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Abstract

Stochastic optimization (SO) represents a category of numerical optimization
approaches, in which the search for the optimal solution involves randomness

in a constructive manner. As shown also in this thesis, the stochastic optimiza-
tion techniques and models have become an important and notable paradigm
in a wide range of application areas, including transportation models, financial
instruments, and network design. Stochastic optimization is especially devel-
oped for solving the problems that are either too difficult or impossible to solve
analytically by deterministic optimization approaches.

In this thesis, the focus is put on applying several stochastic optimization
algorithms to two audio-specific application areas, namely sniper positioning and
content-based audio classification and retrieval. In short, the first application
belongs to an area of spatial audio, whereas the latter is a topic of machine learn-
ing and, more specifically, multimedia information retrieval. The SO algorithms
considered in the thesis are particle filtering (PF), particle swarm optimization
(PSO), and simulated annealing (SA), which are extended, combined and applied
to the specified problems in a novel manner. Based on their iterative and evolv-
ing nature, especially the PSO algorithms are often included to the category of
evolutionary algorithms.

Considering the sniper positioning application, in this thesis the PF and SA
algorithms are employed to optimize the parameters of a mathematical shock
wave model based on observed firing event wavefronts. Such an inverse problem
is suitable for Bayesian approach, which is the main motivation for including
the PF approach among the considered optimization methods. It is shown – also
with SA – that by applying the stated shock wave model, the proposed stochastic
parameter estimation approach provides statistically reliable and qualified results.

The content-based audio classification part of the thesis is based on a dedi-
cated framework consisting of several individual binary classifiers. In this work,
artificial neural networks (ANNs) are used within the framework, for which the
parameters and network structures are optimized based the desired item outputs,
i.e. the ground truth class labels. The optimization process is carried out using a
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multi-dimensional extension of the regular PSO algorithm (MD PSO). The audio
retrieval experiments are performed in the context of feature generation (synthe-
sis), which is an approach for generating new audio features/attributes based on
some conventional features originally extracted from a particular audio database.
Here the MD PSO algorithm is applied to optimize the parameters of the feature
generation process, wherein the dimensionality of the generated feature vector is
also optimized.

Both from practical perspective and the viewpoint of complexity theory, stochas-
tic optimization techniques are often computationally demanding. Because of
this, the practical implementations discussed in this thesis are designed as di-
rectly applicable to parallel computing. This is an important and topical issue
considering the continuous increase of computing grids and cloud services. In-
deed, many of the results achieved in this thesis are computed using a grid of sev-
eral computers. Furthermore, since also personal computers and mobile handsets
include an increasing number of processor cores, such parallel implementations
are not limited to grid servers only.
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Chapter 1
Introduction

Imagine yourself walking in a war zone with several obstacles and covered
hiding places. Suddenly, without a warning, you hear a very sharp and short

”snapping” sound nearby, immediately revealing that you have been detected by
a hostile sniper. Being unable to determine the direction of the sound, you rush in
to find a quick cover. As you have no cue about the shooter location, all you can
do is remain still and quiet. In such a situation, obtaining even a small hint of the
sniper direction – or ideally the exact location – would be of great importance,
not to mention estimating the trajectory, caliber and speed of the fired bullet.
This information would significantly improve one’s chances of survival from the
situation.

In another scenario, imagine yourself wandering in a city side walk and listen-
ing to your favourite music with headphones. As you are connected to an on-line
database, you decide to browse for new music clips similar in content to that
you are currently listening (i.e., representing the same genre). The browsing sys-
tem thus performs a gradual similarity search over the database – also called as
content-based retrieval or a ”query-by-example” – and proposes the most similar
music pieces found for you. In a broader sense, such content-based audio retrieval
is applicable to various types of databases other than music. For example, you
may want to search for film scenes including a specific actor/actress based on
his/her tone of voice, or you might be simply interested in finding out all the,
say, dog barking samples from a database consisting of animal sounds. As can
be seen, the spectrum of potential applications is wide in this area.

The above examples demonstrate two fundamentally different types of audio-
related estimation problems. Despite their differences, however, in this thesis it is
shown that similar audio signal processing and stochastic optimization methods
can be applied to them providing satisfactory estimation results. As can be seen,
it may be desired to estimate the direction of an incoming sound wave, whereas
in some cases we are more interested about the content of a received audio.
Combining the two targets may be also desirable in some cases: considering the
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second scenario a bit further, imagine that while listening to your music, a car
approaches you from behind. As you cannot hear the car and carelessly decide
to cross the street through a cross walk, you almost directly step in front of the
car and force the driver brake heavily to avoid contact. Although one should be
more careful than this in a traffic, in such situations an automatic detection and
recognition of incoming vehicles would definitely enhance safety.

Even if it would be – in some cases – possible to manage the aforementioned
situations by ourselves (as we humans do have remarkable abilities created in
determining sound source directions and recognize the audio contents [Rum12,
Chapter 2]), in many cases it would still be very beneficial to perform the esti-
mation automatically. For example, automatic area surveillance, intelligent cars
with related (mobile) devices and robot technology are all potential areas for
these kind of audio processing solutions. In short, spatial and content-based au-
dio analysis and estimation provide interesting and important possibilities for
several potential application areas. Sound source localization, sound wave direc-
tion of arrival (DOA) estimation, and content-based audio recognition have all
been studied actively in the audio signal processing field. It is thus highly prob-
able to see an increasing number of novel and (also) commercially interesting
innovations around the topic in the near future.

1.1 Spatial Audio Analysis
As a term, the spatial audio analysis involves estimating the DOA of different
sound sources in a specific environment [Rum12, Chapter 1]. The sound sources
may be fixed to a certain position, or they may be moving around the spatial
environment. Furthermore, there may be either a single or several simultaneous
sound sources active, where in the latter case specific source separation meth-
ods [Man10] or, alternatively, some detection and content recognition algorithm
may be required. In this work, a modified version of the detection algorithm
described in [Kla06, Chapter 4] is applied, which is to be discussed in Chapter 3.

The most commonly applied DOA estimation techniques are based on time-
difference-of-arrival (TDOA) estimations between several microphones [Ben08].
The microphones are typically mounted on an array with relatively small dis-
tances between each other. A soldier helmet is considered and mimicked for this
purpose in the shooter localization application of this thesis. In order to estimate
a bullet trajectory and, hence, the shooter location, two separate stochastic op-
timization methods are applied. The first one, particle filtering, is a sequential
Monte Carlo approach relying on Bayesian inference [Kal09], while the second ap-
proach is based on the simulated annealing algorithm [vL87]. Both approaches –
together with the corresponding stochastic optimization methods – are discussed
in detail in Chapters 2 and 3.
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1.2 Content-based Audio Management
Knowledge discovery in databases (KDD) [PS91] is a general term used to de-
scribe a process of creating and obtaining new knowledge from particular sources.
The analysis step of KDD is called data mining [Han11], which is a field concen-
trating on automatic discovery of previously unknown patterns from the input
data. The term often overlaps with machine learning [Dud01], which focuses
on construction and study of systems that can learn from data. This includes
predicting and recognizing the content of a specific media, such as image, audio,
or video. The machine learning algorithms can be divided to supervised and
unsupervised learning categories [Dud01]. The principal difference between the
two is that in supervised learning a separate training dataset with correct output
values (the ground truth information) is required, whereas methods belonging
to the unsupervised learning category aim to model the input data without any
form of training involved. The learning algorithms can be used to train specific
classifiers. These are essentially systems which, given a specific data sample in-
put, output the class label to which the input sample most likely belongs to. In
this thesis, the content analysis focus is put on supervised learning.

An adaptive classifier network topology is proposed and described for the
audio content analysis purposes of this work. The classifier network is called
as collective network of binary classifiers (CNBC), which analyses and combines
the outputs of several distinct classifiers with binary outputs. These binary clas-
sifiers are evolved by using the multi-dimensional particle swarm optimization
(MD PSO) [Kir09] algorithm. The network topology is specifically designed for
versatile and dynamic databases, meaning that audio classes with highly varying
content and dynamic number of samples and classes are handled in a fluent and
efficient manner.

1.3 Audio Feature Generation
In many cases where data classification or machine learning in general is to be
performed, certain features (also called as attributes) need to be extracted from
the input data. Attempts have been made in the past research to generate new
and enhanced audio features in the sense of classification and retrieval perfor-
mance. These approaches share a common principal idea of selecting (feature
selection) and modifying (feature generation) some set of low-level audio features.
Stochastic evolutionary algorithms – usually genetic algorithms (GA) [Gol89] –
are applied also in this field for the selection and generation processes. However,
the number of successful and generalizable audio feature generation methods in
the literature is still rather limited, as is comprehensively discussed in [Pac09].

In this thesis, the MD PSO algorithm applied to the CNBC network is also
employed to generate new audio features with enhanced class discrimination abil-
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ity. In addition to the actual features, the approach also provides the possibility
to optimize the dimensionality of the generated output feature vector.

1.4 Outline of the Thesis
Put in a single sentence, this doctoral thesis concentrates on applying specific
stochastic and evolutionary optimization methods in the areas of spatial audio
source localization and content-based audio classification and retrieval. The fun-
damental optimization methods applied throughout the thesis are first introduced
and discussed in Chapter 2. These methods include, together with their deriva-
tives, particle filtering (PF) [Aru02], particle swarm optimization (PSO) [Ken95],
and simulated annealing (SA) [vL87]. As already discussed above, the spatial au-
dio research concentrates on a military application, in which the goal is to detect
and localize hostile snipers using a microphone array. This application is dis-
cussed in detail in Chapter 3. The work related to content-based audio analysis
is the topic of Chapter 4, in which the focus is drawn mainly on describing the
indexing (classification) of versatile and dynamic audio databases using the ded-
icated classifier network. The feature generation approach regarding to indexing
and retrieval tasks is discussed in Chapter 5, where the topic in general is also
brought into a broader discussion. Finally, the main observations and conclusions
of the thesis are drawn in Chapter 6, after which the included publications and
errata are attached at the end.

1.5 Main Results of the Thesis
The main results of the thesis are listed in this section, separately for each pub-
lication and the two main application areas.

1.5.1 Shooter Localization
The publications [P1] and [P2] consider the problem of gunshot detection, bullet
trajectory, caliber and speed estimation, and shooter localization.

Publication 1

In publication [P1], particle filtering is applied for estimating the trajectory, cal-
iber and speed (i.e. the state) of a supersonic bullet. In short, introduction of such
a stochastic Bayesian inference approach to the estimation is the main contribu-
tion of the article. In the process, mathematical shock wave modelling is used
together with measured gunshot data to allow applying the Bayesian approach.
The problem is of high dimension with an irregular likelihood distribution, which
is a suitable venue for stochastic particle filters. The method is evaluated by
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gunshot simulations and real gunshot recordings, and the results demonstrate
a high convergence ability of the applied PF on high-dimensional optimization
problems. The achieved estimation accuracy is well-comparable to other trajec-
tory estimation approaches proposed in the literature, with the advantage of not
requiring any prior information of the weapon or terrain types.

Publication 2

Publication [P2] broadens the research made in [P1] by including the gunshot
detection phase to the research scope and by increasing the amount of both
simulated and recorded gunshot data. Instead of particle filtering, simulated
annealing is applied to the optimization problem with two different fitness mea-
sures. The first fitness measure is the one applied also in [P1], i.e., a generalized
cross correlation (GCC) - based signal comparison, while the mean-squared error
(MSE) is considered as the second measure. These measures allow performing
both time- and frequency domain fitness evaluation. The research shows the
capability of SA in providing satisfactory solutions for the multi-dimensional op-
timization problem encountered in the estimation process. In a broader sense, it
is shown that the shooter localization and bullet state estimation problem can
be described as a multi-dimensional optimization problem and solved by apply-
ing stochastic optimization approaches. The obtained results are comparable or
better than those achieved with the state-of-the-art approaches.

1.5.2 Content-based Audio Classification and Retrieval
The rest of the publications are related to content-based audio classification and
retrieval problems.

Publication 3

An approach of constructing a network of binary classifiers for audio classification
is proposed in publication [P3]. The principal idea is to construct a separate
binary classifier network for each audio class involved to a classification problem.
The solution allows combining a large amount of different types of audio features,
as each network can be used to divide the extracted audio features into several
feature subsets. Not all features can distinguish all types of audio classes, which
is why the subset providing the best classification result is favoured among the
others by a dedicated fuser classifier. The described classifier topology allows also
to dynamically increase or decrease the number of classes (and samples within)
without necessarily retraining the classifier network from scratch. This provides
a fast adaptation to any changes occurring in a database. In this work, artificial
neural networks (ANNs) are used as the individual binary classifiers, which are
”evolved” by searching both the optimal network parameters and structures in
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a large search space using a multi-dimensional extension of the particle swarm
optimization algorithm. Improvements in classification accuracy of an 8-class
database were obtained in compared to support vector machine (SVM) classifiers.

Publication 4

Publication [P4] extends the research of [P3] in terms of audio features and classes.
In addition, it also presents an extensive set of comparative evaluations. The ar-
ticle demonstrates the ability of the proposed CNBC topology to provide compa-
rable and enhanced classification results against other state-of-the-art classifiers
with their best parameter combinations found. The scalability property of the
framework is further demonstrated by increasing the number of audio classes in
the tested database and adding new binary classifier networks to the framework
accordingly. The achieved classification results show successful dynamic adapta-
tion of the framework to significant database variations.

Publication 5

Audio features play an essential role in any content-based classification and re-
trieval task. Due to this, a novel method for generating new and enhanced
features out of the existing ones is proposed in publication [P5]. The approach
is based on the MD PSO algorithm, which is applied in both selecting an opti-
mal combination of audio features over an existing low-level feature set, as well
as generating new (artificial) features by modifying the selected ones based on
the optimization process. Also SA is applied in this paper to further assist the
stochastic search process in converging to the global optimum of the set fitness
function. The new features are tested with audio clustering, classification and
retrieval tasks, where clear improvements are obtained compared to the original
features. The successful application of MD PSO to feature generation with such
a performance improvement is the major contribution of the article.

Publication 6

In publication [P6], the feature generation approach of [P5] is extensively ex-
perimented and compared against ANN classifiers. Instead of SA used in [P5],
a heterogeneous particle behaviour approach is applied to enhance the conver-
gence of the MD PSO algorithm. Moreover, two different optimization fitness
functions are used in the experiments to illustrate the possibility of applying
problem-specific fitness measures to the framework. The evolutionary aspect of
the approach, which refers to feature generation (synthesis) over several individ-
ual synthesis runs, is especially on the scope of this paper. In most experiments,
the results indicate notable performance improvements. Moreover, by enabling
all the properties of the proposed feature synthesis technique, it is also shown
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that – when compared to the original features and the ANN classifier – the ap-
proach is scalable with respect to the database size and the number of features
extracted.
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Chapter 2
Stochastic Optimization Methods

Many engineering problems encountered in real-world applications require
solving high-dimensional optimization tasks in a reasonable computational

time. Often such problems cannot be solved in a deterministic manner, caus-
ing a need for alternative, stochastic approximation approaches. This chapter
introduces the three main stochastic optimization methods applied to the op-
timization problems considered in this thesis, namely particle filtering, particle
swarm optimization, and simulated annealing.

2.1 Particle Filtering
Many dynamic system models can be expressed in a state-space form. The idea
behind the form is to capture the system state affecting behind an observed
system output. One of the basic properties of the form defines that the future
state values depend only on the current state in a probabilistic manner. The
observed system outputs are also presumed to be related to the state through a
specific observation equation.

