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Abstract

In designing and building a network like the Internet, we continue to face the problems of scale and
distribution. In particular, network management has become an increasingly difficult task, and network
applications often need to maintain efficient connectivity graphs for various purposes. The knowledge
plane was proposed as a new construct to improve network management and applications. In this
proposal, I propose an application-independent mechanism to support the construction of application-
specific connectivity graphs. Specifically, I propose to build a network knowledge plane and multiple
sub-planes for different areas of network services. The network knowledge plane provides valuable
knowledge about the Internet to the sub-planes, and each sub-plane constructs its own connectivity
graph using network knowledge and knowledge in its own specific area. I focus on two key design
issues: (1) a region-based architecture for agent organization; (2) knowledge dissemination and request
propagation. Network management and applications benefit from the underlying network knowledge
plane and sub-planes. To demonstrate the effectiveness of this mechanism, I conduct case studies in
network management and security.

Index Terms
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I. INTRODUCTION

In designing and building networks like the Internet, we continue to face the problems of
scale and distribution. Traditionally, network analysis, diagnosis and management have been
done manually by a small number of people. As the Internet continues to grow in reach and
in density, we have seen increasing problems with understanding how it works, where it runs
into problems and how to address those problems. With the increased scale, penetration, and
distribution of the Internet, those traditional manual approaches requires an increasing number of
people to be involved, and the management task itself becomes increasingly complex. Therefore,
a central problem is to make the network self-knowledgeable, self-diagnosing, and perhaps in
the future self-managing.

In network architecture, we recognize two architectural divisions: a data plane over which
data is transported, and a control plane that manage the data plane. To make the network more
intelligent, a new idea was proposed recently as the knowledge plane [1]. The knowledge plane
(KP) was proposed as a new higher-level artifact to improve network management and network
applications. At an abstract level, the knowledge plane gathers observations, constraints and
assertions, and applies rules to these to generate observations and responses. At the physical
level, it runs on hosts and servers within the network on which knowledge is stored. The KP is
a loosely coupled distributed system of global scope. The KP brings up a number of challenging
problems, such as knowledge representation and dissemination, incorporation of AI and cognitive
techniques, conflict resolution, trust and security, how to design a distributed knowledge base
for the networks, how to incorporate into the framework pre-existing sets of specialized data
and tools for network management, etc.
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A. Problem Statement

In light of the fact that the overall objective of the KP is to make the Internet or another
network of that scale and scope more intelligent about itself, I focus on a particular problem in
this proposal. In the Internet, network applications often need to maintain efficient connectivity
graphs for various purposes. Examples include overlay networks, content distribution networks,
end system multicast, peer-to-peer networks, publish/subscribe systems, etc [2], [3], [4], [5],
[6]. For instance, routing overlays build their own routing graphs to route around congested
paths with comparable or even better performance [2]; end-system multicast constructs the
application-layer multicast tree to transmit video efficiently [3]; nodes in peer-to-peer networks
probe each other to find nearby neighbors to improve lookup performance [4]. Currently each of
those applications builds and maintains its own connectivity graph by probing latency, available
bandwidth, loss rate between hosts actively, which often incurs significant cost in the network
as redundant operations are performed by them individually. We believe that the introduction
of the knowledge plane as a common infrastructure can help those applications construct more
efficient connectivity graphs with greatly reduced maintenance cost. In particular, I propose to
design an application-independent mechanism at the network layer that can be used for network
management and applications to build application-specific efficient connectivity graphs. By doing
this, I hope to not only reduce the maintenance cost for network management and applications,
but also to make new services available.

Specifically, the core of the research in this proposal is to define, design and demonstrate a
system and its supporting mechanisms that provide the KP with the ability to improve existing
applications, and to organize new applications. The applications here have the following features:

1) They are widely distributed in the Internet, and formed as a set of cooperating agents,
and follow the pattern of “many local agents, plus some global correlation, filtering,
consistency, and/or analysis functions”;

2) They involve a variety of expertise and reasoning in order to handle widely distributed,
incomplete, possibly contradictory and inaccurate information;

3) There is a commonality in the structure and nature of the pattern that it is both useful and
possible to abstract out.

Thus we arrive at our research objective, which is to derive a system that will provide for
organizing a set of agents to achieve the functions of a KP application, adaptively to a set of
constraints. To do this, we divide the subject of our research into three parts, the abstraction of the
“KP applications” into organizing constraints, a set of orthogonal constraints that are external to
the application design itself and imposed by the Internet, administrative organizations, physical
or topological constraints, and context, as well as an underlying network knowledge plane in
which information will be made available.

B. My Approach

For the purpose discussed above, I propose to build a network knowledge plane (NetKP) for
the network layer and on top of it, sub-planes for network management (sub-KPs) each designed
to provide one category for network management functionality. That is, the KP consists of the
generic NetKP and multiple specialized sub-KPs. Both the NetKP and sub-KPs are composed
of agents. The relationship of components in my work is demonstrated in Figure 1.

The NetKP provides valuable knowledge about the Internet to network management and appli-
cations in a scalable and efficient way. The knowledge in the NetKP includes network topology,
and performance information (latency, bandwidth, etc). I will address problems including agent
organization and network knowledge collection and dissemination.

On top of the network knowledge plane, we construct multiple sub-planes for network man-
agement. Each sub-KP focuses on one network service. For example, agents interested in the
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DNS form a sub-KP about DNS that helps diagnose DNS failures. In this proposal sub-KPs
are for the purpose of network management, but I expect that sub-KPs may be used for other
purposes, for example, a sub-KP for music. The connectivity graphs of sub-KPs are constructed
using the knowledge provided by the NetKP and knowledge in their specific areas.

Both network management and network applications can benefit from the NetKP and the
sub-KPs. I will demonstrate the effectiveness of this approach by prototyping several sub-KPs
and network management capabilities combining them. In the case of network applications, I
improve the organization of local detectors and global detectors in intrusion detection by taking
advantage of network knowledge.

As we propose that the knowledge plane is composed of agents, the key problems here are
agent organization and request and knowledge propagation in the knowledge plane. By designing
the NetKP and sub-KPs and conducting several case studies, I hope to improve our understanding
on the knowledge plane structure in terms of agent organization and knowledge dissemination,
and network management using KP, as well as to motivate future research in this area.

Note that in this proposal I adopt an incremental approach in designing the knowledge plane.
In my design, agents run on dedicated servers or on end hosts, and some agents are able to access
routers’ status and receive BGP feeds, but agents do not control routers or run on routers. I
choose this incremental approach instead of requiring upgrading routers or the whole network, so
as to make it feasible to deploy the proposed knowledge plane gradually in today’s Internet, and
also because I believe that routers should be focus on routing instead of providing sophisticated
functionality. The downside is that this design choice limits the ability of agents and thus the
knowledge plane, as routers know and control network properties directly.

Network Knowledge Plane (NetKP)

Network 
Applications

Network Management
Sub−KPs

Network Mamangement

Fig. 1. The system architecture. The underlying is the NetKP that provides application-independent knowledge. On top of that,
there are two parts. One is network management sub-KPs organized based on the area of interest, and network management
applications are built on top of the sub-KPs. The other is network applications that take advantage of the NetKP directly.

C. Proposal Organization

The rest of the proposal is organized as follows: In Section II, I present an overview of the
agent architecture that is common for both the NetKP and the sub-KPs. Then I describe the
network knowledge plane in detail in Section III. Section IV discusses how to organize sub-KPs
using the network knowledge and area-specific knowledge. Case studies on network management
are described in Section V Section VI, and Section VII. Section VIII examines related work,
including various overlay networks, publish/subscribe systems, etc. Research agenda is presented
in Section IX. Section X summarizes the proposal.

