64 research outputs found

    Design and protection algorithms for path level aggregation of traffic in WDM metro optical networks

    Get PDF
    Wavelength Division Multiplexing (WDM) promises to offer a cost effective and scalable solution to meet the emerging demands of the Internet. WDM splits the tremendous bandwidth latent in a fiber into multiple non-overlapping wavelength channels, each of which can be operated at the peak electronic rate. Commercial systems with 128 wavelengths and transmission rates of up to 40 Gbps per wavelength have been made possible using state of the art optical technologies to deal with physical impairments. Systems with higher capacities are likely to evolve in the future. The end user requirements for bandwidth, on the other hand, have been ranging from 155 Mbps to 2.5 Gbps. Dedicating a wavelength for each end user will lead to severe underutilization of WDM channels. This brings to forefront the requirement for sharing of bandwidth in a wavelength among multiple end users.;The concept of wavelength sharing among multiple clients is called grooming. Grooming can be done purely at the optical layer (optical grooming) or it can be done with support from the client layer (electronic grooming). The advantage of all optical grooming is the ease of scalability due to its transparency as opposed to electronic grooming which is constrained by electronic bottlenecks. Efforts towards enhancing optical grooming is pursued through increasing optical switching speeds. However, technologies to make optical switches with high speeds, large port counts and low insertion losses have been elusive and may continue to remain so in the near future.;Recently, there have been some research into designing new architectures and protocols focused on optical grooming without resorting to fast optical switching. Typically, this is achieved in three steps: (1) configure the circuit in the form of a path or a tree; (2) use optical devices like couplers or splitters to allow multiple transmitters and/or receivers to share the same circuit; and (3) provide an arbitration mechanism to avoid contention among end users of the circuit. This transparent sharing of the wavelength channel utilizes the network resources better than the conventional low-speed circuit switched approaches. Consequently, it becomes important to quantify the improvement in achieved performance and evaluate if the reaped benefits justify the cost of the required additional hardware and software.;The contribution of this thesis is two fold: (1) developing a new architecture called light-trails as an IP based solution for next generation WDM optical networks, and (2) designing a unified framework to model Path Level Aggregation of Traffic in metrO Optical Networks (PLATOONs). The algorithms suggested here have three features: (1) accounts for four different path level aggregation strategies---namely, point to point (for example, lightpaths), point to multi-point (for example, source based light-trails), multi-point to point (for example, destination based light-trails) and multi-point to multi-point (for example, light-trails); (2) incorporates heterogenous switching architectures; and (3) accommodates multi-rate traffic. Algorithms for network design and survivability are developed for PLATOONs in the presence of both static and dynamic traffic. Connection level dedicated/shared, segregated/mixed protection schemes are formulated for single link failures in the presence of static and dynamic traffic. A simple medium access control protocol that avoids collisions when the channel is shared by multiple clients is also proposed.;Based on extensive simulations, we conclude that, for the studied scenarios, (1) when client layer has no electronic grooming capabilities, light-trails (employing multi-point to multi-point aggregation strategy) perform several orders of magnitude better than lightpaths and (2) when client layer has full electronic grooming capabilities, source based light-trails (employing point to multi-point aggregation strategy) perform the best in wavelength limited scenarios and lightpaths perform the best in transceiver limited scenarios.;The algorithms that are developed here will be helpful in designing optical networks that deploy path level aggregation strategies. The proposed ideas will impact the design of transparent, high-speed all-optical networks.</p