2.1.1 Markov Chains
Assume we have a set of system states, S = s1, s2, . . . , sn. In Markov
Chains [Gri97], the system process starts in one of the states and continues mov-
ing from one state to another according to certain transition probabilities. The
probability of moving from a current state si to state sj is denoted by pij, and
it is not dependent upon which states the chain has visited before the current
state si (the first order Markov property). Note that the process can also remain
in the current state with probability pii. The starting state is usually specified
based on the initial probability distribution of the system model [Gri97, Chapter
11].
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In many scientific problems, in order to provide estimates of the state (and
system) evolution, state-space modelling of the dynamic system at hand is needed.
For this, two specific models are required: the system model and the measurement
model. The former describes the state evolution with respect to time, while the
latter is to relate the observed measurements to the underlying state [Aru02].
Thus, a sequence of (noisy) measurements – called as measurement vector – is
required to build a state-space model for a particular dynamic system. The
state-space approach is especially convenient with non-linear and non-Gaussian
problems, such as the bullet state estimation problem discussed in this thesis.
Analytical solutions, such as Kalman filter [Kal60], cannot be directly applied to
such problems.

2.1.2 Markov Chain Monte Carlo Simulation
Monte Carlo (MC) techniques are approximate inference methods based on ran-
dom numerical sampling [Kal09, Chapter 1]. They are thus stochastic pro-
cesses, defined in [Kal09] as sequences of states whose evolution is determined
by random events. Regarding to several types of system model probability dis-
tributions encountered in real-world applications, the Markov chain Monte Carlo
(MCMC) [Ber04] simulation allows sampling from a wide range of such distribu-
tions. This is achieved by constructing a Markov chain that has the desired target
distribution as its equilibrium distribution. For an ergodic Markov chain, the equi-
librium distribution is defined as the (stationary) distribution, to which the chain
converges when the number of steps approaches infinity. The chain ergodicity
means that the convergence will occur irrespective of the choice of the initial sys-
tem model distribution, and it can be shown that a homogeneous Markov chain
will be ergodic with most target distributions and transition probabilities [Nea93].
At each step of the algorithm, a candidate sample is generated from the current
distribution, which is then accepted according to some probability-based crite-
rion. The state of the chain after a large number of transitions (steps) is taken as
a sample from the desired distribution. Typically the MCMC sampling can only
approximate the target distribution, and the sample quality is dependent on the
number of steps performed in the chain [Bis06, Chapter 11].

2.1.3 Sequential Importance Sampling
As is shown in this work, probabilistic state-space modelling and formulation is
directly applicable to Bayesian approach [Can11]. Here the idea is to construct
a posterior probability density function (PDF) of the state at certain time (or
iteration) index t, based on prior probabilities and the obtained measurements.
Usually the state estimate is required every time a new measurement is obtained,
in which case a recursive solution should be considered. This means sequential
data processing (filtering), in which two essential phases are encountered: predic-
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tion and update. The system model is applied in the prediction phase, where the
state PDF is predicted forward from one measurement time to the next. In the
update phase, instead, the latest measurement is used to modify (and correct)
the predicted PDF. The process can be performed using Bayes theorem [Can11,
Chapter 2].

The sequential importance sampling (SIS) algorithm [Aru02] is essentially a
Monte Carlo method. The term ”importance sampling” refers to sampling from
a proposal distribution (called an importance density) that is different from the
actual distribution of interest (posterior). The purpose is to provide estimates
of the posterior distribution, from which it is often difficult to draw samples
directly. The SIS approach is alternatively called particle filtering, bootstrap
filtering, or survival of the fittest, and it forms the basis for most sequential MC
filters proposed in the literature. It can be used for approximating a recursive
Bayesian filter by MC simulations, where the posterior PDF is represented by a
set of random samples (also called as ”particles”) with associated weights. These
weights are approximations of the relative posterior probabilities of the particles,
determined for each particle based on the corresponding particle value. The
SIS filter approaches the optimal Bayesian estimate as the number of samples
(particles) increases [Aru02].

Denoting a particle a at iteration t as pa[t] and the system output observation
matrix as O, the Bayes theorem can be written as

P (O|pa[t]) ∝ L(pa[t]|O)P (O), (2.1)

where P (O) is the (predicted/determined) prior measurement probability distri-
bution, L(pa[t]|O) is the likelihood function defined by an applied measurement
model, P (O|pa[t]) is the updated (posterior) distribution, and ∝ stands for pro-
portionality. In other words, the formula reveals the probability of observing the
measurement O, given that the system state is the one denoted by the particle
pa[t].

2.1.4 Sampling Importance Resampling Filter
The SIS particle filter suffers from a degeneracy problem, meaning that the par-
ticle weights become negligible after a few iterations. To avoid this problem, a
specific resampling algorithm can be applied whenever significant degeneracy is
obtained. Here the main idea is to remove particles with low weights and focus on
only those with large weights. The removed particles are replaced by resampling
from the approximated posterior distribution.

A special case of the SIS algorithm is derived by choosing an appropriate
importance density and performing the resampling step at every iteration t. This
approach is called sampling importance resampling (SIR) filter [Aru02]. The
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defined prior distribution is commonly applied as the importance density, as
in [P1] where the SIR filter is applied for bullet trajectory, caliber, and speed
estimation (forming the bullet state).

In [P1], a set of particles is applied and evaluated based on their locations
in a pre-determined search space. The particle weights are calculated using a
fitness (or likelihood) function obtained from the applied measurement model.
After the weights are calculated, the particle positions are updated according to
a Brownian motion [Mör10]. The position of particle a is then replaced by the
updated one if

P (pa[?],pa[t]) ≥ α, (2.2)

where pa[?] represents the new candidate particle to replace the existing pa[t] at
iteration t, and α is a random number with uniform distribution over (0, 1). The
probability P (pa[?],pa[t]) is defined as

P (pa[?],pa[t]) = min
(

1, W (pa[?])
W (pa[t])

)
, (2.3)

whereW (·) represents the particle weight. This means that whenever the update
from pa[t] to pa[?] increases the weight value, the position replacement is certain
to be done, i.e. pa[t+ 1] = pa[?]. On the other hand, also transitions to lower
weight positions may occur in a probabilistic manner. This update approach is
called Metropolis algorithm [Bis06, Chapter 11].

As a summary, particle filtering is a sequential Monte Carlo method, where
the probability densities are represented by specific particles. Particle filters are
the sequential (online) analogue of MCMC batch methods, and can be often
performed much faster than MCMC. Note that, as the problem in [P1] does not
include tracking, the processing is performed I = 20 times for each observation
O. A pseudo-code of the SIR filter with P particles is provided in Algorithm 1.

2.2 Particle Swarm Optimization
Iterative particle, or ”point mass”, approach is also employed in another stochas-
tic optimization method called particle swarm optimization [Ken95]. Instead of
approximating Bayesian estimation as in particle filtering, PSO is based on math-
ematical modelling of natural swarms, such as bird flocks or fish schools. It can
be also combined with PF to overcome some of its limitations, as in e.g. [Wan06].
More specifically, Zhang et al. [Zha08] show theoretically that, in a Bayesian
inference view, a sequential PSO framework is actually analogous to multilayer
importance-sampling-based particle filter.
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Input: Observed system measurement O
Output: Estimated system state S

1 Initialize the particles according to prior distribution P (O).
2 for t← 0 to I do
3 for a← 1 to P do
4 Draw sample (particle) from the current state distribution
5 Calculate the sample weight W (pa[t])
6 Update pa[t] using the Metropolis algorithm (Eq. (2.2), (2.3)).
7 end
8 Resample all particles with the systematic resampling algorithm [Aru02].
9 end

Algorithm 1: SIR particle filter with the Metropolis algorithm

As a population-based stochastic search process, in PSO, each particle of
the swarm represents a potential solution for an underlying optimization task.
As in PF, a (randomized) position vector is assigned for each particle, after
which the particles navigate within a pre-defined search space searching for the
global optimum of a (possibly) non-linear function or system. Based on their
movement, the particles gain ”experience” by keeping track of their cognitive and
social components. The former component stands for the personal best position
found so far by the corresponding particle, while the latter one indicates the
global best position found among all the particles of the swarm in an iterative
search process [Mik08].

The velocity of a particle a at iteration t + 1, va[t+ 1], is affected by the
mentioned components and the current velocity as

va[t+ 1] = w[t]va[t] + c1r1[t](ya[t]− pa[t]) + c2r2[t](ŷ[t]− pa[t]), (2.4)

where pa[t] stands for the current particle position, ya[t] is the personal best
position (the cognitive component), and ŷ[t] is the global best position of the
swarm (the social component) found until the iteration index t. The term w[t]
is the inertia weight, c1 and c2 are accelerator constants and r1j and r2j are
uniformly distributed random variables, i.e. rnj ∼ U(0, 1) in each each dimension
j = {1, . . . , D}, where D is the search space dimensionality. Thus, the social and
cognitive components contribute randomly to the particle velocity in the next
iteration. The particle position is then updated using the velocity as

pa[t+ 1] = pa[t] + va[t+ 1]. (2.5)

The accelerator constants – which affect the significance of the cognitive and
social components – are generally set to c1 = c2 = 1.49 or c1 = c2 = 2.0,

13



from which the latter is applied in this work. The inertia weight is used to
control the velocity memory term, and it is usually – as in this work – decreased
during the PSO iterations from 0.9 to 0.4 [Shi98]. A larger value of w(t) favours
particle exploration while a small inertia weight strives for exploitation. The two
remaining PSO parameters are the number of particles applied and iterations
performed in the process. These are highly dependent on the problem and are
usually set experimentally with the trade-off between the optimization accuracy
and computational cost. Also, in order not to exceed suitable particle positional
range, application-specific limits can be set to bind the solutions to a proper
range.

2.2.1 Multi-dimensional Particle Swarm Optimization
Amulti-dimensional extension to PSO (MD PSO) [Kir09] allows the particles to
navigate through multiple search space dimensions. Thus, instead of operating in
a fixed dimension, D, the MD PSO algorithm is designed to seek both positional
and dimensional optima within a certain dimension range, {Dmin, Dmax}. This
also means that the length of the particle position vector varies according to the
corresponding search space dimension.

In MD PSO, each particle possesses two sets of components (for positional and
dimensional search), which are subjected to two independent and consecutive up-
date processes. The first process corresponds to the traditional velocity updates
of the regular PSO (equation (2.4)), while the second one updates the particle
dimension. Accordingly, now the particles keep track of their position, velocity
and personal best position in every dimension, so that whenever a particle re-
visits a particular dimension at a later time, its regular positional update process
may continue using this information. The swarm, on the other hand, keeps track
of the global best particle of each dimension, which are then used in the regular
velocity updates performed in the corresponding dimension. Finally, each par-
ticle keeps also track of its personal best dimension visited so far (in which the
personal best fitness score has been achieved), and the global best dimension is
indicated by a corresponding dimensional social component. This means that the
global best particle position in the global best dimension represents the optimum
solution found so far.

Following the logic of the traditional PSO, the particle velocity update for-
mula (2.4) changes to

vda[t]
a [t+ 1] = w[t]vda[t]

a [t]+c1r1[t]
(
yda[t]
a [t]− pda[t]

a [t]
)
+c2r2[t]

(
ŷda[t][t]− pda[t]

a [t]
)
,

(2.6)

where the index term da[t] is added to each term to illustrate the dimensional
dependency. Similarly, the particle position is updated as

14



pda[t]
a [t+ 1] = pda[t]

a [t] + vda[t]
a [t+ 1]. (2.7)

This means that the new particle position remains in the current dimension da[t]
after the positional update. The dimensional velocity update is thus performed
separately for each particle at the end of the iteration round t+ 1 as follows:

vda[t+ 1] = bvda[t] + c1r1[t] (yda[t]− da[t]) + c2r2[t] (ŷd[t]− da[t])c, (2.8)

where vda[t] denotes the dimensional velocity at iteration t, yda[t] and ŷd[t] are
the personal and global best dimensions visited so far, respectively, and b�c is a
floor operator. Analogous to the regular positional update, the new dimension is
finally updated as

da[t+ 1] = da[t] + vda[t+ 1], (2.9)

where the dimensional jump is allowed only if the target dimension da[t+ 1]
is within a set dimensional range, d ∈ {Dmin, Dmax}, where Dmin and Dmax

correspond to the pre-specified minimum and maximum dimensions, respectively.
Similar to PF, the fitness (or weight) value of particle a at iteration t,

F(pda[t]
a [t]), is computed based on its current position in the search space. Note

that the fitness is only evaluated within the current dimension of the particle,
meaning that the positional parameters in all other dimensions remain the same
for the next iteration round t+1, i.e., pda[t]

a [t+ 1] = pda[t]
a [t], vda[t]

a [t+ 1] = vda[t]
a [t],

yda[t]
a [t+ 1] = yda[t]

a [t], ∀d ∈ {Dmin, Dmax} ∧ d 6= da[t]. In the case of minimiza-
tion, the cognitive and social components are then updated based on the fitness
values as

yda[t]
a [t+ 1] =

yda[t]
a [t], if F(pda[t]

a [t]) > F(yda[t]
a [t])

pda[t]
a [t], else,

(2.10)

and

ŷd[t+ 1] =


ŷd[t], if min

a

(
F(yda[t])

)
≥ F(ŷd[t])

argmin
yd

a[t]

(
F(yda[t])

)
, else, (2.11)

respectively. The term d in (2.11) refers to each dimension considered in the
optimization task, i.e. d ∈ {Dmin, . . . , Dmax}. The corresponding dimensional
components are defined in a similar manner:
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yda[t+ 1] =

yda[t], if F(pda[t]
a [t]) > F(yyda[t]

a [t])
da[t], else,

(2.12)

for the cognitive and

ŷd[t+ 1] =


ŷd[t], if min

a

(
F(yyda[t]

a [t])
)
≥ F(ŷŷd[t][t])

argmin
yda[t]

(
F(yyda[t]

a [t])
)
, else, (2.13)

for the social component, respectively.
For clarity, Figure 2.1 shows in a graphical form the difference between the

particle structures of the MD PSO and the regular PSO algorithms. In the shown
case, a particle a currently resides at dimension da[t] = 2, while its personal best
dimension is yda[t] = 3. Hence, at iteration t, first a positional PSO update is
performed over the positional components of p2

a[t], after which the particle may
move to another dimension based on the dimensional update process. A pseudo-
code of the MD PSO algorithm is provided in Algorithm 2, and further details
about the MD PSO algorithm are provided in [Kir09].

2.2.2 Fractional Global Best Formation
In order to avoid the so-called premature convergence problem occurring with
(MD) PSO (which basically means converging into a local minimum in the
search space), an artificial global best (aGB) particle can be formed. This is
done by combining the most ”attractable” individual particle vector elements,
paj[t], j ∈ {1, . . . da[t]}. The approach is called fractional global best formation
(FGBF) [Kir10], and it requires evaluating a separate fitness value (or an esti-
mate of it) for each particle element paj[t]. The idea is then to combine those
particle elements with best fitness values through the entire swarm. The formed
aGB particle then replaces the conventional global best whenever its overall fit-
ness score is improved, i.e., if F(aGB[t]) ≤ F(ŷ[t]) (in the case of a minimization
problem).

In the multi-dimensional case where several search spaces are considered in
parallel, a separate aGB particle is defined for each dimension. With respect
to this work, each aGB particle is formed by combining particle vector elements
also from different dimensions. This is shown in Figure 2.2, where elements
from three different particles of different dimensions are combined. This way the
probability of obtaining a new aGB particle with improved fitness compared to
the conventional global best particle is further increased. The FGBF procedure
within the MD PSO algorithm is given in a pseudo-code form in Algorithm 3.
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Figure 2.1: Particle structures of the MD PSO (left) and regular PSO (right) algo-
rithms. The dimensional range of MD PSO is set to {Dmin = 2, Dmax = 10}, while the
regular PSO dimensionality is fixed to D = 5. At the current iteration t, the MD PSO
particle is located at dimension da[t] = 2, while its personal best dimension found so
far is yda[t] = 3. Copyright c© 2011 IEEE.
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Figure 2.2: The formation of an aGB particle of dimension 4. The individual elements
of three different particles, a, b, and c, having the dimensions 2, 6, and 3, respectively,
are combined in the process. As shown in the figure, also several elements can be
selected from a single particle.