II. GENERAL DESIGN OVERVIEW

In this section, I discuss general design requirements and basic components of the knowledge
plane. Note that issues addressed here apply to both the NetKP and management sub-KPs.
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A. System Requirements

To build a distributed system of global scale as the knowledge plane, I believe the following
features must be met:

1) Scalability. As the amount of knowledge about the Internet is huge and it is distributed
throughout the Internet, the number of agents is large and agents are distributed all over
the Internet. We need to organize the agents in a scalable fashion to better support request
propagation, and knowledge collection and dissemination.

2) Efficiency. The KP is supposed to respond quickly to requests, and distribute knowledge
to where it is needed efficiently. Furthermore, in many cases knowledge, such as the
available bandwidth of a path, may become outdated very soon. Therefore, we need
efficient knowledge collection mechanisms.

3) Robustness. The KP is proposed to facilitate network management, and agents are needed
most in case of network behaving incorrectly. Therefore, the agent organization must be
robust to network failures.

4) Non-intrusiveness. The KP needs to collect, share and distribute large amounts of knowl-
edge, without adding too much burden to the network. Therefore, aggregation is necessary
on both knowledge and requests to reduce network traffic overhead.

5) Others. There are other properties we should consider. We should design the KP for
trustworthiness, longevity, and heterogeneity, as they are important issues. But they are
not the focus of this proposal.

B. System Design

In both the NetKP and sub-KPs, there are three tasks in common: (1) knowledge plane
organization; (2) request propagation and knowledge dissemination; (3) knowledge management.
The first task, knowledge plane organization, refers to how agents in the KP discover each
other and how agents organize themselves together. The second task, request propagation and
knowledge dissemination, deals with how to propagate requests so that requests can be resolved
quickly and efficiently and how to disseminate knowledge so that agents interested in that
knowledge can receive it in a timely fashion. The first two tasks are tightly related to each other,
because agent organization largely determines how requests and knowledge can be propagated.
The third task, knowledge management, addresses the question of how agents manage their local
knowledge and learned knowledge. For example, agents may maintain a distributed knowledge
base. The first two tasks are the focus of this proposal.

I propose a region-based agent architecture to organize the knowledge plane. Region is the
central organizing components in the KP and sub-KPs. Both the NetKP and sub-KPs consist of
agents in their layers respectively. Agents are responsible for collecting, disseminating knowledge
and resolving requests. Agents also manage a distributed knowledge base. The knowledge base
is distributed among agents since the network knowledge is distributed and managed by different
parties in the Internet.

Agents are organized into regions to achieve scalability and efficiency. The concept of the
region is proposed as a new network feature to facilitate network organization [7]. In the NetKP,
regions are often constructed following autonomous systems (ASes) or corporate networks, and
agents in a large autonomous system may be divided into several regions. In sub-KPs, agents
with similar interests form regions based on comprehensive criteria, as discussed later.

C. Agents

I define agents as entities in the Internet that participate actively in the KP including both
the NetKP and sub-KPs. Agents are responsible for collecting, storing, sharing and distributing
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knowledge. The NetKP is composed of agents at the network layer, and sub-KPs are composed
of agents in their specific areas of interest.

To facilitate the discussion, I also define request and offer, following the definitions in [8].
A request is a message that looks for an answer to a problem, or asks for an action to be
undertaken. An offer is a message that indicates the interest and ability to receive and solve
certain requests. Note that I equalize knowledge and offers in many places below, although an
offer usually only indicates the source of a piece of knowledge instead of the knowledge itself.
Requests and offers exist in both the NetKP and sub-KPs, but they are of different types. For
example, requests in the NetKP are for network knowledge, while requests in a sub-KP are for
the specific knowledge in that sub-KP. A key problem in the KP is how to make requests and
offers meet so as to solve a problem.

I believe that there are two base aspects of agents; each agent provides at least one of these.
One is request/offer propagation and aggregation, and the other is request satisfaction which
often involves reasoning and inference. We believe that there are two reasons to separate these
two aspects. First, propagation and aggregation are common tasks in the KP, and they are similar
in all the agents. Second, request satisfaction often requires reasoning and inference techniques,
which are different in different agents. Depending on their capacity, willingness and availability,
agents may have both or one of the components. These two separable aspects reflect the fact that
different agents may have different roles and capabilities in the KP: some agents are responsible
for receiving requests and responding to them, and some manage the knowledge, and some do
both.

Agents are deployed by different parties, including end users, ISPs, application developers,
etc, so they have access to different kinds of knowledge. Currently I assume static agents instead
of mobile agents, and communication between agents is through message passing. In the future
we may evaluate the need for mobile agents.

D. Region-based Organization

Due to their large number, agents need a scalable organization. To make the KP scalable
and efficient, I follow the divide-and-conquer strategy by dividing the KP into regions. The
region is a new design element in the network architecture for large scale, wide distribution and
heterogeneous networks [7]. A region is an entity that encapsulates and implements scoping,
subdividing, and crossing boundaries of sets of entities. In this work, I use the region as the
building block of the KP for the following reasons. First, due to the large scale of the KP, we
need to introduce some organizing structure into the KP to achieve scalability and efficiency,
and region is a natural structure that fits our need. Second, as a general and flexible networking
mechanism, a region or set of regions can be tuned to match the Internet structure which consists
of tens of thousands of different administrative domains, or match the inherent structure of a
sub-KP, as we discuss later.

Regions exist both in the NetKP and sub-KPs. Agents are grouped into different regions
according to different criteria, such as network proximity, interest, etc, as we discuss in the
following sections. Agents both inside and outside a region work together to monitor the region,
and agents in the region can access more detailed network knowledge timely, while agents
outside can provide a more comprehensive view of the region.

E. Knowledge

Knowledge as a term is more common in the AI community than in the networking. As
a general term, knowledge in this proposal refers to any useful information in the Internet,
including the information about individual objects in the network, and the relationships between
objects, etc. There are various kinds of knowledge in the Internet. We categorize knowledge into
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two kinds: basic knowledge at the network layer, and specific knowledge in different areas of
interest. Sources of knowledge include humans, measurements and monitoring, and inference,
reasoning and learning. A specification of a knowledge domain is usually defined in language
or ontology, such as XML, RDP or OWL [9], [10]. Because our emphasis is not on such a
language, we will choose one (probably OWL) to meet our needs, but are unlikely to explore
questions as the nature of a better or more suitable language.

Due to the distributed and heterogeneous nature of the knowledge in the networks and its large
amount, we will need a distributed knowledge base. I will address issues including knowledge
collection, storage and distribution in the following sections, but the knowledge base is not the
focus of this proposal.

F. Trust Model

Trust is an important issue in the knowledge plane, as agents come from different sources. If
agents are deployed by the authoritative local organizations, we call such agents “authoritative
agents” within the local network (an AS or a corporate network), and assume that agents will
not be malicious. But still, ISPs may be reluctant to admit failures within their own networks.
As another example of a desire to hide the local state, consider agents residing on end hosts. An
agent that represents an end user may want to hide the fact that worms start from his machine
due to his fault. Therefore, we can see that agents must be prepared not to trust each other
completely.

In this prototype knowledge plane, to make things simple, we assume that agents may provide
incomplete knowledge, but they will not provide false knowledge. In the future, we will build
a trust model that considered both authentication and reputation.

Even if all agents are honest, we still need to consider how to maintain consistency among
knowledge from different agents. An agent must be able to resolve the differences when it
receives different answers from different agents. The differences may be due to many reasons.
For example, a multi-homed agent may find multiple AS paths between itself and a remote host,
and it has to be able to tell which one is what it wants (maybe both). As another example, an
agent is likely to receive different answers from different agents on the latency between two
hosts, as agents are at different locations and may use different methods to obtain the latency.

