6 research outputs found

    The Optimisation of Elementary and Integrative Content-Based Image Retrieval Techniques

    Get PDF
    Image retrieval plays a major role in many image processing applications. However, a number of factors (e.g. rotation, non-uniform illumination, noise and lack of spatial information) can disrupt the outputs of image retrieval systems such that they cannot produce the desired results. In recent years, many researchers have introduced different approaches to overcome this problem. Colour-based CBIR (content-based image retrieval) and shape-based CBIR were the most commonly used techniques for obtaining image signatures. Although the colour histogram and shape descriptor have produced satisfactory results for certain applications, they still suffer many theoretical and practical problems. A prominent one among them is the well-known “curse of dimensionality “. In this research, a new Fuzzy Fusion-based Colour and Shape Signature (FFCSS) approach for integrating colour-only and shape-only features has been investigated to produce an effective image feature vector for database retrieval. The proposed technique is based on an optimised fuzzy colour scheme and robust shape descriptors. Experimental tests were carried out to check the behaviour of the FFCSS-based system, including sensitivity and robustness of the proposed signature of the sampled images, especially under varied conditions of, rotation, scaling, noise and light intensity. To further improve retrieval efficiency of the devised signature model, the target image repositories were clustered into several groups using the k-means clustering algorithm at system runtime, where the search begins at the centres of each cluster. The FFCSS-based approach has proven superior to other benchmarked classic CBIR methods, hence this research makes a substantial contribution towards corresponding theoretical and practical fronts

    MULTI-DIMENSIONAL EVOLUTIONARY FEATURE SYNTHESIS FOR CONTENT-BASED IMAGE RETRIEVAL

    No full text
    Low-level features (also called descriptors) play a central role in content-based image retrieval (CBIR) systems. Features are various types of information extracted from the content and represent some of its characteristics or signatures. However, especially the (low-level) features, which can be extracted automatically usually lack the discrimination power needed for accurate description of the image content and may lead to a poor retrieval performance. In order to efficiently address this problem, in this paper we propose a multidimensional evolutionary feature synthesis technique, which seeks for the optimal linear and non-linear operators so as to synthesize highly discriminative set of features in an optimal dimension. The optimality therein is sought by the multi-dimensional particle swarm optimization method along with the fractional global-best formation technique. Clustering and CBIR experiments where the proposed feature synthesizer is evolved using only the minority of the image database, demonstrate a significant performance improvement and exhibit a major discrimination between the features of different classes

    Multidimensional Particle Swarm Optimization for Machine Learning

    Get PDF
    Particle Swarm Optimization (PSO) is a stochastic nature-inspired optimization method. It has been successfully used in several application domains since it was introduced in 1995. It has been especially successful when applied to complicated multimodal problems, where simpler optimization methods, e.g., gradient descent, are not able to ïŹnd satisfactory results. Multidimensional Particle Swarm Optimization (MD-PSO) and Fractional Global Best Formation (FGBF) are extensions of the basic PSO. MD-PSO allows searching for an optimum also when the solution dimensionality is unknown. With a dedicated dimensional PSO process, MD-PSO can search for optimal solution dimensionality. An interleaved positional PSO process simultaneously searches for the optimal solution in that dimensionality. Both the basic PSO and its multidimensional extension MD-PSO are susceptible to premature convergence. FGBF is a plug-in to (MD-)PSO that can help avoid premature convergence and ïŹnd desired solutions faster. This thesis focuses on applications of MD-PSO and FGBF in different machine learning tasks.Multiswarm versions of MD-PSO and FGBF are introduced to perform dynamic optimization tasks. In dynamic optimization, the search space slowly changes. The locations of optima move and a former local optimum may transform into a global optimum and vice versa. We exploit multiple swarms to track different optima.In order to apply MD-PSO for clustering tasks, two key questions need to be answered: 1) How to encode the particles to represent different data partitions? 2) How to evaluate the ïŹtness of the particles to evaluate the quality of the solutions proposed by the particle positions? The second question is considered especially carefully in this thesis. An extensive comparison of Clustering Validity Indices (CVIs) commonly used as ïŹtness functions in Particle Swarm Clustering (PSC) is conducted. Furthermore, a novel approach to carry out ïŹtness evaluation, namely Fitness Evaluation with Computational Centroids (FECC) is introduced. FECC gives the same ïŹtness to any particle positions that lead to the same data partition. Therefore, it may save some computational efforts and, above all, it can signiïŹcantly improve the results obtained by using any of the best performing CVIs as the PSC ïŹtness function.MD-PSO can also be used to evolve different neural networks. The results of training Multilayer Perceptrons (MLPs) using the common Backpropagation (BP) algorithm and a global technique based on PSO are compared. The pros and cons of BP and (MD-)PSO in MLP training are discussed. For training Radial Basis Function Neural Networks (RBFNNs), a novel technique based on class-speciïŹc clustering of the training samples is introduced. The proposed approach is compared to the common input and input-output clustering approaches and the beneïŹts of using the class-speciïŹc approach are experimentally demonstrated. With the class-speciïŹc approach, the training complexity is reduced, while the classiïŹcation performance of the trained RBFNNs may be improved.Collective Network of Binary ClassiïŹers (CNBC) is an evolutionary semantic classiïŹer consisting of several Networks of Binary ClassiïŹers (NBCs) trained to recognize a certain semantic class. NBCs in turn consist of several Binary ClassiïŹers (BCs), which are trained for a certain feature type. Thanks to its topology and the use of MD-PSO as its evolution technique, incremental training can be easily applied to add new training items, classes, and/or features.In feature synthesis, the objective is to exploit ground truth information to transform the original low-level features into more discriminative ones. To learn an efficient synthesis for a dataset, only a fraction of the data needs to be labeled. The learned synthesis can then be applied on unlabeled data to improve classiïŹcation or retrieval results. In this thesis, two different feature synthesis techniques are introduced. In the ïŹrst one, MD-PSO is directly used to ïŹnd proper arithmetic operations to be applied on the elements of the original low-level feature vectors. In the second approach, feature synthesis is carried out using one-against-all perceptrons. In the latter technique, the best results were obtained when MD-PSO was used to train the perceptrons.In all the mentioned applications excluding MLP training, MD-PSO is used together with FGBF. Overall, MD-PSO and FGBF are indeed versatile tools in machine learning. However, computational limitations constrain their use in currently emerging machine learning systems operating on Big Data. Therefore, in the future, it is necessary to divide complex tasks into smaller subproblems and to conquer the large problems via solving the subproblems where the use of MD-PSO and FGBF becomes feasible. Several applications discussed in this thesis already exploit the divide-and-conquer operation model