    Resource Management in Survivable Multi-Granular Optical Networks

    Get PDF
    The last decade witnessed a wild growth of the Internet traffic, promoted by bandwidth-hungry applications such as Youtube, P2P, and VoIP. This explosive increase is expected to proceed with an annual rate of 34% in the near future, which leads to a huge challenge to the Internet infrastructure. One foremost solution to this problem is advancing the optical networking and switching, by which abundant bandwidth can be provided in an energy-efficient manner. For instance, with Wavelength Division Multiplexing (WDM) technology, each fiber can carry a mass of wavelengths with bandwidth up to 100 Gbits/s or higher. To keep up with the traffic explosion, however, simply scaling the number of fibers and/or wavelengths per fiber results in the scalability issue in WDM networks. One major motivation of this dissertation is to address this issue in WDM networks with the idea of waveband switching (WBS). This work includes the author\u27s study on multiple aspects of waveband switching: how to address dynamic user demand, how to accommodate static user demand, and how to achieve a survivable WBS network. When combined together, the proposed approaches form a framework that enables an efficient WBS-based Internet in the near future or the middle term. As a long-term solution for the Internet backbone, the Spectrum Sliced Elastic Optical Path (SLICE) Networks recently attract significant interests. SLICE aims to provide abundant bandwidth by managing the spectrum resources as orthogonal sub-carriers, a finer granular than wavelengths of WDM networks. Another important component of this dissertation is the author\u27s timely study on this new frontier: particulary, how to efficiency accommodate the user demand in SLICE networks. We refer to the overall study as the resource management in multi-granular optical networks. In WBS networks, the multi-granularity includes the fiber, waveband, and wavelength. While in SLICE networks, the traffic granularity refers to the fiber, and the variety of the demand size (in terms of number of sub-carriers)

    A comprehensive study on next-generation optical grooming switches

    Full text link

    Design and provisioning of WDM networks for traffic grooming

    Get PDF
    Wavelength Division Multiplexing (WDM) is the most viable technique for utilizing the enormous amounts of bandwidth inherently available in optical fibers. However, the bandwidth offered by a single wavelength in WDM networks is on the order of tens of Gigabits per second, while most of the applications\u27 bandwidth requirements are still subwavelength. Therefore, cost-effective design and provisioning of WDM networks require that traffic from different sessions share bandwidth of a single wavelength by employing electronic multiplexing at higher layers. This is known as traffic grooming. Optical networks supporting traffic grooming are usually designed in a way such that the cost of the higher layer equipment used to support a given traffic matrix is reduced. In this thesis, we propose a number of optimal and heuristic solutions for the design and provisioning of optical networks for traffic grooming with an objective of network cost reduction. In doing so, we address several practical issues. Specifically, we address the design and provisioning of WDM networks on unidirectional and bidirectional rings for arbitrary unicast traffic grooming, and on mesh topologies for arbitrary multipoint traffic grooming. In multipoint traffic grooming, we address both multicast and many-to-one traffic grooming problems. We provide a unified frame work for optimal and approximate network dimensioning and channel provisioning for the generic multicast traffic grooming problem, as well as some variants of the problem. For many-to-one traffic grooming we propose optimal as well as heuristic solutions. Optimal formulations which are inherently non-linear are mapped to an optimal linear formulation. In the heuristic solutions, we employ different problem specific search strategies to explore the solution space. We provide a number of experimental results to show the efficacy of our proposed techniques for the traffic grooming problem in WDM networks

    Reformulation and Decomposition Approaches for Traffic Routing in Optical Networks

    Get PDF
    International audienceWe consider a multi-layer network design model arising from a real-life telecommunication application where traffic routingdecisions imply the installation of expensive nodal equipment. Customer requests come in the form of bandwidthreservations for a given origin destination pair. Bandwidth demands are expressed as multiples of nominal granularities. Each request must be single-path routed. Grooming several requests on the same wavelength and multiplexing wavelengths in the same optical stream allow a more efficient use of network capacity. However, each addition or withdrawal of a request from a wavelength requires optical to electrical conversion and the use of cross-connect equipment with expensive ports of high densities. The objective is to minimize the number of required ports of the cross-connect equipment. We deal with backbone optical networks, therefore with networks with a moderate number of nodes (14 to 20) but thousands of requests. Further difficulties arise from the symmetries in wavelength assignment and traffic loading. Traditional multi-commodity network flowapproaches are not suited for this problem. Instead, four alternative models relying on Dantzig-Wolfe and/or Benders' decomposition areintroduced and compared. The formulations are strengthened using symmetry breaking restrictions, variable domain reduction, zero-onediscretization of integer variables, and cutting planes. The resulting dual bounds are compared to the values of primal solutions obtained through hierarchical optimization and rounding procedures. For realistic size instances, our best approaches provide solutions with optimality gap of approximately 5% on average in around two hours of computing time

    Reformulation and Decomposition Approaches for Traffic Routing in Optical Networks