III. NETWORK KNOWLEDGE PLANE

The NetKP is an application-independent distributed system that provides network knowledge
to help construct efficient connectivity graphs for network management and applications. There
are two types of uses of the NetKP. The first and obvious one is to provide information to
KP applications. Initially, this information will be the basic information, measurements and
other kinds of network specific information, both reasonably static and often quite dynamic.
The NetKP may be seeded with basic information, but quickly it will also be extended with
new, more accurate, more complete, or otherwise more extended information. In addition, sub-
KPs also have need of information, both in terms of the underlying information about the
functioning of the network and for finding and storing constraints and organizational structures
of KP applications.

In this section, we discuss how to build the NetKP. I first describe the functions and inter-
face that the NetKP provides, then agent organization that follows Internet topology, request
propagation and resolution in the NetKP, and other issues.

A. Network Knowledge and Functions

As an initial classification, we divide the network knowledge into three categories: static,
dynamic, and policy-related knowledge. More knowledge will be added later. The network
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knowledge is provided by agents in the NetKP to agents in sub-KPs, and various applications
through the functions defined below. Accordingly, a beginning set of functions are defined in
the following.

1) Static network topology. This topology knowledge refers to network topology at the AS
level. Such knowledge is stable, and changes infrequently. The following functions are
defined to return network topology knowledge. They correspond to the requests that an
agent receives either from other agents in the NetKP or from agents in sub-KPs or from
network applications.

* getASN(IP). Given an IP address IP, return the AS number where the IP address reside.
This tells the topological location of a host.

* getASPath(AS1, AS2). Given two AS numbers, return the AS path from AS1 to AS2. This
gives a measure of the topological distance between two hosts.

* getLocation(IP, [metric]). Given an IP address IP, return its geographic location in the
form of metric. The metric can be longitude and latitude, zip code, etc.

2) Dynamic network performance. This knowledge includes latency, available bandwidth,
loss rate, etc. Such knowledge usually changes frequently. Dynamic knowledge is very
different from static knowledge. Dynamic knowledge usually changes frequently with time,
and needs to be measured at runtime; in contrast, static knowledge is stable, and can be
easily replicated and stored at multiple locations. The following functions are defined:

* getLatency(IP1, IP2, [time]). Given two IP addresses, return the latency between IP1 and
IP2, and time is an optional parameter.

* getBandwidth(IP1, IP2, [time]). Given two IP addresses, return the bandwidth from IP1
to IP2.

* getLossRate(IP1, IP2, [time, accuracy]). Given two IP addresses, return the packet loss
rate from IP1 to IP2. As loss rate is often small and hard to measure, accuracy specifies
how accurate the returned answer should be.

3) Network policies. As the Internet consists of thousands of administration domains, and
each domain define its own policy on route announcements, firewall rules, etc.

* isPortBlocked(port, AS). Given a port and an AS number, this function tells whether that
port is blocked by that AS.

* getCost(IP1, IP2, metric). Return the cost of the path between IP1 and IP2 in term of the
cost metric.

The function set above is just one set currently provided by the NetKP. Additional network
knowledge will be provided, and more sophisticated functions can be built on top of the
primitives. For example, given two pairs of IP addresses, we can use getASPath to determine
if the paths between the two pairs of IP addresses intersect at some AS. As another example,
agents can collaborate with each other to monitor the networks, and locate possible failures
in the network [11]. Therefore, we expect that more functions will be added to the NetKP as
required by new applications.

Every agent maintains at least two kinds of network topology knowledge at the autonomous
system level: (1) the AS number of any IP address; (2) the AS path between the local AS and
other ASes. From (2), we can also derive the degree of the local AS. Therefore, an agent only
maintains its local view of the Internet. This is due to the following reasons: first, it is hard to
get an accurate global view of network topology, while it is easier to obtain the local view of
network topology; second, such local network knowledge should be able to satisfy local requests
most of the time; third, remote network knowledge can be obtained from other agents through
request resolution. Note that restrictions may be applied to the parameters of those functions.
For example, an application may not be allowed to query the AS path between any two ASes,
due to the privacy concerns of routing information of those ASes. Network topology knowledge
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is fairly stable, and is updated infrequently. Local BGP feeds provide an accurate view of the
Internet from the point of the local AS, so BGP feeds from the local AS are the best source of
topology information.

Geographic information is another kind of network knowledge we are interested in. Geo-
graphic information provides physical location information, which is often directly related to
network performance, such as latency. It also enables a large set of location-aware applications.
It is not trivial to obtain geography information today, but often approximate location is enough.
We can leverage the existing techniques [12].

Performance knowledge is often complicated to obtain and maintain for two reasons. It
is usually easy to obtain latency using measurement tools such as ping. Unless latency to a
large number of hosts is needed, real-time measurement will work due to its simplicity and
low overhead. Other information, such as bandwidth and loss rate, can be obtained through
measurement with more overhead. Many tools have been developed to measure network status,
and new tools are being developed. Agents can use those tools and share performance knowledge.

Note that the performance and geographic knowledge may be approximate instead of accurate.
First, the performance knowledge changes frequently. Even if we obtain accurate measurement
results, it may be outdated when it is returned to the requester. Second, in many situations it
is enough to have approximate information. For example, a streaming video application only
needs to know the class of bandwidth (high, medium, low) to determine the appropriate encoding
method.

B. Agent Organization

1) Agent Discovery: Agent discovery deals with the problem of how a new agent finds
agents already in the KP. In the NetKP we assume authoritative agents are configured manually
to connect to nearby agents and agents in the neighboring regions. Non-authoritative agents join
the NetKP by notifying a nearby authoritative agent, and that agent broadcasts this information to
nearby authoritative agents. In my thesis I plan to explore more robust and automatic mechanisms
for agent discovery.

2) Agent Organization: As the NetKP provides network topology knowledge about the In-
ternet, a natural way to organize agents is to follow the network topology, including AS-level
topology, corporate networks, etc. Here a region corresponds to an administrative domain in the
Internet, which is either an autonomous system, or an institutional network such as the MIT
network, or a corporate network such as HP. A large AS may be divided into several regions.
Autonomous systems are very heterogeneous, and we may need to divide an autonomous system
into several regions.

Agents are divided into three categories based on their owners and privileges. One is the
authoritative agents delegated by ISPs, institutions and organizations in their own networks.
They have (limited) access to the BGP information at border routers, and enforce certain policy
when exposing this knowledge. The other is the agents residing on end hosts. These agents help
the authoritative agents and provide more complete and accurate knowledge. A third category
from the perspective of a region is the agents outside the region, both peers and other kinds of
agents.

To facilitate the communication between authoritative agents, each agent maintains two lists.
The first is a list of agents in the local region. Agents within a region periodically exchange
network knowledge. The second list contains agents in neighboring regions. Typically, if a
region matches an AS, the list includes agents in its providers, customers and peering ASes.
This organization is shown in Figure 2.

Agents that are not authoritative connect to nearby authoritative agents. These agents provide
not only backup for authoritative agents, but also valuable performance knowledge.
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Fig. 2. Agent organization in the NetKP. Ellipses are ASes, small triangles are agents, solid lines are links between ASes,
dashed lines are links between agents within a region, and dash-dot lines with arrows show links between agent a and agents
in its neighboring regions. Dotted green circles show that a large AS is divided into two regions.

C. Request Propagation and Aggregation

A key function of the NetKP is to resolve requests for network knowledge. Requests for
network knowledge can be issued by different entities. Agents in the NetKP may issue requests
to obtain certain knowledge so as to organize themselves effectively. Requests for network
knowledge may also come from agents in sub-KPs or network applications to construct their
connectivity graphs. Requests can be about properties of different entities in the networks. A
simple request example is on the latency between two hosts, while complicated requests can
be isPortBlocked or on the network condition of an AS. In the latter case, sometimes it is not
clear which agents are responsible for or can resolve the request. In that case, an agent that
receives the request may initialze the operation and work together with other agents to resolve
the request. Such an operation can be complicated and costly, and may require authorization.
Here I start with simple requests, and will address more complicated issues in the near future.