2.2.3 Heterogeneous Particle Behaviour
Updating the particle positions in a swarm is an essential part of the PSO al-
gorithm. Depending on the optimization problem, it may be beneficial to dy-
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Input: MD PSO parameters
Output: The global best particle

1 Initialize the MD PSO particles according to prior distribution.
2 for t← 0 to I do

// for each particle:
3 for a← 1 to P do
4 Compute the fitness of particle a, F(pda[t]

a [t])
5 if F(pda[t]

a [t]) ≤ F(yda[t]
a [t]) then

// update the personal best position (Eq. (2.10)):

6 yda[t]
a [t+ 1] = pda[t]

a [t]
7 if F(pda[t]

a [t]) < F(ŷda[t][t]) then
// update the global best particle of dimension da[t]:

8 ŷda[t][t+ 1] = a

9 end
10 if F(pda[t]

a [t]) ≤ F(yyda[t]
a [t]) then

// update the personal best dimension (Eq. (2.12)):
11 yda[t+ 1] = da[t]
12 end
13 if F(pda[t]

a [t]) < F(ŷŷd[t][t]) then
// update the global best dimension:

14 ŷd[t+ 1] = da[t]
15 end
16 end
17 end
18 for a← 1 to P do
19 Update the velocity of particle a using (2.6)
20 Update the position of particle a using (2.7)
21 Update the dimensional velocity of particle a using (2.8)
22 Update the dimension of particle a using (2.9)
23 end
24 end

Algorithm 2: The MD PSO algorithm

namically vary the behaviour of the particles to better adapt to the underlying
search space. Such an idea was first proposed by Engelbrecht in [Eng10], where,
in addition to the regular particle behaviour shown in (2.4), four optional update
procedures are considered. Applying these behaviour models to MD PSO has not
been proposed earlier in the literature.
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Input: MD PSO particles
Output: Artificial global best (aGB) particle

1 Define [j] = argmina∈{1,P}(F(pda[t]
aj [t])).

2 Among all the particles a ∈ {1, P}, select the best particle index b for each
element j, b[j]. (j ∈ {1, Dmax})

3 for d← Dmin to Dmax do
// Assign the best elements into the aGB solution:

4 for j ← 1 to d do
5 aGBd

j [t] = p
db[j][t]
b[j]j [t]

6 end
7 if F(aGBd[t]) < F(ŷd[t]) then
8 ŷd[t] = aGBd[t]
9 end

10 end
// Re-evaluate:

11 ŷd[t] = argmind(F(ŷd[t]))
Algorithm 3: The FGBF algorithm in MD PSO

Cognitive-only Model

The first two optional behaviour models restrict the conventional particle update
procedure by concentrating solely on either the cognitive or the social particle
component. Thus, in the cognitive-only model, the social terms ŷda[t][t] and ŷd[t]
are removed from (2.6) and (2.8) (meaning the latter summation terms). Such a
modification leads to a broader particle exploration due to the loss of interaction
between them. This also causes every particle to become an independent hill-
climber in the search space, meaning that they essentially perform local stochastic
search in the search space. This, instead, means that the artificial global best
particle discussed in section 2.2.2 is not applied with this model.

Social-only Model

Following the logic of the previous model, the social-only model removes the cog-
nitive terms yda[t]

a [t] and yda[t] from (2.6) and (2.8) (the first summation terms).
This causes faster particle exploitation, as now the whole swarm becomes a single
stochastic hill-climber.

Barebones Model

The Barebones model [Ken03] changes the particle velocity as

vda[t]
a [t+ 1] ∼ N

(
yda[t]
a [t] + ŷda[t][t]

2 , σ

)
, (2.14)
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where σ =
∣∣∣yda[t]
a [t]− ŷda[t][t]

∣∣∣. The particle position update (equation (2.7)) is
also changed to pda[t]

a [t+ 1] = vda[t]
a [t+ 1], meaning that the updated velocity

sampled from the provided Gaussian distribution is assigned as such as the new
particle position. As proposed in [P6], the behaviour is applied to the dimensional
velocity analogously as

vda[t+ 1] ∼ N
(
yda[t] + ŷd[t]

2 , σ

)
, (2.15)

where σ = |yda[t]− ŷd[t]|. The obtained dimensional velocity is considered as
the new dimension, i.e. da[t+ 1] = vda[t+ 1].

At the beginning of the MD PSO algorithm the personal best particle posi-
tions are usually far away from the global best solution, causing a large deviation
to the above Gaussian distribution. Thus, this behaviour model facilitates an ini-
tial particle exploration throughout the search space, whereas – after more PSO
iterations are performed – the deviation converges to zero. This, instead, causes
the particles to focus on exploitation of the personal and global best average
position as the algorithm proceeds.

Modified Barebones Model

The final behaviour model modifies the Barebones model by introducing an addi-
tional probability-based exploration to it [Ken03]. This is shown in the following
equations, where the velocity is updated as

vda[t]
a [t+ 1] =


yda[t]
a [t], if U(0, 1) < 0.5
N
(

yda[t]
a [t]+ŷda[t][t]

2 , σ
)
, else,

(2.16)

and similarly for dimensional update ([P6]):

vda[t+ 1] =

yda[t], if U(0, 1) < 0.5
N
(
yda[t]+ŷd[t]

2 , σ
)
, else.

(2.17)

The exploration is increased in the modified version at the initial stages, as 50%
of the time the focus is on the personal best position. Once the process converges,
the behaviour turns to exploitation due to the convergence of the personal best
positions towards the global best solution.

The initial behaviour of each particle is obtained randomly among the shown
behaviour models. However, whenever a specific particle is not able to improve
its fitness value within 10 consecutive iteration rounds, a new behaviour is again
assigned for it in a random manner. This new behaviour model may then help
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the particle in getting out from potential local optima and eventually provide im-
provements to the particle fitness value. Thus, in addition to FGBF, the hetero-
geneous PSO (HPSO) is another solution for avoiding the premature convergence
phenomenon of regular PSO.

The techniques introduced in this section are applied in the publications as
follows: MD PSO is applied in [P3] – [P6], where the FGBF is applied in [P5]
and [P6], and HPSO in [P6].

2.3 Simulated Annealing
The third stochastic optimization method considered in this thesis is simulated
annealing (SA) [vL87]. The method is named after the annealing process encoun-
tered in metallurgy, which is a technique involving controlled cooling of a material.
The method is particularly applicable to optimization problems [Kir83], for which
it possesses a specific decreasing ”temperature” term T and a somewhat modified
version of the Metropolis algorithm applied with particle filtering.

Being an iterative optimization method, each iteration in the SA algorithm
proposes a new random neighbour solution to replace the current best one. Usu-
ally the proposed solution is chosen somewhere near the best solution – hence the
name – and is accepted with a certain probability. The probability is dependent
on both the difference between the likelihood/fitness values of the best and the
suggested solutions, and the (gradually decreasing) global temperature param-
eter T . The idea is to allow frequent solution updates at the beginning of the
process (even to positions with lower fitness value), and then ”cool down” the
system by decreasing the parameter T and the update probability accordingly.

Simulated annealing is used in [P2] to optimize (with two separate optimiza-
tion criteria) the parameters for a bullet state likelihood function. Furthermore,
in [P5], SA is applied together with the MD PSO algorithm, such that the global
best particle position is further optimized by applying SA at the end of each
PSO iteration. Such a combination of PSO and SA has been proposed earlier
e.g. in [Zha05], whereas the multi-dimensional aspect provided by the MD PSO
has not been considered earlier in the field. Thus, a pseudo-code representing the
combined MD PSO and SA algorithm is provided in Algorithm 4. The terms are
defined as follows: IPSO and ISA stand for the number of iterations applied for
MD PSO and SA, respectively, P is the total number particles, u stands for a
problem-specific update constant, randn(d) is a d-dimensional Gaussian random
vector, and C denotes a cooling constant, C < 1. As discussed above, it can be
noticed that at the beginning of each SA process, the parameter T has a high
value (T0). This results to a nearly random selection between the current and
the neighbour solution during the first iterations. However, as T decreases the
selection begins to favour the better solution (converging towards ”downhill” in
a case of minimization problem). The additional allowance of ”uphill” move-
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Input: Required system parameters
Output: The best obtained solution for the given optimization task

1 Initialize the MD PSO particles according to prior distribution.
// MD PSO loop:

2 for t← 0 to IPSO do
// for each particle:

3 for a← 1 to P do
4 Update the cognitive and social particle components as shown in

Algorithm 2
5 end

// SA loop (for each dimension d in a pre-defined range):
6 for d← Dmin to Dmax do
7 Initialize the temperature T0; Set k = 0;
8 while k < ISA do
9 Generate a neighbour solution: nGBd = ŷd[t] + randn(d)× u;

10 Evaluate F(nGBd);
// difference between the solutions:

11 Compute ∆ = F(nGBd)−F(ŷd[t]);
// Metropolis:

12 if min (1, exp(−∆/Tk)) > rand(0, 1) then
13 ŷd[t] = nGBd;
14 end
15 Set Tk+1 = CTk;
16 end
17 end
18 Update the particle positions and dimensions using (2.7) and (2.9) (or other

behaviour model).
19 end
Algorithm 4: Simulated annealing combined with the MD PSO algorithm

ments – adopted from the Metropolis algorithm – potentially avoids the method
in becoming stuck at any local optima during the process [vL87].

As a final statement of this chapter, the summarized stochastic optimization
methods and their derivatives represent a rather broad spectrum of the state-of-
the-art approaches available in the area. Genetic algorithms are not applied in
this thesis due to their rather common existing usage in the problems considered
in this work. As shown in the following chapters, the introduced methods can
be successfully applied to such optimization tasks where analytical deterministic
solutions are not either available or feasible. For an interested reader, simulation-
based comparisons of deterministic and stochastic optimization algorithms are
performed and discussed in [Wet04].
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Chapter 3
Spatial Audio Analysis and Firing Event
Estimation

Spatial audio analysis as a term includes, but not limits to, space-, direction-
and location-related audio analysis using single or several microphones. Usu-

ally microphone arrays with several microphones are required for decent spatial
analysis. This chapter introduces some of the most commonly known methods
applied to sound direction of arrival estimation, which is an essential subtopic in
the spatial audio area. Also the practical application of shooter localization and
bullet trajectory, caliber and speed estimation is gone through in detail, begin-
ning by describing a general gunshot event scene with the related audible sounds
and geometrical measures. A gunshot detection and recognition algorithm is also
required prior the actual estimation procedure, which is discussed and detailed
in the chapter.

3.1 Directional Audio Analysis
Selecting and implementing a suitable DOA estimation algorithm is an essential
step in a spatial audio analysis. From a psychoacoustics point of view, there are
two primary sound perception mechanisms or cues used by humans in detecting
sound directions. These involve the time or phase differences of the sound signal
between our two ears, and the amplitude or spectral differences between the ears.
The time and phase difference is mainly caused by the different sound propagation
distances from the sound source to the ears, whereas the spectral cues result
from the filtering effects of ears, head and the whole body. Although also some
monaural cues have been shown to exist, in most cases it is the differences in the
received signal that matter the most [Rum12].
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3.1.1 Background and General Methods
This section shortly introduces two commonly applied DOA estimation methods
in the literature.

Beamforming

Beamforming is a spatial filtering technique that can be used for DOA estimation
by forming directional spatial beams with desired patterns. The technique is
applied over an array of sensors, which are usually put in line with respect to
each other. The principal idea is based on weighting and combining the signals of
each sensor with different phases, such that signals at particular angles experience
constructive interference while others are suppressed. This allows computing
intensity measures towards different directions, which can be used to analyse the
potential signal DOA.

The most common methods used to create the directional beams are based
on time delay (time shift) and phase shift [Mon04]. Time domain beamforming
is achieved by delaying the microphone signals, adjusting their amplitude, and
summing the signals over the array of microphones to steer the beam towards a
particular location where potential sources might be present. This approach is
called delay and sum. Correspondingly, beamforming in the frequency domain
is achieved by applying these phase shifts and amplitude adjustments to the
microphone signals. However, such phase shift beamformer is only suitable for
well-defined narrowband signals [Liu10].

A more sophisticated version of delay and sum introduces applying filters to
the sensor channels. This approach is called – accordingly – filter and sum and
it is discussed in more detail in [Liu12].

Time-difference-based DOA estimation

Because of its accuracy, fairly simple implementation and popularity in the
field [Bal10], this thesis concentrates solely on time-difference-based DOA es-
timation. Assuming an array of two microphones and an external sound source
with a different distance to the two microphones, a deterministic delay occurs
between received microphone signals. This delay can be measured using a cross-
correlation between the microphone channels. Usually a generalized cross corre-
lation (GCC) [Kna76] is applied for the task, defined as

C(k) = IDFT (Ψ12X1X
∗
2 ) , (3.1)

where IDFT stands for an inverse discrete Fourier-transform, X1 and X2 are
Fourier-transforms of the observed signals x1(k) and x2(k) of microphone channels
1 and 2, respectively, and (·)∗ stands for a complex conjugate. The term Ψ12
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corresponds to frequency-dependent weighting of the cross-spectral magnitudes,
for which several values can be applied. The most commonly used is the phase
transform (PHAT) frequency weighting [Kna76], defined as

C(k) = IDFT
(

X1X
∗
2

|X1||X∗2 |

)
. (3.2)

This weighting provides a flat magnitude spectrum for the signals, meaning that
only the phase information is utilized in computing the correlation coefficients
C(k). The delay τ between the channels, also known as a time-difference of
arrival (TDOA) measure, is then obtained as

τ = argmax
k

(C(k)) , (3.3)

in which the values τ ∈ (−τmax, τmax) are of interest, τmax being a geometry-based
maximum delay between the channels.

3.1.2 Limitations of Time Delay Estimation
Certain fundamental limitations exist in the scope of time delay estimation. Es-
pecially when cross correlation-based methods are applied, signal-to-noise ratio
(SNR) plays a key role considering the estimation accuracy. In case the SNR de-
creases below a specific limiting value, a dramatic loss of accuracy occurs in the
delay estimation. This value is called threshold SNR, and it is widely known in
the field [Ash05]. The phenomenon follows from the fact that in high noise levels
the cross correlation function becomes more or less flat with no distinguishable
maximum peak. The threshold value can be evaluated numerically by using the
source signal bandwidth B, duration N , and central frequency Fc as follows:

SNRth = 6
π2(BN)

(
Fc
B

)2 [
φ−1

(
B2

24F 2
c

)]2

, (3.4)

where φ(y) = 1/
√

2π
∫∞
y e−k

2/2dk [Ash05]. This means that the threshold is pro-
portional to the inverse of the product BN and the relation B/Fc. The occurring
phenomenon can be clearly noticed in the simulation sections of the publica-
tions [P1] and [P2], where Gaussian noise is gradually increased to simulated
gunshot events; at some point the estimates degenerate rapidly as a function of
decreasing SNR level.

A so-called Cramér-Rao lower bound (CRLB) [Wei84] can be used to predict
a lower limit for the time delay estimation error. It provides the value that is
asymptotically approached by a maximum likelihood (ML) estimator with specific
SNR and BN values. In [Sad06], the lower bound is defined as
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CRLB = 1
SNR× β2 , (3.5)

where β2 is a mean square bandwidth of the source signal x(k), defined as

β2 =

∫N
0

(
dx(k)
dk

)2
dk∫N

0 x2(k)dk
=
∫∞
−∞(2πf)2|X(f)|2df∫∞
−∞ |X(f)|2df , (3.6)

in which X(f) is the Fourier transform of signal x(k) and f stands for frequency.
It can be seen that the CRLB is lowered, i.e. the estimation accuracy is increased,
by increasing the SNR or the signal bandwidth. The signal waveform or central
frequency are not affecting the lower bound significantly. The CRLB works reli-
ably only when SNR > SNRth, which is why also other lower bounds have been
proposed in the literature. These are discussed in more detail in [Sad06].

