349 research outputs found

    A Novel Hybrid CNN Denoising Technique (HDCNN) for Image Denoising with Improved Performance

    Get PDF
    Photo denoising has been tackled by deep convolutional neural networks (CNNs) with powerful learning capabilities. Unfortunately, some CNNs perform badly on complex displays because they only train one deep network for their image blurring models. We recommend a hybrid CNN denoising technique (HDCNN) to address this problem. An HDCNN consists of a dilated interfere with, a RepVGG block, an attribute sharpening interferes with, as well as one inversion. To gather more context data, DB incorporates a stretched convolution, data sequential normalization (BN), shared convergence, and the activating function called the ReLU. Convolution, BN, and reLU are combined in parallel by RVB to obtain complimentary width characteristics. The RVB's refining characteristics are used to refine FB, which is then utilized to collect more precise data. To create a crisp image, a single convolution works in conjunction with a residual learning process. These crucial elements enable the HDCNN to carry out visual denoising efficiently. The suggested HDCNN has a good denoising performance in open data sets, according to experiments

    What Twitter Profile and Posted Images Reveal About Depression and Anxiety

    Full text link
    Previous work has found strong links between the choice of social media images and users' emotions, demographics and personality traits. In this study, we examine which attributes of profile and posted images are associated with depression and anxiety of Twitter users. We used a sample of 28,749 Facebook users to build a language prediction model of survey-reported depression and anxiety, and validated it on Twitter on a sample of 887 users who had taken anxiety and depression surveys. We then applied it to a different set of 4,132 Twitter users to impute language-based depression and anxiety labels, and extracted interpretable features of posted and profile pictures to uncover the associations with users' depression and anxiety, controlling for demographics. For depression, we find that profile pictures suppress positive emotions rather than display more negative emotions, likely because of social media self-presentation biases. They also tend to show the single face of the user (rather than show her in groups of friends), marking increased focus on the self, emblematic for depression. Posted images are dominated by grayscale and low aesthetic cohesion across a variety of image features. Profile images of anxious users are similarly marked by grayscale and low aesthetic cohesion, but less so than those of depressed users. Finally, we show that image features can be used to predict depression and anxiety, and that multitask learning that includes a joint modeling of demographics improves prediction performance. Overall, we find that the image attributes that mark depression and anxiety offer a rich lens into these conditions largely congruent with the psychological literature, and that images on Twitter allow inferences about the mental health status of users.Comment: ICWSM 201

    A Review of Skin Melanoma Detection Based on Machine Learning

    Get PDF
    Dermatological malignancies, such as skin cancer, are the most extensively known kinds of human malignancies in people with fair skin. Despite the fact that malignant melanoma is the type of skin cancer that is associated with the highest mortality rate, the non-melanoma skin tumors are unquestionably normal. The frequency of both melanoma and non-melanoma skin cancers is increasing, and the number of cases being studied is increasing at a reasonably regular period, according to the National Cancer Institute. Early detection of skin cancer can help patient’s live longer lives by reducing their mortality rate. In this research, we will look at various approaches for initiating period melanoma skin cancer detection and compare them. Pathologists use biopsies to diagnose skin lesions, and they base their decisions on cell life systems and tissue transport in many cases. However, in many cases, the decision is emotional, and it commonly results in significant changeability. The application of quantitative measures by PC diagnostic devices, on the other hand, allows for more accurate target judgment. This research examines the preceding period as well as current advancements in the field of machine-aided skin cancer detection (MASCD)

    Enhancing Face Recognition with Deep Learning Architectures: A Comprehensive Review

    Get PDF
    The progression of information discernment via facial identification and the emergence of innovative frameworks has exhibited remarkable strides in recent years. This phenomenon has been particularly pronounced within the realm of verifying individual credentials, a practice prominently harnessed by law enforcement agencies to advance the field of forensic science. A multitude of scholarly endeavors have been dedicated to the application of deep learning techniques within machine learning models. These endeavors aim to facilitate the extraction of distinctive features and subsequent classification, thereby elevating the precision of unique individual recognition. In the context of this scholarly inquiry, the focal point resides in the exploration of deep learning methodologies tailored for the realm of facial recognition and its subsequent matching processes. This exploration centers on the augmentation of accuracy through the meticulous process of training models with expansive datasets. Within the confines of this research paper, a comprehensive survey is conducted, encompassing an array of diverse strategies utilized in facial recognition. This survey, in turn, delves into the intricacies and challenges that underlie the intricate field of facial recognition within imagery analysis

    A Comprehensive Review on Computer Vision Analysis of Aerial Data

    Full text link
    With the emergence of new technologies in the field of airborne platforms and imaging sensors, aerial data analysis is becoming very popular, capitalizing on its advantages over land data. This paper presents a comprehensive review of the computer vision tasks within the domain of aerial data analysis. While addressing fundamental aspects such as object detection and tracking, the primary focus is on pivotal tasks like change detection, object segmentation, and scene-level analysis. The paper provides the comparison of various hyper parameters employed across diverse architectures and tasks. A substantial section is dedicated to an in-depth discussion on libraries, their categorization, and their relevance to different domain expertise. The paper encompasses aerial datasets, the architectural nuances adopted, and the evaluation metrics associated with all the tasks in aerial data analysis. Applications of computer vision tasks in aerial data across different domains are explored, with case studies providing further insights. The paper thoroughly examines the challenges inherent in aerial data analysis, offering practical solutions. Additionally, unresolved issues of significance are identified, paving the way for future research directions in the field of aerial data analysis.Comment: 112 page

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8
    • …
    corecore