A request for simple network knowledge is resolved by the local agent as follows. For
some requests, the agent resolves them directly and returns the responses to the requesters,
without consulting other agents. This occurs when the local knowledge base already contains
the necessary knowledge. Examples of such requests are getASN and getASPath when the source
IP is in the local AS, as the local BGP table contains the mapping between IP addresses and
AS numbers and the AS paths originating from the local AS to all the other ASes.

For requests that require non-local knowledge, the agent forwards requests to the agents that
have the knowledge to get the answers. Because the local agent has the knowledge of AS paths
from the local AS to all other ASes, it can figure out which agents in which AS(es) should be
able to resolve the request. Therefore, it forwards the request following the corresponding AS
path to an agent in a neighboring AS, and that agent again forwards the request to its neighboring
AS following the same AS path until the request reaches an agent in the destination AS. The
agent returns the answer to the source agent following the same AS path reversely, and agents
along the path may cache the answer. By following the reverse path instead of the default reverse
AS path and agents caching along the path, we construct an implicit aggregation tree, which
helps to resolve similar requests more quickly in the future, because agents along the AS path
may resolve the request if they happen to have cached previous answers. Figure 3 shows the
resolution procedure.

Request aggregation is crucial for scalability, as many similar requests may be issued from
different places simultaneously but we cannot afford to propagate all of them individually. By
matching the underlying autonomous systems, the NetKP provides a natural aggregation structure
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Fig. 3. Request resolution in the NetKP. Agent s issues a request for the AS path between AS A and B. Agent s forwards the
request to agents along the AS path, until it reaches agent t in AS A, as shown in the dashed arrow lines. Agent t checks its
local knowledge base, and returns the corresponding AS path, as shown in the dotted arrow lines.

along the AS path. Consider getASPath as an example. When requests from multiple locations
are issued for the AS path between AS A and B, the requests will follow the AS path towards
AS A, therefore they naturally converge along the AS path. If an agent on the path has cached
the answer, all the following requests passing here are resolved at this agent. If not, the agent
can aggregate the requests and forward only one request.

Currently I assume a request-oriented model in the NetKP, and there is no active knowledge
dissemination. Note that responses to requests are cached along the returning AS path. This
is one form of knowledge dissemination. In my thesis I will extend this model to incorporate
knowledge dissemination. One possible method is a publish/subscribe-based mechanism.

D. Knowledge Collection

1) Topology Knowledge: Agents collect network topology knowledge from the local AS. To
do so, agents need authorization to access BGP tables from local border routers. We believe
that BGP information is usually not sensitive, so organizations may be willing to disclose this
information. Furthermore, agents can employ policies when exposing such information to others.

2) Performance Knowledge: All the above discussions are based on network topology knowl-
edge. Another category of knowledge is network performance, which is very different from
network topology knowledge. Such knowledge is much more dynamic, and often requires real-
time measurement, thus is more costly.

A request for performance knowledge between two hosts is resolved by agents near the hosts.
For example, the latency between two hosts can be approximated by the latency between two
agents plus the latency between each host and its nearby agent, similar to [13]. As another
example, agents may infer the property of a new path by segmentation and composition using
previous measurement results. This is similar to network tomography [14]. Consistency is an
important issue here, as agents at different locations may return different answers to the same
request. In my thesis, I will discuss this in more detail.

E. Discussion

This agent organization has the following advantages. First, such organization provides net-
work knowledge to KP applications. By propagating requests to the correct agents, applications
can obtain the correct knowledge.
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Second, the mechanism is scalable. Network applications ask their local agents for network
knowledge. Most requests can be resolved locally, as applications usually care about the knowl-
edge related to or originating from the local network. Local agents only ask other agents when
they cannot resolve the requests.

Third, request resolution is efficient. Most requests are resolved locally, and it is fast to retrieve
local network knowledge. Furthermore, requests and results are naturally aggregated along the
AS path, so similar requests can be aggregated and resolved without going all the way to the
original agent.

Fourth, the operation overhead is low. The overhead of knowledge collection by agents is
amortized among network applications. Even the performance knowledge can be obtained at a
low cost, as agents are able to get approximate performance information from nearby routers
or by segmenting and recombining previous results without measuring at real time.

The insights of the NetKP are two folds. First, valuable knowledge at the network level is
exposed to network management and applications. Second, the overhead of this exposure is
amortized among network applications.

IV. NETWORK MANAGEMENT SUB-KPS

For the purpose of network management, we propose to build multiple sub-KPs, one for each
network service. On top of the sub-KPs, we can build network management applications as
syntheses of sub-KPs. In this section, we discuss the issues of utilizing the NetKP to construct
efficient sub-KPs for various network services. Note that in the following discussion, without
special specification, agents refer to those in the sub-KPs, not in the NetKP.

There are three significant differences between knowledge in the NetKP and in sub-KPs. The
first is diversity of knowledge. The scope of knowledge is limited in the NetKP. In network
management, there are various tasks and many different kinds of knowledge in different sub-
KPs. For example, some agents have knowledge on the DNS system, while some others have
knowledge on end-to-end connectivity. It is not very useful to connect together agents with
these two different kinds of knowledge, and those agents are only interested in knowing other
agents with similar interests and knowledge. Therefore, we first address how agents with similar
knowledge and/or interests discover each other.

Second, agents in the same area of interest need an efficient organizing structure among them.
However, unlike in the NetKP, sometimes there is no predefined structure to follow (like ASes
in the NetKP), or the predefined structure cannot provide enough information. I discuss some
comprehensive criteria to construct efficient connectivity graphs in sub-KPs using both network
knowledge and area-specific knowledge.

Third, some agents in the sub-KPs do not reside on dedicated servers; they run on end hosts.
Therefore, agents may join or leave at any time. We need to construct a robust organization
among them.

A. Constraints on Sub-KPs

The set of orthogonal constraints for organizing sub-KPs fall into five categories. The most
obvious one is the physical or topological information. When a sub-KP is to be instantiated, the
authority on whose behalf it is happening may have an interest in constraining it to run only
in some part of the network or in some other location based region, such as geographical. For
example an enterprise network manager might want to run a particular sub-KP within the scope
of the enterprise network, simply due to topological reasons. A simple version of this may be
AS or IP address based. In terms of geography, such a specification may be as general as named
geographic region or as specific as ranges of longitude and latitude.
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A second kind of constraint is external policy constraints. They are security policies, pricing or
economic policies, and other incentive-based policies. Security policies specify hard constraints
on which information and functionality can and cannot be made available across specified
boundaries and by whom. Pricing constraints allow for perhaps a sliding or degree based
decision. Other forms of incentives may be designed specifically to encourage cooperation,
in the face of proprietary and other security constraints.

The third type of constraint on the organization is efficiency. Applications may have to run
with a set of efficiency criteria, which may determine the placements of agents. For example, if
it is important to have low latency, then paths between agents should be selected on that basis; if
the amount of network traffic should be low, then agents may be collocated on the same nodes
as much as possible.

The fourth set of constraints is on shared resource usage. This requires that sub-KPs, in
determining the organization of one KP application, know enough about others which may be
sharing resources to make a possible compromise in order that the KP applications not interfere
unnecessarily with each, as best possible. We will take a lead from previous work, beginning
with a set of information similar to that of CoMon [15] from PlanetLab. CoMon provides a
monitoring statistics for PlanetLab at both a node level and a slice level. It can be used to see
what is affecting the performance of nodes, and to examine the resource profiles of individual
experiments. We will extend and modify CoMon as needed to fit our purposes. In the longer
run, it will be necessary for this sort of information to be distributed in the KP, unlike what is
currently being built in PlanetLab.

Finally, there are constraints from the particular functionality or implementation. For example,
if we design a diagnosis system for the DNS system, the naming hierarchy and the zone structure
will inevitably play an important role in such a sub-KP. As another example, intrusion detection
itself does not impose any constraints on the corresponding sub-KP.