3.1.3 Direction of Arrival Estimation
Once the time delays between different microphones are obtained, the direction
of the received sound wave can be estimated. Assume we have a microphone
array with four microphones at known positions in Cartesian coordinates, mn =
[mnx,mny,mnz], n = {1, . . . 4}, meaning that six different microphone pairs can
be formed. Defining then a sensor vector from microphone 1 to microphone 2 as
x12 = m2 −m1 and the corresponding time delay as τ12 = xT12k, where k is the
sound wave propagation vector, the following relation can be formed between the
terms:

Xk = t, (3.7)

where

X =



x12
x13
x14
x23
x24
x34


, t =



τ12
τ13
τ14
τ23
τ24
τ34


. (3.8)

The equation (3.7) can be solved by applying a least squares method as ([YH96])

k = (XTX)−1XT t,
wwww 1

k̂

wwww = c, (3.9)
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Table 3.1: Estimated gunshot parameters corresponding to different observation com-
binations.

Observation Shooter Bullet trajectory, Shooter
direction speed, and caliber location

Muzzle blast X
Shock wave X

Muzzle blast and X X Xshock wave

where c stands for the speed of the arriving sound wave. In this thesis, the
speed of sound in air is defined as c = 342 m/s. Note that the solution assumes
far-field conditions [Ars99], meaning that the arriving wave is assumed as plane
wave. Additional details and explanation related to TDOA and DOA estimation
is provided in e.g. [Per09].

3.2 Gunshot Events and Geometry
The different sound sources occurring in a firing event and their corresponding
geometric layout are considered in this section. Unless a silencer is used, an
obvious sound source is the muzzle blast sound generated at the gun barrel. In
addition, whenever the fired projectile exceeds the speed of sound in the air, an
acoustic shock wave is formed, causing another very sharp and sudden wave form.
In the case of sniper weapons, such as precision-rifles, a great majority of them
fires supersonic bullets [Wor01]. A third potential sound source is the aimed
target: depending on the material and position of the target, it may also cause
audible sounds to the array.

In this work, the muzzle blast and shock wave signatures are applied in es-
timating the different gunshot parameters. As shown in Table 3.1, different pa-
rameters can be estimated based on the amount of observed signatures.

3.2.1 Muzzle Blast
The muzzle blast signal is produced by an explosive inside a cartridge. The ex-
plosive causes a sudden increase to the gas volume inside the gun barrel, forming
thus high-pressured waves that send the projectile into flight and cause the ac-
tual muzzle blast. The muzzle blast signal is highly directional, producing the
highest sound level in front of the gun [ISO05]. As is commonly known, geomet-
rical spreading, atmospheric absorption and reflections attenuate the sound as a
function of distance. These factors define a certain maximum distance from how
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far the muzzle blast can still be heard.

3.2.2 Shock Wave
The shock wave signature has a well-recognizable shape, looking like a letter of
’N’. Hence it follows that the shock wave is also known as ”N-wave”. The wave is
caused by compressed air molecules that bend around a supersonic bullet. This
happens as the molecules have a certain maximum speed – corresponding to the
speed of sound in the corresponding medium – such that they have no time to
”move out” in front of the bullet. The phenomenon is illustrated in Figure 3.1,
where a cone-shaped shock wave pattern is formed on both sides of a propagating
bullet. The angle between the bullet trajectory vector, h, and the shock wave
front is called Mach-angle, θM , and it is proportional to the bullet speed v by

θM = sin−1
( 1
M

)
, (3.10)

where M is a Mach number, defined as M = v/c [Mah06].

3.2.3 Firing Event Geometry
Assume we have a microphone array mounted on a soldier helmet at known
position. In order to derive the trajectory of an observed supersonic bullet, an
estimate of a so-called closest point of approach (CPA), marked as a, is needed.
The CPA is the point in the bullet trajectory from which the distance to the
center of the microphone array is the shortest among all the trajectory points.
This is illustrated in Figure 3.2, where the firing event geometry is shown from
above. The term mn stands for the position of microphone n in the array, g is the
position of the shooter, h is the heading of the bullet trajectory with respect to g,
and sn is a so-called S-point, defining the position where the formed shock wave
front originates to microphone mn. Due to the different microphone positions,
both an and sn are defined separately for each microphone mn in the array. As
the line drawn from an to mn is perpendicular to the bullet trajectory, estimating
a is enough to define the trajectory unambiguously.

3.3 Gunshot Detection and Recognition
In a real-world application, gunshot event detection and recognition plays a key
role in the overall estimation process. A continuous estimation process would
be impractical at least because of power consumption and an unnecessary com-
putational workload (due to a vast amount of invalid estimation data received).
Transient detection methods can be applied for the task, and in this thesis the
gradient-based detection approach introduced in [Kla06, Chapter 4] is chosen
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c

shock wave front

bullet trajectory

v

h

shock wave
front

c = speed of sound
v = speed of bullet
h = [hx, hy, hz]k2

k0 k1 k2

θM

Figure 3.1: As a bullet propagates from left to right, a shock wave cone is formed behind
the bullet, marked with a purple dashed line. The shock wave front is propagating at
the speed of sound c, while the bullet has a speed v. Vector h determines the heading
of the bullet trajectory, whereas the different time indices are marked by kn, where n
is running from 0 to 2.

among potential solutions, see e.g. [Sad98, Che01, Duf00]. The shock wave and
muzzle blast recognition considered after the detection was first proposed in [P2].

3.3.1 Transient Detection
The detection process begins by forming a so-called energy envelope function from
the input signal x(k). This is done by summing the signal frequency components
from a specific range over short time windows, stated as

E(k) =
∑
fεκ

|STFT(x(k), f)|2, (3.11)

where STFT(x(k), f) is a short-time Fourier transform of the signal x(k) – win-
dowed with a rectangular window – and f stands for the frequency index. Typ-
ically a window length of 20 ms with a 50 − 75% overlap between consecutive
windows is used. The frequency range κ can be specified according to the sound
source at stake.
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Figure 3.2: The geometry of a firing event viewed from above. The shock wave front
is shown with respect to the CPA - point (an) and S-point (sn).

The energy envelope function E(k) is not as such optimal for detection. In-
stead, its temporal derivative, D(k), can be used to obtain a more reliable detec-
tion performance. Using linear regression, D(k) is defined as

D(k) = E(k + 1)− E(k − 1)
3 . (3.12)

For simplicity, here only the differences between data samples in the previous
and next time frame (from the current time index k) are considered. Next, the
biggest peaks of the detection function D(k) are searched, as those correspond
to the most significant energy level changes of E(k). Note that, due to the need
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of comparing against the k + 1 time frame, the peak is actually detected with a
delay of one frame step. However, such a delay (∼ 10 ms) has no practical impact
to the overall processing time.

Specific heuristics are applied in determining a proper threshold for finding
the detection function peaks. One possibility is to take a local average of E(k)
over 1.5 s and multiply it with a suitable weight (as is done in [P2]). Considering
a real-time application, the threshold needs to set through a calibration phase
to adapt to the environment at stake, i.e., the background noise level. For this,
adaptive thresholds have been proposed, as in [Che01].

3.3.2 Transient Classification
As discussed earlier, audio content-based classification is as such one of the main
application areas considered in this thesis, but here it is included at some extend
to the shooter localization scheme. To be more precise, a three-class audio (tran-
sient) classification problem is encountered after the transient detection phase.
The classes are labelled as ”muzzle blast”, ”shock wave” and ”invalid detection”,
and the classification approach is based on a two-phase unsupervised (rule-based)
classifier. Experimentally defined temporal and spectral thresholds are applied for
the task, as shown in this section.

At first, the temporal threshold of 187.5 ms (corresponding to 9000 samples
at sampling frequency Fs = 48000 kHz) is applied to see whether a new transient
S(T + 1) – where S is the sample number and T stands for the transient index
– occurs within the set temporal limit. The threshold is based on the fact that,
whenever a shock wave is formed, the shock wave and muzzle blast wave fronts
should occur temporally very close to each other. Next, the spectrum of the time
frame in which a transient has been detected is analysed. By applying a spectral
threshold of 1.6 kHz, the relation between the energy levels of E(k) below and
above the threshold is computed using (3.11). The motivation relies upon the fact
that the shock wave is extremely sharp by nature, which results in high energy
at the high frequencies of the spectrum. Finally, the obtained analysis results are
combined and the classification output is obtained based on the logic described
in Figure 3.3. For an interested reader, also other types of gunshot classification
approaches have been proposed in the literature, such as the one in [Par12].

3.4 Bullet Parameter Estimation and Shooter
Localization

The bullet trajectory, speed and caliber can be estimated based on mathematical
modelling of shock waves. For this, the shock wave model and the overall esti-
mation process applied in this work are introduced in this section. The section
begins with a brief literature review to the sniper localization topic in general.
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Figure 3.3: A flow chart of the transient classification algorithm. The classification of
detected transients into shock wave and muzzle blast categories is based on two phases.
The terms E(low) and E(high) correspond to the signal energies between (0 − 1600)
Hz and (1600 − 16000) Hz, respectively, whereas S(T ) is the sample value of the T th
detected transient.

3.4.1 Preliminary Work
Due to its importance, several sniper localization approaches have been proposed
in the literature [Duc97, Sto97, Vol07, Nas06, Hen07], on top of which at least
few ”counter sniper” systems with non-published technical details exist around
the world [BBN09, SST09]. The mentioned articles consider both the shock wave
and muzzle blast signatures in their estimation processes, whereas methods rely-
ing solely upon shock waves are discussed e.g. in [Dan06, McN93]. The approach
in [Dan06] applies an iterative numerical solution to nine non-linear equations for
the estimation, providing a successful approach for trajectory estimation. How-
ever, the method requires nine microphones (hence the number of equations)
and – more importantly – it only works with fixed, ad hoc microphone distribu-
tions. This means that it cannot be considered as a soldier-wearable solution.
Instead, in [McN93] a unit vector-based method with three sensors (each consist-
ing of three separate transducers for generating signals in response to an obtained
shock wave) is considered. This approach can estimate the bullet trajectory with
wearable sensors, but the sensors themselves are unique and not easily available.
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A major challenge regarding to shooter localization and bullet trajectory esti-
mation relates to generalizing the estimation over several different weapon types
and environments. The approach presented in this thesis applies the stochastic
optimization algorithms discussed in Chapter 2 – namely particle filtering and
simulated annealing – to address this challenge. Such stochastic processes provide
means to discover alternative, possibly non-linear, estimation solutions compared
to conventional and somewhat restricted deterministic approaches. Stochastic
approaches were first studied for this topic in [Léd05, Bar08], both in which ge-
netic algorithms are considered in the estimation. However, as in [Dan06], the
approach presented in [Léd05] is designed for ad hoc sensor distributions over a
sufficiently large area. In [Bar08], an array of acoustic sensors (microphones) is
considered, whereas the number of sensors required for the approach is at least
five, preferably seven. The method proposes combining the muzzle blast and
shock wave observations for estimating the shooter distance to the sensors, from
which a similar principal idea is also adopted to the publication [P2] of this thesis.

3.4.2 Mathematical Shock Wave Modelling
The mathematical shock wave model applied to this work was first introduced by
Whitman in [Whi52]. The model simulates the time-domain shock wave waveform
as a function of projectile diameter φ, velocity v, and the miss distance dmn,an

(see Figure 3.2). As defined by the model, the atmospheric signal peak level An
and length Ln observed at microphone mn are given as

An = 0.53P0(M2 − 1)1/8φ

d
3/4
mn,anl1/4

[Pa], (3.13)

Ln =
1.82Md1/4

mn,an
φ

c(M2 − 1)3/8l1/4 [s], (3.14)

where P0 is the atmospheric air pressure, M is the Mach number defined in
section 3.2.2, and l is the length of the bullet, related to its diameter by: [Fer07]

l ≈ 4.35φ [m]. (3.15)

Also the shock wave time of arrival (TOA), τn, to a given microphone mn is
needed for modelling. The TOA is measured from the S-point sn to the micro-
phone position, and it is defined as

τn = ||mn − sn||
c

= dmn,sn

c
[s], (3.16)

where dmn,sn is the distance between the microphone mn and the S-point sn.
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Figure 3.4: An example of a modelled and recorded shock wave signatures together
with the model parameters, τ , A and L. Red dashed line on the left image represents
an ideal shock wave form with zero noise level.

Finally, the shock wave time domain waveform can be generated as [Sad98]

yn(k) =

An
(
1− 2k−τn

Ln

)
, τn ≤ k ≤ τn + Ln

0, otherwise,
(3.17)

where k stands for a discrete time index. The equations (3.13) and (3.14) reveal
that the shock wave amplitude An increases and the wave length Ln becomes
shorter as the miss distance decreases. To provide an example of a regular shock
wave form, Figure 3.4 shows both a modelled and a (normalized) recorded shock
wave together with all the modelling parameters. The first rising edge of ”N-
wave” results from the highly compressed air in front of the projectile, whereas
the second rise at the end is formed as the air molecules fill up the generated void
again. Note that the recorded signal (right-hand side) shows some oscillations
which do not exist in the simulated model (left-hand side), most probably caused
by ground reflections. Also note that a real world shock wave might oscillate
somewhat even without reverberation, as can be noticed e.g. from the figures
shown in [Mah06]. However, despite such non-ideal ripple, the shock wave model
is able to mimic the most essential parts of the real signal.

3.4.3 Spatial Likelihood Function
A probabilistic inference approach is considered in this work to estimate the
interested bullet state parameters, i.e. the trajectory, speed and caliber. For this,
a spatial likelihood function needs to be constructed. The function provides as
an output the likelihood of observing a specific shock wave form, given the bullet
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state parameters. In practice, the likelihood value is computed by comparing the
shock waves actually observed by the microphones mn, n = {1, . . . , 4}, to those
modelled by randomized parameters. As discussed above, the modelled shock
waves are dependent on the varying input parameters a, φ and v.

The shock wave comparison can be made in several ways, as long as the com-
putation remains feasible. The computation may become a problem, since the
comparison needs to be performed separately for all the microphone channels.
This thesis considers both time and frequency domain comparison criteria: mean
squared error (MSE) and the GCC-PHAT discussed in section 3.1.1. Because of
the Fourier transform needed with GCC-PHAT at each comparison, computa-
tionally the MSE is somewhat more attractive, whereas it lacks in accuracy in
some cases as shown in publication [P2].

Applying the MSE criterion, the likelihood is computed as

L(s[t]|O)MSE = exp
(
− 1
σ

M∑
n=1

(xn −On)2
)
, (3.18)

where xn is a vector containing the modelled time domain shock wave signal
of length N to microphone mn, σ is a parameter defining the variance of the
resulting likelihood distribution, O is a M × N matrix containing the actual
observed signals of length N from M different microphone channels, and s[t]
defines the bullet state vector at iteration t, i.e.,

s[t] =
[
aT , φ, v

]T
. (3.19)

In short, (3.18) states that the smaller the difference between the observed and
the modelled time domain waveforms, the higher the likelihood value. The GCC-
based comparison, instead, is performed by computing the PHAT-weighted GCC
between the Fourier-transforms of the observed and modelled shock waves (us-
ing (3.2)). The likelihood value is then obtained by

L(s[t]|O)GCC = max
k

(
M∏
n=1

Cn(k)
)
, k ∈ (−τmax, τmax). (3.20)

As can be seen, the obtained cross-correlation functions Cn from each channel n
are multiplied together, such that whenever the observed and modelled signals
are similar in content, high values should result with the correct lag k.