    Spatial and Content-based Audio Processing using Stochastic Optimization Methods

    Get PDF
    Stochastic optimization (SO) represents a category of numerical optimization approaches, in which the search for the optimal solution involves randomness in a constructive manner. As shown also in this thesis, the stochastic optimization techniques and models have become an important and notable paradigm in a wide range of application areas, including transportation models, financial instruments, and network design. Stochastic optimization is especially developed for solving the problems that are either too difficult or impossible to solve analytically by deterministic optimization approaches. In this thesis, the focus is put on applying several stochastic optimization algorithms to two audio-specific application areas, namely sniper positioning and content-based audio classification and retrieval. In short, the first application belongs to an area of spatial audio, whereas the latter is a topic of machine learning and, more specifically, multimedia information retrieval. The SO algorithms considered in the thesis are particle filtering (PF), particle swarm optimization (PSO), and simulated annealing (SA), which are extended, combined and applied to the specified problems in a novel manner. Based on their iterative and evolving nature, especially the PSO algorithms are often included to the category of evolutionary algorithms. Considering the sniper positioning application, in this thesis the PF and SA algorithms are employed to optimize the parameters of a mathematical shock wave model based on observed firing event wavefronts. Such an inverse problem is suitable for Bayesian approach, which is the main motivation for including the PF approach among the considered optimization methods. It is shown – also with SA – that by applying the stated shock wave model, the proposed stochastic parameter estimation approach provides statistically reliable and qualified results. The content-based audio classification part of the thesis is based on a dedicated framework consisting of several individual binary classifiers. In this work, artificial neural networks (ANNs) are used within the framework, for which the parameters and network structures are optimized based the desired item outputs, i.e. the ground truth class labels. The optimization process is carried out using a multi-dimensional extension of the regular PSO algorithm (MD PSO). The audio retrieval experiments are performed in the context of feature generation (synthesis), which is an approach for generating new audio features/attributes based on some conventional features originally extracted from a particular audio database. Here the MD PSO algorithm is applied to optimize the parameters of the feature generation process, wherein the dimensionality of the generated feature vector is also optimized. Both from practical perspective and the viewpoint of complexity theory, stochastic optimization techniques are often computationally demanding. Because of this, the practical implementations discussed in this thesis are designed as directly applicable to parallel computing. This is an important and topical issue considering the continuous increase of computing grids and cloud services. Indeed, many of the results achieved in this thesis are computed using a grid of several computers. Furthermore, since also personal computers and mobile handsets include an increasing number of processor cores, such parallel implementations are not limited to grid servers only
    corecore