B. Agent Discovery

An important issue in sub-KPs is how to discover agents with similar interests when an
agent joins the knowledge plane. My discovery procedure takes advantage of the underlying
application-independent NetKP. Each region in the NetKP maintains a list of local agents in
sub-KPs and their interests. A request looking for agents with similar interests is propagated
from the local region to neighboring regions. In most cases, there is already a sub-KP with
this interest, and the new agent only needs to find one that is already in this network to join
it. Furthermore, a high-level task may involve multiple agents belonging to different sub-KPs.
For example, to diagnosis a web access failure, we need help from agents on DNS diagnosis,
routing diagnosis, server status monitoring, etc. To find those agents, we need to first find local
agents in the NetKP, and then search for agents in each sub-KPs.

To organize agents with similar interests together, another issue is to determine that agents
with what degree of similarity in interests should be in the same sub-KP. The complexity comes
from not only the granularity of knowledge or interests, but also the connections between
knowledge/interests. As an example of granularity, network management can be divided into
many tasks such as DNS management, traffic management, etc. Should we organize agents
interested in network management into one knowledge plane, or into multiple sub-KPs, each of
which focuses on one type of task? Furthermore, network management can also be classified
according to functions: performance management, fault management, security management,
etc. Should there be different networks of interest for each of them? How do we implement
an efficient search on DNS fault diagnosis (intersection)? What if some one is interested in
everything (union)?

Therefore, the following are the decisions we have to make to determine whether a sub-KP
is needed:
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1) Granularity. This depends on how many agents are interested in a certain kind of knowl-
edge.

2) Intersection. Some quests may require collaboration among networks of interests. The
networks should be structured so as to facilitate such operations.

C. Agent Organization in Sub-KPs

Similar to the NetKP, each sub-KPs consists of multiple regions. Agents are organized in
a sub-KP into different regions. Unlike in the NetKP, sub-KPs can be very different in their
inherent structure. Some sub-KPs have predefined structures related to their specific areas, while
in some sub-KPs there is no existing structure. Therefore, we need to construct regions based
on both common criteria and special feautures in that sub-KPs. A general organizing principle
is as follows. Each agent computes the distance and connects with multiple nearby agents.
Agents use distributed leader election mechanisms [16] to cluster themselves into regions based
on distance. The proximity is defined as a comprehensive metric considering several factors as
described below. Depending on each specific area of interest, agents may be organized differently.

1) Distance: To cluster agents into regions, we first define the criteria of clustering. Clustering
is based on distance. We define four types of distance. First, topological distance is the distance
in terms of network topology. There are different granularities of topological distance. The
distance can be the number of AS hops between two agents, or the number of router-level hops.
Due to the heterogeneous nature of ASes, we need to classify ASes into tiers [17], so as to
better characterize the size of an AS.

Second, performance distance is the performance of a network property between two agents.
The most common performance distance is latency. However, in some cases we may be more
interested in the bandwidth between two hosts, and thus bandwidth becomes the metric of
distance in that case. Therefore, performance distance may have different definitions in different
situations.

Third, geographic distance is defined to be the physical distance between agents. In today’s
Internet, it is not easy to learn accurate geographic distance without GPS. But in our case we
only require coarse geographic information, such as whether two agents are in the same city,
which is feasible.

Fourth, even within a sub-KP, each agent may have different interests. I define interest distance
as the measurement on the degree of the distance between agents.

To cluster agents together, multiple kinds of distances need to be considered together, because
each kind of distance alone has its advantage and deficiency. For example, if AS distance is used
as the only metric for clustering, two agents in a tier-1 AS may be clustered together while they
are actually in Boston and Los Angeles respectively; if geographic distance is considered solely,
two agents in the same city may be clustered together while they may belong to two small ISPs
and have little to do with each other. Therefore, we need a comprehensive metric for clustering.
A naive scheme is to have a weighted average of all the four distances. However, it may not be
easy to measure interest distance as a number. The ultimate goal is to create a gradient within
a sub-KP so that requests and offers can meet each other naturally and efficiently. In my thesis,
I will further explore the distance criteria.

2) Clustering of Agents: Within a region, agents can be organized in different ways, depending
on the size of the region and distribution of the distance metrics. When the size is small, a full
mesh will suffice. That is, each one knows all the others. When the size is large, a structured
peer-to-peer organization, such as distributed hash table, may be preferred. In general, we want
to limit the size of a region so as to simplify its organization and recommend a full mesh
structure. There is no single answer to the region size. It will depend on what they are doing
under what conditions.
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So far we have not talked about agent mobility. With the increasing demanding on mobile
devices and the wide use of laptop and wireless networks, mobility is becoming more and more
pervasive. If an agent moves, it should leave the current region and join the new local region.
This will be the future work.

3) Organization of Regions in Sub-KPs: Agents in different regions need to collaborate with
each other. We have at least two options for the organization between regions. The first is
a hierarchical structure. Since agents are clustered based on distance, it is natural to build
a hierarchy among regions, similar to the AS topology of the Internet. It can be a multi-
layered structure. The advantage is that this structure is natural for aggregating information
and suppressing redundant requests. However, a hierarchical structure is hard to maintain when
agents join and leave the system frequently.

The second choice is peer-to-peer structure. There are two kinds of peer-to-peer organization:
unstructured [4], [18] and structured [19], [20], [21]. Peer-to-peer organization is robust to churn,
but its flat structure makes it hard to aggregate and suppress similar requests. We will address
this problem late in this section.

D. Request and Offer Propagation and Aggregation

1) Request and Offer Propagation: The way that requests and offers propagate determines
the efficiency of request resolution. Usually the request propagation is called “pull” and the offer
propagation is called “push”. The key issue is a trade off between push and pull in different
scenarios. In the KP, we need to balance push and pull. A similar technique, directed diffusion, is
widely proposed in sensor networks [22]. However, unlike sensor networks, the Internet is larger
in scale, and more complicated in structure. Both the scale of the Internet and its organization,
which is generally not ad hoc or self-organizing, suggest that the current form of directed
diffusion will be inadequate for the KP.

To facilitate request satisfaction, there are many possible request and offer propagation schemes.
A simple scheme is as follows. When an agent issues a request, it is propagated to all agents
in the same region, and also to one or a few agents in every region within a certain number of
region hops, say n. When an offer is issued, it is also disseminated in the same way. Therefore,
an offer within n region hops is guaranteed to be found by a request, and an offer out of n
region hops may be missed. Figure 4 shows an example with n=2. This shows how regions help
to improve scalability and efficiency. To further extend this, we can consider many factors, such
as the position of an agent, the cost model, and even the diameter of the sub-planes, etc. This
will be studied in my thesis.

2) Request and Offer Aggregation in Sub-KPs: Aggregation is a fundamental function in
the KP. I have designed a peer-to-peer aggregation mechanism in [23], and plan to modify it
for request and offer aggregation in sub-KPs. Peer-to-peer networks represent a robust way to
organize information, since there are no central points of failure or bottleneck. However, the flip
side to the distributive nature of the peer-to-peer structure is that it is not trivial to aggregate
and broadcast information globally. I designed a novel algorithm for this purpose. Specifically,
I build an aggregation tree in a bottom-up fashion by mapping nodes to their parent in the
tree with a parent function. The particular parent function family I propose allows the efficient
construction of multiple interior-node-disjoint trees, thus preventing single points of failure in
tree structures.

However, the above mechanism is not enough for the KP, because it is not a general framework
that can fit the needs of KP, and does not consider proximity and administrative isolation. We
need to incorporate those factors into the new aggregation mechanism in the sub-KP and take
advantage of the topology-aware agent clustering structure. A simple version will be a multi-layer
aggregation: first, a local aggregation is performed within each region; then a global aggregation
is performed between regions. This part also needs further exploration.
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Fig. 4. Request and offer propagation in a sub-KP. This shows a request from agent m and an offer from agent n meet at
agent x.