An illustrative example of a spatial likelihood function obtained with the MSE
criterion is shown in Figure 3.5. Real recorded gunshot data from an outdoor
shooting range is used in computing the function. The recorded data are utilized
in publications [P1] and [P2], whereas more descriptive details of the actual data
recordings are provided in [Mäk08]. As the state vector s[t] to be optimized is
actually 5-dimensional - consisting of the Cartesian a coordinates, φ and v - for
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Figure 3.5: An illustration of the likelihood function (Eq. (3.18)) with respect to x- and
y-coordinates of the CPA point. The parameters az, φ and v are fixed for illustration
purposes. Four microphones are used in the microphone array located at the origin.

illustration purposes φ, v and az (the z-coordinate of a) are fixed a priori in the
figure. Thus, the illustrated likelihood values correspond to the variations of the
a x- and y-coordinates ax and ay.

The blue areas of Figure 3.5 correspond to the low-probability spatial areas
of a, whereas the dark red spot is the global maximum of the likelihood func-
tion, i.e. the solution to which the applied stochastic optimization algorithm
should converge. Microphone array is located at the origin, and the solid red
line originating from it illustrates the DOA estimate of the actually observed
shock wave front. Thus, the geometry is rather similar to that shown earlier in
Figure 3.2. The negative likelihood values follow from the fact that logarithmic
scale is used in the figure. Clearly, the shown likelihood distribution contains
”clutter” and several local maxima, severely restricting the usage of traditional
gradient-based optimization methods. Multi-modal and complex search spaces
in general raise needs for applying stochastic optimization algorithms for such
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optimization problems.

3.4.4 Discussion
Estimating the bullet parameters and the shooter position requires solving a non-
linear inverse problem by optimizing the parameters of the shown shock wave
model with respect to a proper fitness criterion. The both criteria considered in
this thesis (and the estimation approach itself) are proven to provide successful
estimation results in publications [P1] and [P2]. The achieved caliber estimation
results are in well comparison with the results provided earlier in the literature,
although no universal criterion for a ”correct” caliber classification is defined.
The estimates of the bullet speed can be considered as satisfyingly accurate, as
the estimation error of 10% reported in [Sto97] is well met also in the results
of this work. In general, the speed estimation errors less than this have no
appreciable effect on the trajectory estimation, as those have no major effect to
the Mach-angle θM .

The results regarding to the shooter position show that the estimation can
be performed with an accuracy of few percents of the actual shooting distance.
As demonstrated in [P2], in overall the estimated bullet trajectories and shooter
positions are close to the actual ones. The achieved detection and classification
rates for both the muzzle blast and shock wave signals are above 80% in all the
cases experimented in [P2]. In most of the cases, the shock waves are detected
slightly better than the muzzle blast signals. This can been seen as a positive
result, as the shock wave detection and classification has an essential role in the
overall estimation procedure.
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Chapter 4
Content-based Audio Management

Following the dramatic increase on the computational capacity of micropro-
cessors and the size of storage spaces, content-based multimedia analysis has

become a widely studied topic. Several such methods and solutions that could
barely be dreamt of only few decades ago are now available and used around
the world. Completely new types of scientific fields have emerged due to the
development, such as data mining [Han11], machine learning [Alp10] and pattern
recognition [Dud01], which are contiguously concentrated in this chapter. To be
more precise, here the main focus is put on audio content-based classification
via stochastic classifier parameter optimization. Thus, the chapter discusses the
background and reasoning of the research performed in publications [P3] and [P4].

4.1 Machine Learning Principles
Machine learning as a term can be roughly defined as a prediction of some out-
put quantity (such as an audio class label) based on learned properties of the
(training) data seen so far by a learning algorithm. A machine is said to be
learning whenever it changes its structure, program, or data (based on its inputs
or in response to external information) in such a manner that the expected fu-
ture performance of the machine improves [Nil98, page 1]. The process consists
of estimating the unknown parameters of a model – or a classifier – based on
the available training patterns. In practise, the ”learning” phase refers to some
form of algorithm for reducing the error in predicting the labels of a training data
set [Dud01]. Several application areas, such as regression and classification, can
be performed using machine learning methods, whereas in the scope of this work
the main focus is kept on content-based classification and retrieval.

In general, the learning process can be divided into two categories: supervised
and unsupervised learning. In supervised learning, a class label is provided for
each pattern belonging to the training set, meaning that the aim is to learn a
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mapping from the input to the output. In unsupervised learning, there is no such
”supervisor” and we only have the input data with no labels [Alp10, page 11].

4.1.1 Supervised Learning
In the sense of classification, supervised learning can be understood as learning
a class from examples belonging to that class. For this, several classifier models
have been proposed in the literature, among which the ones considered in this
work are introduced in this section.

Artificial neural networks

Inspired by the observations made in the study of biological systems, such as
human brains, artificial neural networks (ANNs) [Gur97] seek to loosely mimic
the actual biology in mapping an input space to an output space. In the context
of classification, the input space corresponds to extracted features (also called as
attributes) from the data, whereas the output space corresponds to the class labels
of the data. An ANN consists of several artificial neurons, which are basically
mathematical computing engines providing a single output from several weighted
inputs. This can be stated mathematically as

y = fa

(
n∑
i=0

wixi + θ

)
, (4.1)

where n is the number of inputs xi, w is the the weight coefficient, θ stands for an
external bias value added to the neuron, and fa denotes an activation function,
for which sigmoid or logistic function is commonly applied [Pri05]. Depending
on the number of neuron layers in the network, the inputs xi may be either the
original ANN inputs or outputs of the neurons from a previous layer. This is
clarified in Figure 4.1, where a principal structure of a multilayer feed-forward
neural network, also known as multilayer perceptron (MLP), is shown.

Training of ANNs – i.e. optimizing the parameters wi and θ – is performed by
providing a desired output (the ground truth class label) for a given input vector.
A learning algorithm is then applied to minimize the error (usually MSE) between
the network output and the ground truth class label. This is traditionally done
using the well-known back-propagation (BP) [Cha95] algorithm.

Support vector machines

Also known as kernel machines, the support vector machines (SVMs) have become
widely used in machine learning tasks. By definition, SVMs are binary classifiers,
in which a hyperplane is searched that separates two classes in a feature space.
The training algorithm strives for maximizing the distance to the nearest samples
of both classes from the hyperplane. These nearest samples are called ”support
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Figure 4.1: Principal structure of a feed-forward artificial neural network with 5 input
neurons, 2 output neurons, and 4 layers. The two middle layers are said to be ”hidden”.

vectors”; hence the name support vector machine. The hyperplane shape is de-
pendent on the underlying kernel function, for which linear, polynomial, sigmoid,
or radial basis functions are typically applied. The most suitable kernel function
depends on the case: for example, linear kernel is not suitable for a non-linear
classification problem, where a transformation to a higher feature space dimen-
sion (i.e., the kernel trick) should be applied instead. [Wan05]

In a multi-class classification problem, multiple SVM binary outputs need
to be combined. Two common methods exist for this, namely one-against-all
(distinguish one class against the rest) and one-against-one (distinguish between
every pair of classes). In the former the classification of new instances is done
based on a ”winner-takes-all” strategy, in which the binary classifier with the
highest output score assigns the class. In the latter case, classification is made
based on voting, in which every classifier assigns the instance to one of its two
classes, giving hence a vote for that class. At the end, the classified instance is
labelled with the class gaining most votes. [Hsu02]

Random forests

An ensemble classifier [Pol06] called random forest (RF) consists of several deci-
sion tree structures. Decision tree is a graphical predictive model for performing
the attribute/feature mapping discussed above. The tree structure consists of
leaves and branches, representing the class labels and the conjunctions of spe-
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cific characteristics which lead to these classes. In practise this means that each
branch possesses a certain criterion for some extracted characteristic of the input
sample. If the criterion is met, the classification process will proceed to that
branch, whereas otherwise some other branch (in which the criterion is fulfilled)
is selected. At the end of the last branch of the tree, there is a leaf stating the
class label for the input sample at stake. Finally, the mode of the classification
results of each decision tree in the forest is taken as the actual output class of
the RF classifier.

In general, ensemble classifiers are based on an idea of not training a single
classifier, but a set of classifiers (hence the name ”ensemble”). The outputs
of these several classifiers are then combined to form the overall output of the
ensemble [Pol06]. The discussed random forest classifier (ensemble of trees) is
applied for comparison in publication [P4], and a more detailed mathematical
description of random forests is provided in [Pav00].

4.1.2 Unsupervised Learning
In unsupervised learning, the input data contains no class labels or other ad-
ditional knowledge about the data content, meaning that there is no explicit
supervisor available for learning. The goal of unsupervised learning is hence
to extract an efficient internal (and statistical) representation of the input data
structure. In this thesis, unsupervised learning is only considered in the form
of data clustering and k-means [Dud01, Chapter 10] classification (in publica-
tions [P5] and [P6]). In general, clustering describes a process where extracted
data features are assigned to compact and distinct groups (clusters). The k-
means algorithm, instead, classifies any extracted feature to its nearest cluster
in the feature space, based on the cluster centroids (mean values). Unsupervised
learning is discussed more e.g. in [Hin99].

4.2 Content-based Audio Classification
This section concentrates on describing the audio feature extraction process and
the evaluation metrics required for content-based audio classification. At first,
some preliminary work of the field is discussed.

4.2.1 Preliminary Work
The content-based audio classification and retrieval research made by Wold et
al. [Wol96] is widely acknowledged as the first of its kind in the field. The article
provides means for utilizing pitch, loudness, brightness and bandwidth audio fea-
tures in classifying the used ”Muscle Fish” audio database. Statistical measures
of the features (mean and covariance) are used to form a model of each class, and
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the classification is performed by computing the distance in feature space between
the trained models and the features of a signal to be classified. Later, Li [Li00] ap-
plied a nearest feature line (NFL) method for the same database. The approach
is based on multiple prototypes obtained from each class, which are separated
by the feature lines. The distances between distinct feature points are obtained
using projection techniques between a classified point and the constructed feature
lines. Since these preliminary works, also SVMs have been applied to the Muscle
Fish database with promising results [Guo03].

The SVM classifiers were also applied in [Che06, Zhu07] for classifying audio
segments. The achieved results favoured SVMs over the other experimented clas-
sifiers (k-nearest neighbour, artificial neural networks and naive Bayes). An alter-
native approach was proposed by Ravelli et al. [Rav10], where a new audio signal
representation was proposed. This transform-domain approach considers three
separate applications, e.g. music genre classification. The proposed novel audio
codec allows extracting modified audio features, which can be used for receiv-
ing more information about the audio content. Mitra and Wang [Mit08] applied
a parallel ANN architecture for music genre classification. In their approach,
extracted feature vectors are fed to the separate branches of the parallel ANN
architecture, and the final classification result is obtained by vector-summing the
individual branches. Moreover, perceptual aspects of the human auditory system
were modelled in [Har07] for a similar classification problem. In this approach,
ANNs were concluded as the most convenient among the tested classifiers for
performing the classification.

In [Dog09], SVMs were applied for classification along with hidden Markov
models (HMM) [Rab93]. In this approach, a unique HMM is trained for each
audio class (six considered) using the features of the MPEG-7 [Man02] standard.
In addition to HMMs, also Gaussian mixture models (GMMs) are commonly used
with audio classification, see e.g. [Tza02]. In both the HMM- and GMM-based
approaches, the idea is to estimate a probability density function for the feature
vectors of each predefined audio class. The actual classification is then performed
using statistical pattern recognition (SPR) classifiers, such as the GMM classi-
fier applied in [Tza02]. Peeters [Pee07] used GMMs together with HMMs for
modelling individual audio classes for music genre classification. The classifica-
tion is performed using statistical models, where principal component analysis
(PCA) [Dun89] and linear discriminant analysis (LDA) [McL04] are also applied
to lower the feature space dimensionality. However, as a general problem in
content-based audio classification, also in [Pee07] the selection of the best classi-
fier configuration remains still unsolved. Note that, in audio retrieval problems,
which are closely related to classification, GMM and HMM modelling are also
commonly used [Wic10], [Hel10].

More recently, audio classification has been broadened to more specific prob-
lems, such as context recognition [Hei10] [Ero09]. Especially with such challeng-
ing classification tasks, it should be noted that the performance of the approaches
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varies considerably depending on the extracted features and the classifier param-
eters. This is a widely acknowledged challenge in the field, see e.g. [Alp10]. As a
reference for an interested reader, several classifier types and the effects of their
configurations are studied in [Liu04]. A selection of different audio features is in-
troduced in the next section, and some of their effects are brought into discussion
later in Chapters 5 and 6.

4.2.2 Audio Feature Extraction
The feature extraction process has a crucial role in the overall learning process:
whenever the extracted features are incapable of discriminating audio classes from
each other, no classifier can achieve a satisfactory classification performance. Au-
dio features consist of both time and frequency domain attributes, designed to
characterize the signal shape and frequency content. Most of the audio fea-
tures applied in this thesis are described and discussed in this section. As a
common convention in audio signal processing, in this work all the features are
extracted within short time frames of 40 ms. The features are extracted using
the MUVIS framework for content-based indexing and retrieval in multimedia
databases [Kir12], developed at Tampere University of Technology. In addition,
a LibXtract [Bul07] audio feature extraction library is utilized in the extraction.

Mel-frequency cepstral coefficients

Especially in speech recognition, Mel-frequency cepstral coefficients (MFCCs) –
and their derivatives – are widely applied [Qua08]. The extraction of the MFCCs
is based on a perceptually motivated frequency scale called Mel-scale, which is
defined as

Mel(f) = 2595 log10(1 + f

700), (4.2)

where f is frequency in Hz [Qua08]. The Mel-scale is approximately linear up
to 1000 Hz, after which the scale turns logarithmic. At first, the input signal is
transferred to frequency domain using a discrete Fourier transform (DFT), after
which its power spectrum is computed by squaring the DFT absolute values.
Next, a filter bank of triangular filters, distributed according to the Mel-scale,
is constructed and multiplied with the obtained power spectrum. A principal
illustration of a such Mel-scale filter bank is provided in Figure 4.2, where it is
shown that the filter magnitudes are set to unity. Spectral energy values of the
Mel bands are then obtained by summing the resulting spectrum over each band.
These energy levels are still compressed by taking a logarithm of the band energy
levels. Finally, the actual cepstral coefficients are computed using a discrete
cosine transform (DCT) over the obtained log filter bank energies.
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Figure 4.2: A principal illustration of a Mel-scale filter bank with respect to frequency.

In general, the lower cepstral coefficients describe the overall spectral shape,
whereas its fine structure is included in the higher coefficients. The spectral
dynamics may be characterized using delta cepstral coefficients, i.e. the temporal
derivatives of the MFCCs. Usually these are obtained based on the coefficient
trajectories over finite time segments, for example as: [Ye04]

∆mj(k) =
∑F
n=−F nmj(k − n)∑F

n=−F n
2 , (4.3)

where mj(k) denotes a cepstral coefficient of index j ∈ {0, . . . ,M} at time k, F is
the number of frames considered in the time segment before and after the current
time index k, and M stands for the MFCC order. The acceleration coefficients
∆∆mj(k) are obtained by applying (4.3) to the ∆mj(k) coefficients.

Linear prediction

The audio spectrum can be also approximated by linear prediction (LP) analy-
sis [Rab07, Chapter 6], where the spectrum is modelled by an all-pole filter con-
centrating on the spectral peaks. The approach is especially suitable for speech
signals (for formant estimation), but may be also applied to other signals such
as music [Sch77].

