7 research outputs found

    Detailed Concept of Network Security

    Get PDF
    Computer world security management is essential resource for all the latest news, analysis, case studies and reviews on authentication, business continuity and disaster recovery, data control, security infrastructure, intellectual property, privacy standards, law, threats cyber crime and hacking and identity fraud and theft. This section covers secrecy, reliable storage and encryption. security, protecting data from unauthorized access, protecting data from damage and ROM either an external or an internal source, and a disgruntled employee could easily do much harm

    Agent Organization and Request Propagation in the Knowledge Plane

    Get PDF
    In designing and building a network like the Internet, we continue to face the problems of scale and distribution. In particular, network management has become an increasingly difficult task, and network applications often need to maintain efficient connectivity graphs for various purposes. The knowledge plane was proposed as a new construct to improve network management and applications. In this proposal, I propose an application-independent mechanism to support the construction of application-specific connectivity graphs. Specifically, I propose to build a network knowledge plane and multiple sub-planes for different areas of network services. The network knowledge plane provides valuable knowledge about the Internet to the sub-planes, and each sub-plane constructs its own connectivity graph using network knowledge and knowledge in its own specific area. I focus on two key design issues: (1) a region-based architecture for agent organization; (2) knowledge dissemination and request propagation. Network management and applications benefit from the underlying network knowledge plane and sub-planes. To demonstrate the effectiveness of this mechanism, I conduct case studies in network management and security

    Multi-domain Diagnosis of End-to-End Service Failures in Hierarchically Routed Networks

    No full text
    Abstract. This paper investigates an approach to improving the scalability and feasibility of probabilistic fault localization in communication systems by exploiting the domain semantics of computer networks. The proposed technique divides the computational effort and system knowledge among multiple, hierarchically organized managers. Each manager performs fault localization in the domain it manages and requires only the knowledge of its own domain. Since failures propagate among domains, domain managers cooperate with each other to find a consensus explanation of the observed disorder. We show through simulation that the proposed approach increases the effectiveness of probabilistic diagnosis and makes it feasible in networks of considerable size 1.

    Agent organization in the KP

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 181-191).In designing and building a network like the Internet, we continue to face the problems of scale and distribution. With the dramatic expansion in scale and heterogeneity of the Internet, network management has become an increasingly difficult task. Furthermore, network applications often need to maintain efficient organization among the participants by collecting information from the underlying networks. Such individual information collection activities lead to duplicate efforts and contention for network resources. The Knowledge Plane (KP) is a new common construct that provides knowledge and expertise to meet the functional, policy and scaling requirements of network management, as well as to create synergy and exploit commonality among many network applications. To achieve these goals, we face many challenging problems, including widely distributed data collection, efficient processing of that data, wide availability of the expertise, etc. In this thesis, to provide better support for network management and large-scale network applications, I propose a knowledge plane architecture that consists of a network knowledge plane (NetKP) at the network layer, and on top of it, multiple specialized KPs (spec-KPs). The NetKP organizes agents to provide valuable knowledge and facilities about the Internet to the spec-KPs. Each spec-KP is specialized in its own area of interest. In both the NetKP and the spec-KPs, agents are organized into regions based on different sets of constraints. I focus on two key design issues in the NetKP: (1) a region-based architecture for agent organization, in which I design an efficient and non-intrusive organization among regions that combines network topology and a distributed hash table; (2) request and knowledge dissemination, in which I design a robust and efficient broadcast and aggregation mechanism using a tree structure among regions.(cont.) In the spec-KPs, I build two examples: experiment management on the PlanetLab testbed and distributed intrusion detection on the DETER testbed. The experiment results suggest a common approach driven by the design principles of the Internet and more specialized constraints can derive productive organization for network management and applications.by Ji Li.Ph.D

    Agent Organization in the Knowledge Plane

    Get PDF
    In designing and building a network like the Internet, we continue to face the problems of scale and distribution. With the dramatic expansion in scale and heterogeneity of the Internet, network management has become an increasingly difficult task. Furthermore, network applications often need to maintain efficient organization among the participants by collecting information from the underlying networks. Such individual information collection activities lead to duplicate efforts and contention for network resources.The Knowledge Plane (KP) is a new common construct that provides knowledge and expertise to meet the functional, policy and scaling requirements of network management, as well as to create synergy and exploit commonality among many network applications. To achieve these goals, we face many challenging problems, including widely distributed data collection, efficient processing of that data, wide availability of the expertise, etc.In this thesis, to provide better support for network management and large-scale network applications, I propose a knowledge plane architecture that consists of a network knowledge plane (NetKP) at the network layer, and on top of it, multiple specialized KPs (spec-KPs). The NetKP organizes agents to provide valuable knowledge and facilities about the Internet to the spec-KPs. Each spec-KP is specialized in its own area of interest. In both the NetKP and the spec-KPs, agents are organized into regions based on different sets of constraints. I focus on two key design issues in the NetKP: (1) a regionbased architecture for agent organization, in which I design an efficient and non-intrusive organization among regions that combines network topology and a distributed hash table; (2) request and knowledge dissemination, in which I design a robust and efficient broadcast and aggregation mechanism using a tree structure among regions. In the spec-KPs, I build two examples: experiment management on the PlanetLab testbed and distributed intrusion detection on the DETER testbed. The experiment results suggest a common approach driven by the design principles of the Internet and more specialized constraints can derive productive organization for network management and applications

    CAPRI: A Common Architecture for Distributed Probabilistic Internet Fault Diagnosis

    Get PDF
    PhD thesisThis thesis presents a new approach to root cause localization and fault diagnosis in the Internet based on a Common Architecture for Probabilistic Reasoning in the Internet (CAPRI) in which distributed, heterogeneous diagnostic agents efficiently conduct diagnostic tests and communicate observations, beliefs, and knowledge to probabilistically infer the cause of network failures. Unlike previous systems that can only diagnose a limited set of network component failures using a limited set of diagnostic tests, CAPRI provides a common, extensible architecture for distributed diagnosis that allows experts to improve the system by adding new diagnostic tests and new dependency knowledge.To support distributed diagnosis using new tests and knowledge, CAPRI must overcome several challenges including the extensible representation and communication of diagnostic information, the description of diagnostic agent capabilities, and efficient distributed inference. Furthermore, the architecture must scale to support diagnosis of a large number of failures using many diagnostic agents. To address these challenges, this thesis presents a probabilistic approach to diagnosis based on an extensible, distributed component ontology to support the definition of new classes of components and diagnostic tests; a service description language for describing new diagnostic capabilities in terms of their inputs and outputs; and a message processing procedure for dynamically incorporating new information from other agents, selecting diagnostic actions, and inferring a diagnosis using Bayesian inference and belief propagation.To demonstrate the ability of CAPRI to support distributed diagnosis of real-world failures, I implemented and deployed a prototype network of agents on Planetlab for diagnosing HTTP connection failures. Approximately 10,000 user agents and 40 distributed regional and specialist agents on Planetlab collect information from over 10,000 users and diagnose over 140,000 failures using a wide range of active and passive tests, including DNS lookup tests, connectivity probes, Rockettrace measurements, and user connection histories. I show how to improve accuracy and cost by learning new dependency knowledge and introducing new diagnostic agents. I also show that agents can manage the cost of diagnosing many similar failures by aggregating related requests and caching observations and beliefs
    corecore