V. CASE STUDY: NETWORK MANAGEMENT

In the following sections I present several case studies in various areas, including testbed
management, fault diagnosis, DNS diagnosis, intrusion detection, etc. By conducting the case
studies, I want to: (1) demonstrate that the KP is a useful infrastructure to various applications;
(2) learn from the case studies about different requirements and features of those applications
so as to further improve the KP.

There are several key aspects to a KP application. The primary one is the functionality that
defines it. We suppose that the underlying agent system provides a variety of communication
patterns available to agents. Some agents may be designed to broadcast or multicast their findings
to a set of coordinating agents. We expect that a variety of such communication patterns must
be available in the agent system, and a basic set include: broadcast, multicast, anycast, and
one-to-one. Some conditions for communication will be important, such as timing intervals.
Another characteristic is policy or economic requirements and incentives. Thus, we expect that
a KP application will at least initially provide a specification of its communications patterns and
constraints as well as policy constraints and requirements.

Network management requires collaboration of multiple agents, and often multiple network
management sub-KPs. In this section, we consider both network testbed management and fault
diagnosis. However, this part is still sketchy, and more study is needed.

A. Testbed Management

We are working on improving the DETER [24] testbed management by designing “Distributed
Diagnostic System” that monitors the status of experiments running on the testbed and the testbed
itself. This will provide an interesting example not only of organization of agents, but also allows
for defining ”regions” across which information flow must be stringently controlled. It will also
provide a compelling argument for the need for extensibility, and perhaps the ability to consider
the trade off of costs of KP activity.

The initial design is as follows. A KP runs on the testbed to monitor its status. Because
currently DETER has two locations, ISI and Berkeley, we propose two regions, one for each
location. KPs at different locations periodically exchange information. For each experiment to
run on DETER, a region is created to monitor the experiment based on the user’s specification.
When an experiment runs at multiple locations, a region is created for each location, and these
regions exchange information among them. Figure 5 shows its structure.
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Fig. 5. DETER testbed management.

The DETER KP has two tasks. First, it monitors whether the static environment needed to
run is set up correctly, including the generated virtual topology, bandwidth, and the OS and
code loading, Second, it monitors if the experiment runs as specified. A user needs to specify
the behavior of his experiment beforehand. This is very important to DETER, as experiments
on DETER are security-related, and DETER has to guarantee not only no interference among
experiments, but also the security of the testbed itself.

B. Connectivity Failure Diagnosis

Steinder et al. discussed various techniques and algorithms on Internet fault diagnosis in
[25]. The diagnosis algorithms come from many different fields including decision trees, neural
networks, graph theory, etc. They also propose a hierarchical partitioning of the problem space
[26]. In that approach, a diagnose manager divide the diagnosis into multiple domains, and
each domain performs local diagnosis separately. Then local diagnosis results are collected and
analyzed by the manager to draw a global conclusion. In a similar spirit but more broadly, I
propose to diagnosis network failures from end-to-end point of view, so our approach crosses
multiple network layers and services, not just about routing.

There are many causes of connection failures. An incomplete list includes [27]: local miscon-
figuration; link failure; routing failure; congestion; DNS failure; destination failure, etc. Fault
diagnosis usually involves the following steps: fault detection; fault localization (root cause
analysis); fault source identification. Here I focus on how is to pinpoint the origin of a fault.

Assume there is a local agent running on each host. When a user cannot visit a website, he
notifies the local agent on his computer. The local agent first checks if it is a configuration
problem with the end host. If not, it tries to find nearby agents through the agent discovery
service.

The diagnosis requires collaboration between several sub-KPs. First, the local agent asks the
DNS sub-KP to see if the DNS resolution works correctly. If so, it then asks the connectivity
sub-KP to see if the end-to-end path between the local host and the website is working. If so,
the local agent finally needs to find out if the web server is running. Sometimes we need the
help of agents. For example, we may need traceroute from multiple vantage points to determine
the location and scope of the failure [11].

VI. CASE STUDY: INTRUSION DETECTION

Intrusion detection in large-scale networks requires a new approach to monitor and respond to
security incidents. Host-based collaborative intrusion detection has been a promising direction.
A key challenge in a collaborative intrusion detection system is that alerts from end hosts need
to be propagated efficiently and quickly among participants so that an intrusion decision can be
made before the worm infect most of the hosts. Many current mechanisms use simple gossiping
protocols or peer-to-peer protocols [28], [29], [30]. We believe a good cooperative messaging
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protocol can be made more efficient by taking advantage of the knowledge from the network.
In this case study, we propose a region-based message propagation protocol. We implement our
mechanism on DETER testbed and compare it with a popular gossiping protocol. By doing this
case study, I want to demonstrate that there can be both accuracy and efficiency improvements
for intrusion detection to take advantage of the KP.

We propose to organize hosts into regions using the knowledge from the NetKP. Hosts
are clustered into regions based on their distance. Within each region, hosts elect a leader
using distributed leader election algorithm periodically [16]. Leaders of different regions form
a complete graph if the number of leaders is small or other organizations such as multiple
disjoint trees [23]. When hosts detect potential intrusion attempts, alerts are sent to its local
leader directly. The local leader aggregates alerts from local hosts, and then exchanges this
information with leaders of other regions. Therefore, each leader has an approximate global
view of the intrusion situation. Whenever a leader has enough information to make a decision,
it announces its decision to both its local hosts and all the other leaders. Leaders may or may not
need to reach an agreement on the decision, depending on their policy and administration. Our
mechanism is similar to [29] in the hierarchy of local detectors and leaders (global detectors in
[29]). The difference is that in [29], each local detector sends its decision to a randomly selected
subset of a large set of global detectors. The local detectors have to maintain the information
of all or most global detectors, and the communication does not consider any network-layer
information.

Besides a better organization of hosts, we also share more detailed information on intrusion
attempts between hosts, to reduce the false positive rate. Currently our method is to have each
host send basic intrusion information, including the port number(s) and source IP address(es).
The leader can therefore either determine that the alerts are false as they are at different ports and
from different sources, or there are multiple intrusions simultaneously, or there is an intrusion
of the same worm from multiple sources.

I have conducted a preliminary experiment on DETER, in which our method and a gossiping
protocol are compared in terms of the efficiency of distributed decision-making in collaborative
intrusion detection systems.

The gossiping protocol is proposed in [30]. Its decision making is completely distributed
where hosts exchange information using an epidemic spread protocol without any organizing
structure or consideration on network topology. When a potential intrusion is detected by an
end host, it forwards the alert to m randomly selected neighbors, and then its neighbors forward
the alert to each of their m neighbors, together with their own observations (alert or not), and
this continues. Usually m equals 1 or 2 for scalability. Each host computes the possibility of
intrusion using all the alerts it has received. If a host determines that there is an intrusion, it
broadcasts the decision to all hosts.

Both methods use distributed sequential hypothesis testing to detect global intrusion. Se-
quential hypothesis testing was first adopted to intrusion detection by Jung et al. in [31]. The
algorithm in Jung’s work is centralized, and it is extended to a distributed algorithm in [30]
where each host performs the inference individually. In our method, inference is only carried
out by leaders, not other hosts, as hosts only have their local observations. Our method is semi-
centralized, and is robust to DDoS attacks, because of two reasons. First, there are multiple
widely distributed leaders, and any of them can make the decision. It is hard to attack all the
leaders simultaneously. Second, leaders are periodically re-elected distributively, so it is hard
for attackers to predict the leaders when attacks happen.