Predicting the next time-domain output sample of a linear discrete-time sys-
tem can be performed by forming a linear combination of p previous output
samples as

ŷ(k) =
p∑

n=1
any(k − n), (4.4)

where an are the linear prediction coefficients. These correspond to the poles of
the predictor all-pole filter, for which the transfer function is defined as

H(z) = 1
A(z) = 1

1−∑p
n=1 anz

−n . (4.5)
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The prediction coefficients {a1, a2, . . . , ap} can be solved using a Levinson-Durbin
recursion [Rab07, Chapter 6]. The approach includes computing the signal auto-
correlation coefficients r(k), k ∈ {1, . . . p}, where p is the LP model order, such
that the estimated linear prediction coefficients (LPCs), a, satisfy the following
matrix-form equation:

Ra = y, (4.6)

where R corresponds to a p × p Toeplitz autocorrelation matrix and y is the
output sample vector. The linear prediction cepstral coefficients (LPCCs) can be
derived from the LPCs as

cn = −an −
1
n

n−1∑
k=1

kckan−k, for n > 0, (4.7)

where a0 = 1 and ak = 0 for k > p.

Spectral centroid

Spectral centroid (SC) represents the spectrum ”mass” center point. It correlates
with the subjective measures of ”brightness” and ”sharpness” also presented in
the literature. Denoting X(b) as the bth DFT frequency bin of an input signal
x(k), the SC is defined as

SC =
∑B
b=0 b|X(b)|∑B
b=0 |X(b)|

, (4.8)

where B is the index of the highest DFT frequency bin.

Spectral spread

The variance of the spectral centroid feature is called spectral spread (SS), and
it is defined as

SS =
∑B
b=0(b− SC)2|X(b)|∑B

b=0 |X(b)|
. (4.9)

This feature can be used for separating tone-like signals from noise signals, as it
measures how concentrated the energy is around the spectrum centroid.
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Spectral flux

Spectral flux (SF) measures the spectral variation by comparing two consecutive
time frames. It is defined as

SF =
B∑
b=0
||Xk(b)| − |Xk−1(b)||, (4.10)

where the notation Xk represent the DFT output of the kth time frame.

Spectral roll-off

Spectral roll-off (SR) is a feature used for obtaining the spectral ”skewness”. The
feature represents the frequency below which a specified amount of the spectral
energy resides, and it is computed as

SR = argmax
f

 f∑
b=0
|X(b)|2 ≤ TH

B∑
b=0
|X(b)2|

 , (4.11)

where TH is a threshold value set between 0 and 1.

Short-time average frame energy

The short average energy (SAE) is a simple feature computed as a sum of squared
amplitudes within a single frame. The feature is useful in detecting potential
silent sections occurring in an audio signal.

Subband energy

A subband energy (BE) of nth spectral band is computed as

BE =
∑
b∈Bn
|X(b)|2∑B

b=0 |X(b)|2
, (4.12)

where Bn denotes the set of frequency bins belonging to the nth frequency band.
The whole frequency range can be divided into as many subbands as required to a
particular application. For example, in publications [P3] and [P4] four bands are
considered. It should be noted that in addition to energy calculation, also several
other subband features may be extracted, such as the band means as realized in
publications [P5] and [P6].
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Band energy ratio

The ratio of the energies of two frequency bands, the band energy ratio (BER),
can be computed as

BER(bc) =
∑bc
b=0 |X(b)|2∑B
b=bc
|X(b)|2

, (4.13)

where bc is a cut-off frequency bin from which the two bands are separated. The
two subbands fully cover the whole range of the input signal spectrum.

Bandwidth

The effective bandwidth (BW) of an audio signal spectrum (or its subband) can
be computed as

BW =

√√√√∑B
b=0(b− SC)2|X(b)|2∑B

b=0 |X(b)|2
. (4.14)

Zero-crossing rate

As the name suggests, zero-crossing rate (ZCR) defines the number of zero voltage
crossings within a specified time interval, i.e., within a single time frame or a
segment of several frames.

4.2.3 Feature Post-processing
Once the aforementioned audio features are extracted frame-wise from an input
audio signal, in this work the extracted features are further post-processed in two
optional ways. The post-processing aims to reduce the overall amount of features
(which is huge for large databases) by means of clustering and statistical analysis.
The first approach is called key-frame-based feature vector (FV) formation, in
which a minimum spanning tree (MST) [Mot95] clustering algorithm is applied.
The other one is based on audio segmentation, meaning that the extracted audio
features are averaged over segments of several frames. The both approaches are
described in detail below.

Key-frame feature vector representation

Key-frame-based audio FV formation takes advantage of the redundancy between
different time frames in case of similar types of audio instances. Such instances
include repeated vowels in speech signals or identical notes played by specific in-
struments in music pieces. The approach originates from video analysis, whereas
it has been also used with audio signals already in [Kir06a]. The basic idea is
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Figure 4.3: The applied key-frame selection rate in publications [P3] – [P6] for each
cluster obtained with the MST clustering approach. As can be seen, the amount of
selected fey frames decreases quickly as a function of overall signal duration to keep
the overall amount of features feasible.

to cluster the audio frames based on their similarity between each other (corre-
sponding to distance in the feature space). Once the clusters are formed, only
one or few key-frames are selected from each cluster to represent the others with
similar content. In publications [P3] – [P6], an experimentally determined key
frame selection rate is applied, which is drawn as a function of signal length in
Figure 4.3. A detailed usage of the MST clustering algorithm for the task is given
in [Kir06a].

Audio segment feature vector representation

The second FV formation approach applies the segmentation method proposed
in [Kir06b]. At first, the energy levels of each frame of the input signal are
computed and compared to the average energy level of the whole signal. This
is done to detect the silent sections from the signal. Next, the found non-silent
consecutive frames are merged, resulting to distinct audio segments separated by
the silent frames. Hence, theoretically, an audio signal with no silent sections
would be considered as a single long segment. In practise, occasional non-silent
frames may also occur in the middle of a silent section due to noise etc., which
is why in this work an empirically determined threshold of five frames is applied
as a minimum duration for a segment. Finally, the actual segment features are
obtained by computing the mean (µ) and standard deviation (σ) statistics of each
originally extracted feature over the formed segments. These segment features are
ordered in a suitable way to form a feature vector, and the number of these new
segment feature vectors (SFVs) corresponds to the number of formed segments,
S. For clarity, the overall procedure is illustrated in Figure 4.4.
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Figure 4.4: An illustration of the SFV formation.

As a common notice, statistical modelling of the extracted feature distribu-
tions is also a widely applied approach for feature representation. The HMM and
GMM algorithms mentioned in section 4.2.1 are two commonly used examples of
such approaches, see [Wic10], [Hel10]

4.2.4 Classification Evaluation Metrics
In order to evaluate the classification performance of a particular classifier, a
new set of previously unseen data samples are classified with it. These new data
samples are commonly referred as a test set, and the obtained classification results
are compared to the ground truth class labels. The resulting classification error
(CE) can be then computed as

CE = fp+ fn

N
× 100, (4.15)

where fp and fn stand for the number of ”false positive” and ”false negative”
classifications and N is the total amount of tested samples. Other generally
applied metrics for classification evaluation are precision (P ) and recall (R), for
which the mean values over all class labels are defined as [Dav06]

P = 1
L

L∑
l=1

tpl
tpl + fpl

(4.16)
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R = 1
L

L∑
l=1

tpl
tpl + fnl

, (4.17)

where tp denotes the ”true positive” classifications and L is the total amount of
class labels. Either all or some of these metrics are applied in publications [P3]
– [P6].

4.3 Collective Network of Binary Classifiers
The content-based audio classification framework applied in this thesis is detailed
in this section. The section begins by introducing the topology of the framework,
after which the classifier training and classification process are discussed.

4.3.1 Topology of the Classifier Network
The audio classification approach applied in this work consists of several networks
of individual binary classifiers (NBC). A binary classifier (BC) is defined here as
an any type of a classifier with two outputs. Essentially the purpose of such
classifiers is to distinguish a particular audio class from any other. The binary
classifier networks, NBCs, are designed in a way that the final output of each
network is also binary. Thus, in order to solve an L-class classification problem, L
separate NBCs are required, and the corresponding binary outputs are compared
to derive the classification result. These L NBC ”units” form a single entirety,
which is called collective network of binary classifiers (CNBC).

The number of inputs for each classifier at each NBC is defined based on
the total amount of extracted features. An extracted (and post-processed) fea-
ture vector is divided into F smaller feature subsets based on some feasible logic.
For example, in publication [P4], F = 6 feature subsets are considered (such as
MFCCs, LPCs, LPCCs, and spectral audio features). A separate binary classi-
fier is then assigned for each of these feature subsets at each NBC. This allows
applying a large amount of different types of audio features for classification
problems, which may be very beneficial; in many cases a specific feature set is
especially suitable for distinguishing certain types of audio classes, whereas not
at all for others. On the other hand, applying a single huge feature vector (FV)
for classification may become computationally infeasible due to the high number
of classifier inputs.

The CNBC framework is illustrated in Figure 4.5 for F input feature subsets
and L classes. The fuser BCs shown in the figure provide as their outputs the
actual classification results in a binary form, which state the credibility of the
classified item belonging to the class of their corresponding NBC. The fusers
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Figure 4.5: The structure of the CNBC framework for F input feature sets and L
classes. Each network of binary classifiers provides a single binary output, called as
class vector (CV ). Copyright c© 2011 IEEE.

are named after the ”fusion” they perform to the outputs of the BCs on the
NBC ”input layer”. The fundamental idea of the CNBC approach is to divide
complex classification problems into several smaller and easier ones in order to
avoid overly complex classifiers. Thus, the topology can be also stated as a
”divide and conquer” - type of approach.

Based on their networked structures, each NBC in the CNBC topology can
be compared to ensemble based systems [Pol06, Abb03]. In these, the strategy is
to create many classifiers and combine their outputs such that the combination
improves upon the performance of a single classifier (as in the case of random
forest discussed earlier). Here the classifier diversity plays a key role, meaning
that the individual classifier decision boundaries should be adequately different
from each other. The diversity is achievable in several ways, for example by
partitioning the input data or varying the classifier parameters or types [Pol06].
In each NBC, the diversity is achieved by using the different feature subsets for the
classifiers and – more importantly – by applying different (optimized) classifier
parameters to them. In this work, artificial neural network (ANN) classifiers are
used in each NBC.

Structure-wise, a single NBC within the CNBC topology is analogous to a
”stacked generalization” approach described in [Pol06]. The whole CNBC ap-
proach, however, is a novel one with its evolving classifiers and the fusion opera-
tion performed over the binary classifiers with different feature subsets. Moreover,
devoting a separate NBC for each class represents a new and uniquely motivated
topology with an attractive property of class and feature scalability discussed in
section 4.3.4. In the following, the term ”evolution” is used instead of ”training”
to emphasize the fact that, in addition to the conventional ANN parameters w
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and θ, also the network structures of the individual ANN classifiers are iteratively
optimized via the underlying MD PSO algorithm in an evolutionary manner.

4.3.2 Evolving Binary Classifiers
Any of the classifier types introduced in section 4.1.1 may be applied as bi-
nary classifiers in the CNBC framework. In the case of feed-forward ANNs – or
multi-layer perceptrons – considered in this work, a specific architecture search
space is defined, which consists of several indexed MLP structures. The indices
correspond to the MD PSO dimensions, beginning from the most simple struc-
ture (the lowest dimension) and ending to the most complex one (the highest
dimension). The particle positions in each dimension correspond to the MLP
parameters (connections, weights, and biases) for the corresponding MLP struc-
ture. For each structure, the number of hidden layers and number of neurons in
each layer is defined by using a vector R of the following form:

R = {Nf , N1, . . . , Nh, . . . , NH , 2}, (4.18)

where Nf is the dimension of the fth input feature subset, FVf (the input layer),
Nh stand for the number neurons in the hidden layer h, and H is the maximum
number of hidden layers included in the search space. Note that, since binary
classifiers are applied, the number of neurons at the output layer is fixed to 2.

The MD PSO algorithm is applied to optimize the MLP parameters by defin-
ing the positional component of a particle a at iteration t, pda[t]

a [t], as

pda[t]
a [t] = Ψda[t]

{
{w0

mn}, {w1
mn}, {θ1

m}, {w2
mn}, {θ2

m}, . . . , {wHmn}, {θHm}, {θOm}
}
,

(4.19)

where {whmn} represent a set of weights from mth neuron at hidden layer h to the
nth neuron at hidden layer h+ 1, and {θhm} is a set of biases for the mth neuron
at layer h of a corresponding MLP structure Ψda[t], where m ∈ {1, . . . , Nh} and
n ∈ {1, . . . , Nh+1}. Note that the input layer contains only weights, whereas the
output layer (h = O) has only biases. In order to optimize these parameters,
the MD PSO particles should converge to the global optimum in an optimal
dimension. Mean squared error between the desired and obtained output can be
stated in a form of fitness/measure function as

FMSE = 1
T

T∑
p=1

(
dp − yp

)2
, (4.20)

where dp and yp are the desired and obtained two-element class vectors (CV) for
pattern p in a train set of size T . The term ”class vector” is used to describe
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Figure 4.6: An example of an evolutionary MLP configuration update process. The
upper table shows the obtained fitness values, where the best runs for each MLP con-
figuration in the architecture space are highlighted. The best configuration in each run
is marked with ”*”. In this case, the overall best configuration has 3 neurons in one
hidden layer, and it is thus assigned for the (ANN) binary classifier. Copyright c© 2011
IEEE.

whether or not a particular audio sample belongs to the class at stake. Obviously,
the evolving process falls into the category of supervised learning, as training data
with ground truth class vector are required, i.e. the desired output for (4.20)
needs to be available.

Due to the stochastic nature of PSO, the evolutionary update of each classifier
may be performed in several runs to improve the probability of converging to the
global optimum. This is demonstrated in the case of MLPs in Figure 4.6, where
a 5-dimensional architecture space with configuration vectors R1 = {15, 2}, R2 =
{15, 1, 2}, R3 = {15, 2, 2}, R4 = {15, 3, 2} and R5 = {15, 4, 2} are considered.
Three separate parameter optimization runs are performed, and the obtained
MSE fitness values are shown in the upper table. The best results are considered
from each dimension, among which the optimal network structure and parameters
are chosen for the binary classifier.

Considering the whole CNBC topology, the classifier evolution process is per-
formed in two phases. In the first phase, the BCs in the NBC ”input layer”
with different feature subsets are evolved, while the fuser BC – since it uses the
outputs of the BCs evolved in the first phase – is left for the second phase. The
fuser BC can be thought of as a certain type of feature selection object, because
it may emphasize those features which have the highest capability in discrimi-
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Copyright c© 2011 IEEE.

nating the class of the corresponding NBC from the others. Naturally, this is
done by scaling the BC outputs according to the fuser BC parameters (i.e., the
connection weights of an MLP), meaning that no hard selection is performed. An
overview of the evolution process in shown in Figure 4.7, where the lower part
illustrates the actual output class selection phase, which is described in detail in
section 4.3.3.
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4.3.3 Classification with CNBC
The overall output of the CNBC framework is obtained by combining the in-
dividual classifier outputs, i.e., the outputs of each NBC. The combination can
be based on e.g. majority voting, whereas in CNBC a dedicated class selection
technique is applied over the two-element class vector outputs of each NBC. Con-
sidering a uni-class database (in which each database item belongs to exactly one
class), a ”1-of-m” encoding with m = 2 is first applied to every binary classifier in
the network. The encoding is done by comparing the output class vector elements
and stating the output as

y =

positive, if CVf1 > CVf2

negative, else,
(4.21)

where CVfj corresponds to the jth element of the class vector of the fth bi-
nary classifier at a particular NBC. A similar encoding is also performed for the
fuser BCs at each NBC. The overall classification result (class selection) is then
obtained by applying a ”winner-takes-all” strategy on all the individual NBC
outputs. Here the ”winner” class is defined as

y? = argmax
l∈{1,...,L}

(CVl1 − CVl2) , (4.22)

stating that the class label l with ”most positive” outcome is selected. This means
selecting the class label which provides the biggest positive difference between its
two output vector values CVl1 and CVl2. Because of the comparison between
each class vector, the approach enables handling also cases with several positive
class vector differences (or none) unambiguously.