    Get PDF
    International audienceWe consider a multi-layer network design model arising from a real-life telecommunication application where traffic routingdecisions imply the installation of expensive nodal equipment. Customer requests come in the form of bandwidthreservations for a given origin destination pair. Bandwidth demands are expressed as multiples of nominal granularities. Each request must be single-path routed. Grooming several requests on the same wavelength and multiplexing wavelengths in the same optical stream allow a more efficient use of network capacity. However, each addition or withdrawal of a request from a wavelength requires optical to electrical conversion and the use of cross-connect equipment with expensive ports of high densities. The objective is to minimize the number of required ports of the cross-connect equipment. We deal with backbone optical networks, therefore with networks with a moderate number of nodes (14 to 20) but thousands of requests. Further difficulties arise from the symmetries in wavelength assignment and traffic loading. Traditional multi-commodity network flowapproaches are not suited for this problem. Instead, four alternative models relying on Dantzig-Wolfe and/or Benders' decomposition areintroduced and compared. The formulations are strengthened using symmetry breaking restrictions, variable domain reduction, zero-onediscretization of integer variables, and cutting planes. The resulting dual bounds are compared to the values of primal solutions obtained through hierarchical optimization and rounding procedures. For realistic size instances, our best approaches provide solutions with optimality gap of approximately 5% on average in around two hours of computing time

    Multi-layer survivability in IP-over-WDM networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    In-operation planning in flexgrid optical core networks

