. Once trained, the neural codes from the last convolutional layers in the CNN and the central layer of the auto-encoder can be used to perform similarity search through kNN, allowing us to obtain the most similar logos based on their color, shape, sector, figurative elements, overall features, or a weighted combination of them provided by the user. To the best of our knowledge, this is the first multi-label classification method for logos, and the only one that allows retrieving a ranking of images with these criteria provided by the user.This work is supported by the Spanish Ministry HISPAMUS project with code TIN2017-86576-R, partially funded by the EU

    Multi-label logo recognition and retrieval based on weighted fusion of neural features

    Get PDF
    Classifying logo images is a challenging task as they contain elements such as text or shapes that can represent anything from known objects to abstract shapes. While the current state of the art for logo classification addresses the problem as a multi-class task focusing on a single characteristic, logos can have several simultaneous labels, such as different colours. This work proposes a method that allows visually similar logos to be classified and searched from a set of data according to their shape, colour, commercial sector, semantics, general characteristics, or a combination of features selected by the user. Unlike previous approaches, the proposal employs a series of multi-label deep neural networks specialized in specific attributes and combines the obtained features to perform the similarity search. To delve into the classification system, different existing logo topologies are compared and some of their problems are analysed, such as the incomplete labelling that trademark registration databases usually contain. The proposal is evaluated considering 76,000 logos (seven times more than previous approaches) from the European Union Trademarks dataset, which is organized hierarchically using the Vienna ontology. Overall, experimentation attains reliable quantitative and qualitative results, reducing the normalized average rank error of the state-of-the-art from 0.040 to 0.018 for the Trademark Image Retrieval task. Finally, given that the semantics of logos can often be subjective, graphic design students and professionals were surveyed. Results show that the proposed methodology provides better labelling than a human expert operator, improving the label ranking average precision from 0.53 to 0.68.This work was supported by the Pattern Recognition and Artificial Intelligence Group (PRAIG) from the University of Alicante and the University Institute for Computing Research (IUII). The Conselleria d'Innovaci贸, Universitats, Ci猫ncia I Societat Digital from Generalitat Valenciana and FEDER provided some of the computing resources used in this project through IDIFEDER/2020/003. This research was partially supported by the Conselleria de Educaci贸n, Universidades y Empleo, for the project "clasifIA" of the Escola Superior d'Art i Disseny d'Alacant
    corecore