I ran experiments on 42 nodes on DETER 1. The experiment topology was similar to a

1That is the largest number of nodes I could get assigned by DETER. Although the number of free nodes is usually around
100, I never get all of them because of various limitations such as available connections, hidden nodes in the middle, etc.
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dumbbell, except there was a LAN at each end, as shown in Figure 6. Intrusion was emulated
using WormSim [32]. Intrusion was detected when a non-vulnerable host received an access
attempt on an unserved port. The parameters of the experiment are in Table I, which were the
same as those in the experiment in [30].

LAN1: 100Mbps, 1ms 

1Mbps, 100ms 

LAN2: 100Mbps, 1ms 

Fig. 6. Intrusion detection experiment topology.

Sequential hypothesis testing
False positive 0.1
False negative 0.1
Desire false alarm rate 0.02
Desire detection rate 0.98
Decision number 8

Experiment settings
Network size 42
Vulnerable nodes 25%
Non-vulnerable nodes 75%
Worm propagation rate 1 message/second

Method specific parameters
Gossiping rate m 2
Aggregation rate 2

TABLE I
INTRUSION DETECTION EXPERIMENT PARAMETERS.

To evaluate the performance, I compared two aspects: detection speed and cost. Detection
speed measures how fast hosts can reach a decision on intrusion detection. Detection cost consists
of two metrics: (1) the number of messages that hosts propagate to reach a decision (network
traffic overhead); (2) the number of infected nodes by the time of decision.

One set of the experiment results is shown below in Figure 7. The results are the average of
5 tests. Gossip refers to the gossiping protocol in [30] and Leader is our region-based protocol.
Our mechanism adaptively organizes hosts into two clusters, corresponding to the two LANs,
based on network topology and properties (latency, bandwidth, etc). A host in each LAN is
elected as the leader. In contrast, the gossiping protocol randomly chooses m hosts to forward
messages. We can see that Leader outperforms Gossip in all the three metrics. Leader is faster in
detection time because alerts are collected within each region first before being exchanged among
leaders, while in Gossip messages may cross the slow link (100ms) many times before reaching
a decision. Therefore, the number of infected nodes is also smaller in Leader thin in Gossip.
Mostly significantly, the number of messages in Leader is greatly fewer than that in Gossip.
The reason for this is because that the number of messages increases almost exponentially
among hosts in Gossip, while in Leader each message is only sent to the local leader, and then
exchanged among leaders with aggregation 2.

2Note that the messages do not include those for maintaining the cooperation among hosts in their method Gossip or messages
for leader election in our method.
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Those experimental results suggest that the network knowledge plane can improve intrusion
detection by providing valuable network-layer knowledge to intrusion detection systems. In my
thesis I will follow up with a series of further experiments:

1) Allow the gossip protocol to run locally within a cluster. This will allow us to improve our
understanding of the tradeoff between network costs (traffic, delay, etc.) and both speed
and correctness of detection.

2) Move to the model in which local and global detection are distinct. We plan to study two
different questions here. One is that each local detector can be specialized, as suggested
but not implemented in [29]. In addition, a cluster of global detectors might be specialized
by region or enterprise, and clearly need not be comprised of as large a set as the local
detectors, allowing for improved scaling.

3) Create a security policy that prohibits the exposure of most local information, but allows for
the report of definitive attacks. For example an enterprise might not allow any information
about the nature of its network or the degree of compromise it might have experienced to
go beyond its security perimeter, but might allow for a report to the rest of the net that it
has authoritatively identified an attack with a particular signature. In return for allowing
that information out, it can expect to receive similar information from other enterprises or
business entities. This is an example of understanding and utilizing incentives effectively.

4) Enhance the reporting scheme to reflect a signature of a worm, if detection has occurred.
This will provide two improved capabilities. The first is that when composite detection is
done, it can be partitioned by worm signatures. We expect this to significantly reduce the
impact of false positive reports. The second is that it will improve the reporting of a worm,
by allowing for reporting of a particular worm signature, thus enabling the disentanglement
of simultaneous worm attacks.

Fig. 7. Intrusion detection performance comparison.

VII. CASE STUDY: DNS DIAGNOSIS

In this section I present a case study on a DNS sub-KP whose task is to diagnose DNS
failures. Unlike the case study on intrusion detection which has no inherent structure in itself,
the DNS system has a well-defined naming hierarchy and zone structure, which will play an
important role in organizing such a sub-KP for diagnosis.

There are several issues we need to consider first. One is the access to DNS servers. Many
DNS problems are internal to DNS servers, such as delegation errors, synchronization errors,
etc. Agents outside can observe some symptoms, but it is very hard to figure out the causes.
In the following discussion I assume agents can access the internal state of DNS servers. I
summarize the symptoms and causes of DNS failures in Table II. The agent organization should
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follow the DNS delegation, because that is how a domain name gets resolved, and regions are
formed based on domain structure and other distances.

I am currently working on a DNS sub-KP as an example in network management. As we
do not have access to name servers right now, the current experiment is limited to the end-to-
end approach. An initial experiment setup for DNS fault diagnosis is illustrated in Figure 8.
The experiment consists of multiple nodes in PlanetLab. The basic experiment consists of three
steps, as shown in Figure 8. First, the programs running on multiple PlanetLab nodes maintain
a list of various domain names. Second, periodically nodes issue DNS name resolution requests
to the corresponding DNS name servers. Third, the resolution results are stored into a local
database. Finally, the results are analyzed at the local machine. An improvement will be to enable
interactive measurement. In the interactive measurement, the nodes will receive the analysis
results from the local machine and change the requests accordingly, as shown as step 4.
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Fig. 8. DNS diagnosis experiment setup.

VIII. RELATED WORK

There are many categories of related work to the knowledge plane, including publish/subscribe
systems, interest-based overlay networks, content routing networks, etc, as many issues are
involved in this work.

A. Overlay Networks

The closest related work to the NetKP is routing underlays [33], [34]. Routing underlays
use network topology information to eliminate redundant virtual links in overlays to achieve
scalability. Both routing underlays and the NetKP try to expose network topology knowledge
to the applications. However, there are several differences. First, the NetKP is designed to be
part of the KP under a general framework, and is to be extended to accommodate other kinds
of knowledge. Second, it provides more knowledge than routing information. Third, it aims to
help many applications in different ways, not only routing overlays.

Semantic overlay networks [35], [36], [37] are similar to the issues we have in organizing
agents in the network applications in that both focus on the dissemination and sharing of
complicated knowledge that requires semantic understanding.

Interest-based overlay networks such as [38] are similar to this work in that peers prefer to
connect with others with similar interests. In that work, a node caches the information about
other peers which provided useful results to recent queries, as those peers have shown similar
interests, and are likely to provide good results for the future queries.

iPlane [39] is very similar to the NetKP in that both provide performance knowledge. Com-
pared with many of its predecessors, iPlane provides a richer set of performance characteristics
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using several clustering techniques. Su et al. proposed a novel use of existing content distribution
networks such as Akamai to improve overlay routing [40] by taking advantage of Akamai’s open
redirection mechanism. Both of them are similar to the knowledge plane in that they provide
network knowledge to applications. One difference is that the knowledge plane is more general
and provides not only performance knowledge but also topology and policy knowledge. iPlane
only focuses on network information, while the knowledge plane will be extensible so that new
kinds of knowledge can be made available.

B. Agent Organization

Another related work is large-scale measurement and monitoring infrastructures, which usually
manage a large number of monitoring hosts. Many measurement and monitoring infrastructures
have been proposed and built so far [41], [42], [11]. TAMI [41] is a measurement infrastructure
that is both topology-aware and supports various scheduling mechanisms. But the topologies
in TAMI are source and sink trees only, mainly for bandwidth measurement purposes. Those
infrastructures only support basic operations between their members, mostly monitoring and
probing. Our mechanism makes use of network topology such as autonomous systems infor-
mation. Agents are organized based on their topological locations. In contrast with the simple
behaviors in the previous measurement and monitoring infrastructures, agents in the knowledge
plane can collaborate to perform intelligent reasoning. The prototype mechanism in this proposal
is aimed to be a step forward from the simple infrastructure and distributed query processing
toward the KP. KP will need to build on these and new measurement monitoring capabilities
as underpinnings as well as possibly supporting the management and organization of such
distributed tools.