4.3.4 Incremental Evolution of the CNBC
Due to its element-wise design, the CNBC can be dynamically scaled to a higher
or lower number of classes in a feasible manner. For example, in the case of
incremental learning [Pol06], where new data samples with a new class label are
added to the database at hand, a new NBC may be added and evolved without
necessarily changing the existing classifiers. This is a significant computational
advantage and provides notable scalability to the CNBC structure. Whenever
necessary, also the existing NBCs may be incrementally evolved by performing
new MD PSO runs using either the updated or the original training dataset. The
procedure is detailed and experimented in publication [P4] by adding new classes
to the applied audio database. In short, the idea is that a new MD PSO run
begins from the previous solution converged by the earlier MD PSO run(s), such
that the swarm experience achieved so far is fully utilized.
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In addition to the class scalability considered in [Pol06], the CNBC topology
is also scalable with respect to the amount of extracted features: whenever a
new feature subset is added, a corresponding new BC is inserted to each NBC in
the framework. Feature scalability is not supported by the ensemble of classifier
methods, such as Bagging, Boosting or Stacked Generalization [Pol06] [Dud01,
Chapter 9], meaning that a new feature extraction will eventually make the classi-
fier ensemble obsolete and require retraining it from scratch. Note that in CNBC
the scaling can be performed also downwards by simply removing NBCs (or the
BCs within) from the framework according to the class or feature changes.

Incremental learning is often problematic for traditional classifiers, causing a
phenomenon known as catastrophic forgetting [Fre99]. This means that all the
previously acquired information is lost, which is not only costly in computational
sense; the original dataset may be already unavailable due to corruption or access
restrictions. Besides of CNBC, only very few attempts have been proposed to
address this problem. The Learn++ algorithm has shown to accomplish incremen-
tal learning on several applications [Pol01]. However, the algorithm creates an
ensemble of ensemble classifiers, one ensemble for each updated database, mean-
ing that learning new classes requires an increasingly large number of individual
classifiers. Such a structure is not as scalable as the presented CNBC topology.

4.3.5 Discussion
Both in publications [P3] and [P4], the CNBC classification performance is com-
pared to several SVMs with different kernels and parameter settings. The one
against one - approach is applied to enable multi-class SVM classification. These
comparisons reveal the high potential of the CNBC considering complex classifi-
cation tasks with high number of distinct audio classes and features. It should be
noted, however, that unless the applied training dataset is representative enough,
potential over-learning may occur when optimizing the classifier parameters with
static train data. Nonetheless, as discussed above, the CNBC is also directly ap-
plicable to dynamic databases with both varying number of classes and features.

The computational complexity of the CNBC is dependent upon several fac-
tors. First of all, the training method applied for evolving the classifiers affects
the computational time by some varying amount, which is dependent on the train-
ing method parameters. In [P3] and [P4], two methods are employed in evolving
the artificial neural networks applied in the CNBC, namely the sequential back-
propagation (BP) and the multi-dimensional PSO (MD PSO) algorithms. The
sequential BP algorithm performs an exhaustive search over all the network ar-
chitectures defined in the architecture space to find the optimal ANN structure
and parameters. It can be easily understood that the computational time is thus
directly proportional to the size of the architecture space, i.e., the number of
possible network configurations, Nc. Another affecting parameter is the number
of epochs, E, considered in the BP training, which stands for the number of times
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the training dataset is fed to the network during the parameter training process.
Hence, an approximate order of O(ENc) computational time can be defined for
the sequential BP algorithm. The MD PSO algorithm, instead, does not perform
such an exhaustive search, but strives for converging to the global best solution of
the architecture space in a stochastic manner. The computational time required
by MD PSO is dependent on the size of the training dataset, T , the number of
particles, P , and the number of iterations, I. All of these define the total number
of forward propagations performed during the process, such that, by denoting
µt as an abstract time required for computing the Eq. (4.20) over an average
network in the architecture space, an approximate computational complexity of
order O(TPIµt) can be determined for the process. It should be noted that, for
the both methods, the parameter selection is a trade-off between the required
computational time and the accuracy of the results.

As a concrete comparative example, the training process performed in [P3]
for an 8-class database with the BP method took approximately 1 - 1.5 h with
the specified computer. However, as one would imagine, the processing time was
significantly lowered by decreasing the number of epochs. Considering the MD
PSO approach, with the defined architecture space the processing took somewhat
longer than with BP when comparable parameter settings were used. Unfortu-
nately, no precise and comprehensive measurements regarding to the computa-
tional times are documented from the experiments for deeper analysis. However,
it can be roughly said that for relatively small architecture spaces the BP method
performs faster than MD PSO, but the situation should change to the opposite
rather rapidly as the number of network configurations, Nc, is increased e.g. to
those experimented in [Kir09].

Other factors affecting the complexity of the CNBC framework itself are the
applied binary classifier types, as well as the number of feature vectors and audio
classes considered in a particular problem. However, due to the fact that the
individual NBCs are independent of each other, the CNBC structure is directly
applicable to parallel grid computing. This allows evolving each NBC with an
own CPU (central processing unit), which can – in the current implementation
– speed up the optimization process by the amount NBCs in the structure. In
the scope of this thesis, the Techila computation grid [Tec] is utilized in the
evolutionary optimization processes performed in publications [P4] – [P6].
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Chapter 5
Evolutionary Audio Feature Generation

Conventional audio features are required for estimating several types of
characteristics and attributes from audio signals, but occasions may occur in

which the obtained properties are not descriptive enough for decent and accurate
audio content analysis. Especially when the database size and the number of
audio classes increase beyond a certain magnitude, the discrimination between
individual classes becomes more challenging. This is why feature selection and
feature synthesis (also called generation/construction/transformation) has gained
an increasing amount of attention in the literature in the context of data mining
and machine learning. This chapter describes a stochastic optimization-based
approach for combined feature selection and generation in the field of content-
based audio classification and retrieval.

5.1 System Overview and Preliminary Work
Considering an ideal feature generation case, a feature generation system (also
called here as a feature synthesizer) receives as its input a specific set of (low-level)
audio features, selects the most representative and appropriate subset among
them, and finally combines and modifies the selected features by applying a proper
set of transformation operators and feature weights. As its output, the system
generates a set of new and more descriptive (artificial) audio features with respect
to a designed fitness function or other quality measure assigned for the operation.
Such an ideal feature synthesis operation is demonstrated in Figure 5.1 for the
purpose of clustering, where two-dimensional features of a 3-class dataset are
successfully synthesized into new, clearly distinct clusters. In many cases, such an
operation enables obtaining significantly improved classification and/or retrieval
results compared to the original feature distribution. In the next two sections,
some of the earlier contributions and important studies made in the field are
discussed.
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Figure 5.1: An overview of an ideal feature synthesis process.

5.1.1 Feature Selection
Feature selection [Liu08] is beneficial whenever the feature space dimensionality
is too high for a reliable statistical or structural analysis. This so-called curse
of dimensionality phenomenon [Bel61] is caused by the fact that the available
data becomes too sparse at high dimensions. Feature selection is applied for
choosing an expressive and compact subset of features among the original ones.
Genetic algorithms (GAs) [Gol89] and genetic programming (GP) [Koz92] are
traditionally applied for the task [Hua06], [Zhu08].

More recently, PSO was also applied for selecting features which were origi-
nally extracted by using DCT and discrete wavelet transform [Ram09]. Compa-
rable face recognition results to a GA-based feature selection were obtained with
a benefit of fewer features needed. Also in [Lin08], a PSO-based feature selection
was tested with SVMs to various classification problems. Moreover, a survey of
several feature selection approaches is presented in [Guy03], where the authors
conclude that feature ”construction” should be applied together with feature se-
lection to obtain improved performance and more compact feature sets. Hence,
in this work the main attention is drawn to synthesizing new audio features from
the conventional ones by the means of stochastic optimization.

5.1.2 Feature Generation
One of the earliest forms of feature generation are based on grammars of feature
construction functions [Mar02]. However, such approaches cannot generalize to
more realistic data mining cases with raw signals instead of symbolic data [Pac09].
Stochastic optimization, instead, is well suitable for searching artificial feature
combinations and representations that go beyond human imagination. Thus – in
accordance with the general scope of this thesis – ”trial and error” type of ap-
proaches are generally applied for the task. In [Rit02], for example, a combination
of both feature selection and generation is proposed based on a modified GA. The
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research basically verifies that generated features can significantly improve the
learning performance when compared to direct data observations. In [Lin05], a co-
evolutionary GP-based approach is proposed for synthetic aperture radar (SAR)
image classification. The approach allows applying several sub-populations to
GP, whose synthesis outputs are then combined in forming the final synthesized
FVs. With less number of synthesized features needed, the classification results
were comparable to (or better than) those obtained with the original features.

Probably the first audio feature generation system was the one proposed by
Pachet and Zils [Pac03]. They applied GP in an extractor discovery system (EDS)
framework to explore a large operator function space for automatically discovering
new high-level audio features. More recently, Pachet and Roy [Pac09] applied the
EDS framework with what they call analytical features (AF). These represent
a large subset of all audio signal processing functions and are expressed as a
functional term consisting of basic operators. The main idea is to apply genetic
transformations to improve the current population of the (initially random) AFs,
while the fitness of each AF is evaluated using an SVM classifier.

Generally in audio signal processing, ad hoc and domain-specific audio fea-
tures have recently gained a considerable amount of attention. These are mainly
applied to some very specific audio classification problems. For example, Mörchen
et al. [Moe06] constructed a large set of features by applying cross products be-
tween several existing feature functions, resulting to approximately 40 000 audio
features in total. A similar example was presented by Mierswa and Morik [Mie05],
who introduced method trees consisting of ad hoc features for a given audio sig-
nal. The trees are automatically generated using GP in combining elementary
feature extraction methods. The authors report improvements in music genre
classification accuracy over approaches with traditional audio features.

5.2 Particle Swarm Optimization for Feature
Synthesis

In this work, the feature synthesis is performed via an MD PSO-based parameter
optimization approach. The method was initially applied in [Kir11], where the
performance was tentatively verified in the context of image retrieval. To moti-
vate the selection of PSO over the traditionally applied GP, the two algorithms
are compared in Table 5.1 [Chu08]. The main advantage of PSO over GAs is
that the algorithm provides more profound intelligent background, and it can be
performed more easily than GAs [Shi05]. Also, the computation time of PSO is
usually less than for GAs, as all the particles in PSO tend to converge to the best
solution rather quickly [Ebe98].

In the following, the MD PSO-based feature synthesis process is discussed in
detail. The discussion includes the system overview, particle encoding, and the
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Table 5.1: Comparison of GA and PSO as search algorithms

Property GA PSO
Genetic operators included excluded

Key functions -crossover -social particle interaction
-mutation -particle velocity updates

Information source
all the chromosomes the global best particle
(the whole population (evolution only looks for
moves in one group) the best solution)

Update occurrence probabilistic (crossover all particles are updated
and mutation rates) after each iteration

Local optimum can become easily can avoid well the
trapped local optima

fitness metrics applied for evaluating the synthesized audio features.

5.2.1 Evolutionary Feature Synthesis Overview
The audio feature synthesis approach described in this work provides an attractive
property of searching for both the optimal synthesis parameters and the optimal
dimensionality of the feature search space. This is achieved by applying MD PSO
along with the FGBF algorithm described in section 2.2.2 to the optimization.
In order to perform successful feature synthesis, the proposed system, with a
specified synthesis depth value K,

1. Selects K + 1 original features f0, . . . , fK ,

2. Scales the selected features with proper weights w0, . . . , wK ,

3. Selects operators θ1, . . . , θK among a large collection to be applied over the
selected and scaled features, and,

4. Binds the output with a non-linear operator (such as tangent hyperbolic).

Stating that θn(fa, fb), where n ∈ {1, K}, denotes performing an operator θn
over features fa and fb, a formula for synthesizing a new feature sj is defined as

sj = tanh (θK(θK−1(. . . , θ2(θ1(w0f0, w1f1), w2f2), . . .), wKfK) . (5.1)

As shown in the formula, first the operator θ1 is applied to the weighted features
f0 and f1, after which the operator θ2 is performed over the result of this first
operation and the weighted feature f2. The process continues similarly, until
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Figure 5.2: A flowchart of an evolutionary feature synthesis process performed over R
runs.

finally the operator θK is applied to the results of all the previous operations and
the weighted feature fK .

The optimization process of the parameters included in (5.1) is a high-
dimensional and multi-modal problem requiring stochastic optimization methods.
In publications [P5] and [P6], also the fractional global best formation (FGBF)
and simulated annealing (SA) algorithms described in sections 2.2.2 and 2.3 are
co-employed with MD PSO for the task. The process is called ”evolutionary” due
to the evolving nature of the PSO algorithm and the fact that the process itself
can be performed over several consecutive runs, in an evolving manner. This
means that the process adopts the synthesized feature vectors from a previous
run as its input for the next one, as demonstrated in Figure 5.2 with R synthesis
runs. The arrows in the figure correspond to individual feature subsets (such as
MFCCs, LPCs, etc), each of which an individual feature synthesizer is evolved.
The approach is hence directly applicable to parallel processing, in which a sep-
arate CPU is assigned to each individual feature set. As shown in the figure,
the fitness evaluation of each synthesized feature vector – corresponding to one
feature subset – is performed after every synthesis run. In this work, the retrieval
metrics discussed in section 5.2.3 are applied for the task.
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5.2.2 Encoding of the Particles
The positions of the MD PSO particles in the parameter space are encoded such
that, once decoded, each of them represents a potential solution on performing
the feature synthesis operation. In other words, the position vector of each par-
ticle can be seen as a potential feature synthesizer. Every particle encapsulates a
complete set of synthesis parameters: the indices of the selected input features,
fn, the corresponding feature weights, wn, and the selected mathematical oper-
ators, θn. Since the feature space dimensionality corresponds to the dimension
(length) of the synthesized output feature vector, the jth output vector element is
synthesized as described by the jth positional element of a particle a at iteration
t, pda[t]

aj [t], where j ∈ {1, . . . , da[t]}.
Referring to the four system steps shown in section 5.2.1, each particle element

p
da[t]
aj [t] must contain K+1 indices for selecting the original features, K+1 feature

weights, and K operators for synthesizing the corresponding jth output feature.
For this, the positional elements of each particle in the swarm are encoded in a
vector form of length 2K+ 1, including K+ 1 A-type and K B-type components.
These define the synthesis parameters as

fn = bAnc+ 1, n ∈ {0, . . . , K}
wn = An − bAnc, n ∈ {0, . . . , K}
θn = dBne, n ∈ {1, . . . , K}, (5.2)

where b·c and d·e denote the floor and ceiling operators, respectively. Denoting
the input FV dimension as F and the total number of available operators as Θ,
the allowed values for the components are defined as An ∈ [0, F [ and Bn ∈]0,Θ].