    Get PDF
    New generation applications, such as cloud computing or video distribution, can run in a telecom cloud infrastructure where the datacenters (DCs) of telecom operators are integrated in their networks thus, increasing connections' dynamicity and resulting in time-varying traffic capacities, which might also entail changes in the traffic direction along the day. As a result, a flexible optical technology able to dynamically set-up variable-capacity connections, such as flexgrid, is needed. Nonetheless, network dynamicity might entail network performance degradation thus, requiring re-optimizing the network while it is in operation. This thesis is devoted to devise new algorithms to solve in-operation network planning problems aiming at enhancing the performance of optical networks and at studying their feasibility in experimental environments. In-operation network planning requires from an architecture enabling the deployment of algorithms that must be solved in stringent times. That architecture can be based on a Path Computation Element (PCE) or a Software Defined Networks controller. In this thesis, we assume the former split in a front-end PCE, in charge of provisioning paths and handling network events, and a specialized planning tool in the form of a back-end PCE responsible for solving in-operation planning problems. After the architecture to support in-operation planning is assessed, we focus on studying the following applications: 1) Spectrum fragmentation is one of the most important problems in optical networks. To alleviate it to some extent without traffic disruption, we propose a hitless spectrum defragmentation strategy. 2) Each connection affected by a failure can be recovered using multiple paths to increase traffic restorability at the cost of poor resource utilization. We propose re-optimizing the network after repairing the failure to aggregate and reroute those connections to release spectral resources. 3) We study two approaches to provide multicast services: establishing a point-to-multipoint connections at the optical layer and using multi-purpose virtual network topologies (VNT) to serve both unicast and multicast connectivity requests. 4) The telecom cloud infrastructure, enables placing contents closer to the users. Based on it, we propose a hierarchical content distribution architecture where VNTs permanently interconnect core DCs and metro DCs periodically synchronize contents to the core DCs. 5) When the capacity of the optical backbone network becomes exhausted, we propose using a planning tool with access to inventory and operation databases to periodically decide the equipment and connectivity to be installed at the minimum cost reducing capacity overprovisioning. 6) In multi-domain multi-operator scenarios, a broker on top of the optical domains can provision multi-domain connections. We propose performing intra-domain spectrum defragmentation when no contiguous spectrum can be found for a new connection request. 7) Packet nodes belonging to a VNT can collect and send incoming traffic monitoring data to a big data repository. We propose using the collected data to predict next period traffic and to adapt the VNT to future conditions. The methodology followed in this thesis consists in proposing a problem statement and/or a mathematical formulation for the problems identified and then, devising algorithms for solving them. Those algorithms are simulated and then, they are experimentally assessed in real test-beds. This thesis demonstrates the feasibility of performing in-operation planning in optical networks, shows that it enhances the performance of the network and validates the feasibility of its deployment in real networks. It shall be mentioned that part of the work reported in this thesis has been done within the framework of several research projects, namely IDEALIST (FP7-ICT-2011-8) and GEANT (238875) funded by the EC and SYNERGY (TEC2014-59995-R) funded by the MINECO.Les aplicacions de nova generació, com ara el cloud computing o la distribució de vídeo, es poden executar a infraestructures de telecom cloud (TCI) on operadors integren els seus datacenters (DC) a les seves xarxes. Aquestes aplicacions fan que incrementi tant la dinamicitat de les connexions, com la variabilitat de les seves capacitats en el temps, arribant a canviar de direcció al llarg del dia. Llavors, cal disposar de tecnologies òptiques flexibles, tals com flexgrid, que suportin aquesta dinamicitat a les connexions. Aquesta dinamicitat pot degradar el rendiment de la xarxa, obligant a re-optimitzar-la mentre és en operació. Aquesta tesis està dedicada a idear nous algorismes per a resoldre problemes de planificació sobre xarxes en operació (in-operation network planning) per millorar el rendiment de les xarxes òptiques i a estudiar la seva factibilitat en entorns experimentals. Aquests problemes requereixen d’una arquitectura que permeti desplegar algorismes que donin solucions en temps restrictius. L’arquitectura pot estar basada en un Element de Computació de Rutes (PCE) o en un controlador de Xarxes Definides per Software. En aquesta tesis, assumim un PCE principal encarregat d’aprovisionar rutes i gestionar esdeveniments de la xarxa, i una eina de planificació especialitzada en forma de PCE de suport per resoldre problemes d’in-operation planning. Un cop validada l’arquitectura que dona suport a in-operation planning, estudiarem les següents aplicacions: 1) La fragmentació d’espectre és un dels principals problemes a les xarxes òptiques. Proposem reduir-la en certa mesura, fent servir una estratègia que no afecta al tràfic durant la desfragmentació. 2) Cada connexió afectada per una fallada pot ser recuperada fent servir múltiples rutes incrementant la restaurabilitat de la xarxa, tot i empitjorar-ne la utilització de recursos. Proposem re-optimitzar la xarxa després de reparar una fallada per agregar i re-enrutar aquestes connexions tractant d’alliberar recursos espectrals. 3) Estudiem dues solucions per aprovisionar serveis multicast: establir connexions punt-a-multipunt sobre la xarxa òptica i utilitzar Virtual Network Topologies (VNT) multi-propòsit per a servir peticions de connectivitat tant unicast com multicast. 4) La TCI permet mantenir els continguts a prop dels usuaris. Proposem una arquitectura jeràrquica de distribució de continguts basada en la TCI, on els DC principals s’interconnecten per mitjà de VNTs permanents i els DCs metropolitans periòdicament sincronitzen continguts amb els principals. 5) Quan la capacitat de la xarxa òptica s’exhaureix, proposem utilitzar una eina de planificació amb accés a bases de dades d’inventari i operacionals per decidir periòdicament l’equipament i connectivitats a instal·lar al mínim cost i reduir el sobre-aprovisionament de capacitat. 6) En entorns multi-domini multi-operador, un broker per sobre dels dominis òptics pot aprovisionar connexions multi-domini. Proposem aplicar desfragmentació d’espectre intra-domini quan no es pot trobar espectre contigu per a noves peticions de connexió. 7) Els nodes d’una VNT poden recollir i enviar informació de monitorització de tràfic entrant a un repositori de big data. Proposem utilitzar aquesta informació per adaptar la VNT per a futures condicions. La metodologia que hem seguit en aquesta tesis consisteix en formalitzar matemàticament els problemes un cop aquests son identificats i, després, idear algorismes per a resoldre’ls. Aquests algorismes son simulats i finalment validats experimentalment en entorns reals. Aquesta tesis demostra la factibilitat d’implementar mecanismes d’in-operation planning en xarxes òptiques, mostra els beneficis que aquests aporten i valida la seva aplicabilitat en xarxes reals. Part del treball presentat en aquesta tesis ha estat dut a terme en el marc dels projectes de recerca IDEALIST (FP7-ICT-2011-8) i GEANT (238875), finançats per la CE, i SYNERGY (TEC2014-59995-R), finançat per el MINECO.Postprint (published version
    corecore