C. Propagation and Aggregation

Publish/subscribe systems address problems similar to ours [5], [6]. There are three kinds of
pub/sub systems: unicast, single-identifier multicast and content-based multicast. Unicast systems
transmit notifications directly to subscribers over the Internet’s existing mechanisms. Single-
identifier multicast systems send messages to discrete message channels to which customers
with identical interests subscribe. The most popular approach is content-based multicast systems,
which forward messages based on the text content of the messages. The problem in the KP is
more closely related to content-based multicast than the other two in that in our problem,
requests and knowledge need to match each other based on content. However, our problem
is more complicated because there are many heterogeneous knowledge sources with different
interests and capacities.

Search has been an important component in many networked systems, especially in peer-
to-peer systems. For example, Distributed Hash Tables use hashed IDs to find specific files
[19], [20], [43]. Gnutella [4] uses scoped broadcast of key words to search for contents, which
is similar to our propagation problem. However, in the KP, more complete representations of
requests and knowledge, and more sophisticated search functions are needed, such as range
search, fuzzy pattern match, etc.

Content routing networks is a research effort to support name-based routing in the Internet
[44]. To do so, routers need to support name-based routing which requires name-based aggre-
gation. However, the current name aggregation mechanism is not scalable. The KP does not
require the routing infrastructure changes, but we will need similar aggregation functionality to
aggregate requests and offers among agents in both the network layer and the application layer.

Directed diffusion is an important data dissemination paradigm in sensor networks [22], [45].
We have a similar problem in the KP: how agents with similar interests find each other, and how
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and where knowledge meets requests. However, sensor networks are different from the Internet
in that it is smaller in their scale and simpler in their structure.

The semantic web is a task force aimed to make web pages understandable by computers, so
that websites can be searched in a standardized way. The potential benefits are that computers
can harness the enormous network of information and services on the Web. The semantic web
uses the descriptive technologies Resource Description Framework (RDF) and Web Ontology
Language (OWL), and the data-centric, customizable Extensible Markup Language (XML),
to address the machine-readability problem. These existing techniques help us on knowledge
representation problem, but they cannot solve the propagation problem.

D. Regions Work

In my previous research, two projects are related to this proposal. One is my Master’s Thesis
[46], which is part of the Region Projects [47], [7]. In that work, I designed and implemented
a special region mechanism for peer-to-peer systems to improve lookup and replication per-
formance using autonomous system information [48]. The regions in that work can be viewed
as a simplified prototype of the KP, since regions provide the applications with the underlying
network topology information, but lacking in the sophisticated support that the KP provides.

In another research effort [23], I designed an efficient and scalable information aggregation
mechanism for peer-to-peer networks. Aggregation is an important function in the KP. For
example, fault diagnosis often requires aggregated knowledge from multiple agents. This work
can be a base for the aggregation mechanism in the KP. However, the aggregation in the KP is
more general and complex.

IX. RESEARCH AGENDA

A. Remaining questions

This proposal covers many challenging problems. Although I have addressed some of them,
many questions still need further exploration. The following is an incomplete list of questions
to study further in my thesis:

1) What other knowledge should and can be provided by the NetKP? Policy discovery is
mentioned, but it needs to be better defined.

2) Related to the first question but more generally, besides knowledge, what other mecha-
nisms/utilities should be provided by the NetKP for sub-KPs and applications to orga-
nize themselves? For example, the NetKP could provide mechanisms to help construct a
minimum-cost tree or disjoint trees, or provide nearest neighbor selection.

3) In the KP organization, when and how should a large AS be divided into several regions
in the NetKP?

4) How to measure and share performance knowledge in the NetKP considering the tradeoff
between accuracy and overhead?

5) Sub-KP organization needs to be explored further, especially on request propagation and
aggregation.

6) How do we manage all dimensions of distances? How do we define interest difference?

B. Schedule

I plan to finish the thesis by December 2007. The attempted schedule is below:
1) November 2006 - February 2007. Design algorithms and concrete case studies.
2) March - June, 2007. Implement a prototype NetKP on PlanetLab, and two prototype sub-

KPs.
3) July - August, 2007. Improve and evaluate the NetKP and sub-KPs.
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4) September - November, 2007. Thesis writing.
5) December 2007. Thesis defense.

C. NetKP and Sub-KP Implementation

I will implement and deploy the network knowledge plane in the Internet. To build the NetKP,
we need to be able to access network topology information, especially AS information. However,
such information is not public, and special arrangement is needed with the ISPs so as to set
up BGP sessions with routers. Furthermore, it is not possible to set up authoritative agents in
all ASes to receive BGP feeds at the same time, and we need gradual deployment. To do so,
we can learn BGP information indirectly from other sources, such as Route Views [49], and
inference techniques [17]. Those BGP tables cover most of the ASes, but many peering links
are missing. PlanetLab [50] and DETER [24] are two places to do a large-scale deployment of
this prototype mechanism.

I have also performed preliminary experiments on intrusion detection on DETER. The initial
results show KP’s potential to improve detection speed. I plan to build more sub-KPs for DNS,
network management, etc. To evaluate the effectiveness of the knowledge plane, I will examine
the efficiency of connectivity graphs and quantify the benefits under certain metrics.

X. SUMMARY

The ultimate goal of the knowledge plane is to build a new generation of network that can
drive its own deployment and configuration, that can diagnose its own problems, and make
decisions to resolve them. There are many challenging issues to achieve this goal, such as
knowledge representation and utilization, trust and security, economic incentives, etc. As a step
towards the knowledge plane, in this proposal I design an application-independent mechanism
at the network layer to help construct application-specific connectivity graphs. According to
the end-to-end arguments [51], only common and essential functions should be put into the
network layer, while in this research I propose to add more functions to the network layer. I
believe that as the Internet becomes increasingly pervasive, more and more applications need
to learn more about network conditions to work correctly and efficiently besides end-to-end
connectivity. Therefore, we need a common infrastructure to provide such network knowledge
and mechanisms, at low cost, for applications, and hence it does not contradict the end-to-end
arguments.

Agent organization and request propagation are two key issues in the knowledge plane.
In my thesis, I will make the following contributions. First, I design a network knowledge
plane as the application-independent mechanism. The application-independent NetKP provides
common functions on network topology and performance, and help agents in sub-KPs find each
other (agent discovery). I also address the knowledge base issues, and knowledge collection,
dissemination, aggregation, etc.

Second, I propose to construct multiple sub-KPs on top of the NetKP, each of which con-
centrates on one area of interest. The agent organization and request propagation are different
from those in the NetKP, and depends on both network knowledge and knowledge of specific
sub-KPs.

Third, I plan to implement the proposed the NetKP and multiple sub-KPs in network man-
agement, and conduct case studies to understand and improve the knowledge plane.

By designing and implementing the NetKP and sub-KPs, and conducting several case studies
on network management and applications, I hope to address the two problems, improve our
understanding of the knowledge plane and motivate future research in this area.
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APPENDIX

A. Tables

Symptoms Causes

1. Local name cannot be resolved

Primary master
Local host configuration
Slave server
Caching-only server

2. Remote name cannot be resolved
Local name server
Network connectivity
Remote name server

3. Wrong or inconsistent answer
Local name server
Remote name server

4. Lookups take a long time
Network connectivity
Incorrect delegation

5. rlogin and rsh to host fails access check
local host
name server

6. Access to services denied Name server: case-sensitive names
Incorrect delegation

7. Cannot get rid of old data
Parent name server: old delegation information
gTLD server: registration of a non-name server
Child name server: old cached data

TABLE II
SYMPTOMS AND CAUSES IN DNS FAULT DIAGNOSIS.