As an illustrative example, Figure 5.3 shows a feature synthesis procedure
performed over an 8-dimensional input feature vector at run r, FV (r). At it-
eration t, the particle a is located at position pda[t]

a [t] in a dimension da[t] = 6,
which corresponds to the length of the synthesized vector FV (r + 1). For the
sake of simplicity, the synthesis depth value is set to K = 3, meaning that only
K + 1 = 4 features are selected from the input vector FV (r). Correspondingly,
each particle vector element p6

aj[t], j ∈ {1, . . . , 6}, includes thus 2K + 1 = 7
encoded synthesis components (A0, . . . , A3 and B1, . . . , B3), and each element j
is applied to synthesize the corresponding output feature for FV (r+1) (although
only the synthesis process of the first element is shown in detail in Figure 5.3).
Based on the dimensionality of the input FV (F = 8) and the total number of
mathematical operators (Θ = 5), the value ranges for the A and B components
are derived as An ∈ {0, . . . , 7} and Bn ∈ {1, . . . , 5}. For synthesizing the first
output feature, the current particle position suggests selecting the 7th, 3rd, 1st,
and again the 3rd input feature from FV (r), whereas the corresponding selected
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Figure 5.3: Illustration of a synthesis process of a 6-dimensional FV.

operators are ”+”, ”min” and ”∗”. Based on (5.1), the first output feature is thus
synthesized as

s1 = tanh
(
min((w0f[7] + w1f[3]), w2f[1]) ∗ w3f3

)
, (5.3)

where f[n] denotes the nth element of the input FV.

5.2.3 Retrieval Evaluation Metrics
Traditionally in audio content-based retrieval, certain (dis-)similarity measures,
such as Euclidean distance, are applied to measure the distances between the FVs
of a queried database item and each item belonging to the database. Similarity
measures have been studied and compared e.q. in [Hel10], whereas in this work
the Euclidean distance is used for demonstrating the performance improvement
achieved via the evolutionary feature synthesis (EFS) process. In this work, the
retrieval performance is evaluated using the average precision (AP) metric and
the so-called average normalized modified retrieval rank (ANMRR), defined in
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MPEG-7 standard as [Man02]

ANMRR =
∑Q
q=1 NMRR(q)

Q
≤ 1, (5.4)

where

NMRR(q) = 2AV R(q)−N(q)− 1
2W −N(q) + 1 ≤ 1,

AV R(q) =
∑W
k=1(q)R(k)
N(q) ,

W = 2N(q). (5.5)

The term q in (5.4) and (5.5) denotes a single query, N(q) is the number of rele-
vant samples included in a set of Q retrieval experiments, and R(k) corresponds
to the rank of the kth relevant retrieval within a window of W retrieval results
(window ”length” W meaning the number of retrieval results taken into account
for one query). An average rank obtained from a query q is then denoted as
AV R(q), from which the first retrieval result is excluded, due to the fact that the
highest similarity value is always obtained with the queried item itself. This latter
procedure is performed in the normalization phase, yielding thus the normalized
modified retrieval rank (NMRR) measure. In an ideal case, the first N(q) re-
trieval results are all relevant to the query item, resulting to the best possible
retrieval performance, i.e. NMRR(q) = 0, whereas in the worst case (where no
relevant items are retrieved within the first N(q) retrievals), the NMRR results
to NMRR(q) = 1. The ANMRR value is computed in a batch query mode, that
is, by querying all the database items one by one.

In order to improve the audio retrieval performance by the means of feature
synthesis, an intuitive approach for constructing a proper fitness function would
involve computing either the AP or the ANMMR measure. However, these would
be computationally infeasible for large databases, as the both measures require
conducting a separate batch query for every fitness evaluation during the synthe-
sis process (i.e., selecting each item in the database as a query item, performing
a separate query for each of them, and finally taking the average of the obtained
retrieval results). Alternative approaches are therefore needed, and in this work
the effort is put on providing a maximal separation between the features of dif-
ferent classes in the feature space, as demonstrated earlier in Figure 5.1. This
should, in turn, result to improved retrieval performance. The two fitness mea-
sures experimented in this work are discussed in the next section.
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5.2.4 Fitness Measures
The optimization of the EFS parameters can be performed with respect to any
fitness function that suits to the problem at hand. The first fitness function
applied in this thesis – called as discrimination measure (DM) – computes the
absolute distance between the synthesized feature vectors in the feature space.
The second one utilizes the approach employed in artificial neural networks, where
a unique target vector is assigned for each audio class in the problem. The second
measure is hence called target vector assignment.

Discrimination measure

This measure is based on clustering, in which the compactness and separation
of different clusters are the main criteria for the design. Denoting the class
labels of an L-class database as l1, . . . , lL and the corresponding class centroids
as µ1, . . . , µL, the DM can be defined over a set of synthesized feature vectors,
S = {s} as,

DM(S) = fp(S) + δmean(ln)/δmin(ln, lm), (5.6)

where fp(S) is the number of false positive FVs occurring among S, stating that
these FVs are located in a closer proximity to some other class centroid than
their own. The terms δmean(ln) and δmin(ln, lm) correspond to average intra-class
distance and the minimum centroid distance among the classes, respectively, and
are defined as

δmean(ln) = 1
L

L∑
n=1

∑
∀s∈ln ‖µn − S‖
|ln|

,

δmin(ln, lm) = min
n6=m

(‖µn − µm‖). (5.7)

This means that the DM(S) strives for minimizing the intra-cluster distances
and maximizing the shortest inter-cluster distance. As shown in Figure 5.1, in
an ideal case every synthesized FV lies in the closest proximity of its own cluster
centroid, leading thus to a high class discrimination.

Considering audio retrieval, minimizing the DM, however, does not always
lead to improved retrieval results. This is because those query samples located at
the outskirt of their own class centroid may be actually in a closer proximity to
some other feature vector located at the outskirt of its corresponding class. This
results in irrelevant retrieval results, which is the main reason for applying also
another fitness measure for the synthesis task.
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Target vector assignment

The second fitness measure is based on an idea of finding the synthesis param-
eters that produce a desired unique binary target vector for each audio class.
As mentioned above, this is the same logic that is utilized in ANNs for finding
the proper network parameters. The fitness value of this measure is computed
by taking the MSE between the obtained and the targeted output vectors, in a
similar fashion to bullet state estimation in section 3.4.3 or evolutionary classi-
fiers in section 4.3.2. However, since the output dimensionality of EFS is not
fixed in advance, a separate target vector needs to be generated for each dimen-
sion d = {Dmin, . . . , Dmax}. Also, in order to provide a clear distinction of the
desired target vectors between each class, the binary target vectors need to be
set as different from each other as possible. For this, an error-correcting output
code (ECOC) [Die94] analogy is applied, in which two criteria are considered for
generating proper target vectors:

1. Row separation: The target vectors of each dimension should be well sep-
arated from each other

2. Column separation: The individual elements of each target vector should
be well separated from each other,

both in the sense of Hamming distance. A large vector separation allows minor
fluctuations to occur between the synthesized and desired output vectors, without
losing the discrimination between different classes. In other words, the higher
the separation between individual target vectors, the more inaccuracy is allowed
for the synthesis parameters. Moreover, note that the target vector elements
of each dimension can be thought of as individual binary classification tasks as
such (between the vectors having a value ”1” and those having a value ”-1” in
a specific dimension d). Now, due to the fact that two arbitrarily chosen audio
classes have a varying similarity between each other, some of these classifications
are significantly easier than others. Therefore – since the pre-determined target
vectors are applied independently to the corresponding audio classes – it is also
beneficial to keep these binary classification tasks as different from each other as
possible by maximizing the column separation.

Constructing the binary target vectors with the aforementioned constraints is
performed using the following procedure:

1. Compute the number of bits, Nb, needed to present the total number of
classes L.

2. Construct L empty target vectors.

3. For each target vector, assign a binary representation of the class label
index ln−1, n ∈ {1, . . . , L} as the first (or next) Nb target vector values. For
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Figure 5.4: A set of binary target vectors assigned for 4 audio classes based on ECOC
encoding.

example, if n = 3 and Nb = 4, assign ”-1 -1 1 -1” as the first (or next) 4
vector values.

4. Move the target vector of class label l1 to class label lL and shift the other
target vectors ”upwards” by one class (ln ⇒ ln−1, n ∈ {2, . . . , L}). That is,
move the target vector of class l8 to class l7, the vector of l7 to l6, etc.

5. Repeat the steps 3 and 4 until Dmax target vector values are assigned.

6. Replace the first L vector values of each target vector with a 1-of-L
coded [Bai03] section.

For further clarification, the target vectors assigned for a 4-class database are
demonstrated in Figure 5.4. The maximum dimension is set to Dmax = 10 and
the number bits needed to present the four classes is Nb = 2. For clarity, the ”-1”
values in the target vector table are presented by empty entries. The term T (ln)
stands for a target vector for audio class ln. Corresponding to the presented target
vector generation procedure, this example demonstrates the 1-of-L coding section
for the first L = 4 elements of each target vector, after which the shifted 2-bit
representations of the class indices follow. For the vector dimensions d < Dmax,
only the d first elements of the target vectors are considered. This way the FGBF
algorithm discussed in section 2.2.2 can be applied to combine particle position
elements, as the common elements of target vectors with different lengths are
always identical. This is done in publications [P5] and [P6].

The fitness values for the jth vector elements of all the synthesized FVs are
finally computed as

F(Sj) =
L∑
n=1

∑
∀s∈ln

(T (ln)j − sj)2, (5.8)
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where T (ln)j is the jth element of the target vector of class ln and sj denotes
the jth element of a single synthesized FV belonging to class ln. These fractional
fitness values F(Sj) are then added together and normalized with respect to the
number of dimensions to form the overall fitness value F(S), as follows:

F(S) = 1
L

L∑
j=1

L∑
n=1

∑
∀s∈ln

(T (ln)j − sj)2 + 1
(Dmax − L)α

Dmax∑
j=L+1

L∑
n=1

∑
∀s∈ln

(T (ln)j − sj)2.

(5.9)

In (5.9), the probability of converging to higher dimension is moderately increased
by an additional power parameter α. This is because the first L vector elements
with the 1-of-L encoding are usually the easiest ones to synthesize (and thus
mainly favoured in the dimension search by the MD PSO algorithm). It is also
assumed in (5.9) thatDmin > L. The DM metric is applied as a fitness function in
publication [P5] for a 16-class database, whereas in [P6] the both fitness measures
are used with two databases of 6 and 12 audio classes.

5.3 Comparison to Artificial Neural Networks
In a sense, the described EFS technique can be seen as a generalized form of
artificial neural networks. Considering the four algorithmic steps listed in sec-
tion 5.2.1, a single-layer perceptron (SLP) classifier acts by performing the steps
2 and 4. This is because neither feature nor operator selection is performed in
an SLP classifier. Instead, SLP adds a bias value to its weighted features, which
– whenever found beneficial – can be mimicked also in the EFS approach by in-
serting an additional constant value of 1 at the end of each original input feature
vector. This constant can be then selected and scaled by the synthesizer among
the other selected features. Considering the feature synthesis procedure shown
in equations (5.1) and (5.3), it can be noticed that by setting the synthesis depth
as K + 1 = F , discarding the feature selection as f[n] = fn, and setting each
operator θn to ’+’, the EFS becomes identical to SLP. However, note that the
dimensionality of the SLP output layer is fixed, whereas in the EFS approach the
output dimension is (as mentioned) optimized within a specified range.

Correspondingly, performing several consecutive EFS runs – as shown in Fig-
ure 5.2 – is comparable to a multi-layer perceptron topology, or, in fact, any
feed-forward ANN. Similar to SLP, an MLP does not involve feature selection,
and it also performs with a fixed (summing) operator and fixed output dimension.
Interestingly, performing EFS with the above parameter settings corresponds to
an MLP approach with a one-to-one analogy between the number of hidden layers
and the number of runs performed. In this sense, it can be stated that a regular
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feed-forward ANN is a special case of the EFS technique. This also means that
regular ANNs may be considered and applied for feature generation purposes,
as they do perform mapping from their original feature space to a new one with
either the same or different (pre-determined and fixed) dimension. An important
difference between the MLP and the EFS technique is that in EFS the fitness of
the synthesized feature vector is evaluated after each run, whereas in MLPs only
the final fitness value occurring at the output layer is shown and the intermediate
network layers are hidden.

Comparative evaluations between EFS and SLP/MLP ”feature synthesizers”
are performed in publication [P6] in the context of audio retrieval. The main con-
clusions of these evaluations are that, due to its extensions compared to ANNs,
the EFS is able to synthesize notably more suitable audio features for retrieval
purposes than the compared evolutionary ANNs, both in the sense of retrieval
accuracy and output FV dimensionality. However, despite the possibility of effi-
cient distributed computing with EFS, the increase on computational complexity
with EFS compared to ANNs may still favour applying a regular ANN with a
fixed configuration in cases where relatively small and simple (in the sense of
class separability) audio databases are considered.

71



72



Chapter 6
Conclusions and Future Work

6.1 Conclusions

In this thesis, several stochastic optimization techniques and their extensions
were described, discussed, combined and experimented with selected practical

applications. The main effort was put in providing a solid and versatile founda-
tion of algorithms for solving – in a novel manner – high-dimensional, multi-modal
and (possibly) non-linear optimization problems with considerable accuracy. As
shown in the results of this thesis, these algorithms have a strong potential in
providing solutions to such complex and possibly non-linear optimization prob-
lems that cannot be solved in an analytical and deterministic manner. Analytical
optimization methods, such as deterministic Kalman filter, are only feasible to
linear and Gaussian problems. Considering non-convex or large-scale optimiza-
tion problems, deterministic methods may not be able to derive a globally optimal
solution within reasonable time [Lin12]. Therefore, stochastic solutions were ap-
plied to the problems considered in this thesis.

Two main application areas were covered in this thesis, namely sniper posi-
tioning with bullet trajectory, speed and caliber estimation ([P1], [P2]) and ap-
plications related to content-based audio classification and retrieval ([P3] – [P6]).
In the first area, Bayesian-estimation based particle filtering and simulated an-
nealing were applied in finding proper shock wave modelling parameters based
on the real shock wave signals observed with a microphone array. The sound
wave direction of arrival estimation used for ”pinpointing” the sniper was based
on time differences between the microphones on the array. The second applica-
tion area was mainly covered by the MD PSO-based optimization of individual
audio classifiers used in the described CNBC topology. Simulated annealing was
also applied together with MD PSO in the proposed feature synthesis approach,
in which the synthesis parameters were optimized such that the overall audio
retrieval performance could be improved by using the new synthesized features.

In publication [P1], particle filtering was shown to provide reliable bullet
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state estimation results with a moderate computational effort. The estimation
approach was able to solve the multidimensional inference problem encountered
in the process. Depending on the problem, the relation between the speed and
accuracy of the method could be adjusted by setting the number of particles
accordingly. The GCC-PHAT criterion used for the estimation in [P1] was also
used and extended with a MSE criterion in publication [P2]. In [P2] the bullet
state estimation was based on simulated annealing. A separate gunshot detec-
tion algorithm was also applied and the actual estimation process was set as
dependent on the detected gunshot events. The estimation results in overall are
applicable considering the military and police applications, especially the shooter
position estimates, which are found with an accuracy of few meters. It should
be noted, however, that challenging weather conditions, such as strong turbulent
wind, may degrade the localization performance. Other potential error sources
are simultaneous gunshots, which can confuse the direction estimation if not de-
tected correctly, as well as some urban environments where buildings may cause
strong echoes. Nonetheless, in the made experiments the occasional difficulties
encountered in converging to the global maximum could be often handled by
utilizing muzzle blast-based heuristics, such as the shooter position estimates.

The CNBC framework was first proposed for audio content-based classifica-
tion in publication [P3]. Using an 8-class audio database with varying types of
audio classes, the achieved classification results were better than those obtained
with an SVM classifier. The applied audio classes were selected to demonstrate
the generalization ability of the CNBC, by showing that it can successfully handle
such unconstrained and general types audio classes. Although the overall accu-
racy improvement was not that prominent with the tested database, it should be
mentioned that the compared SVM classifier – which is a powerful classification
algorithm as such – was applied with its best kernel and parameter settings found.
No separate statistical analysis of the results was performed, which may question
the true statistical significance of the achieved accuracy improvement. However,
the framework was also tested over dynamic databases by gradually increasing
the number of classes from 4 to 8, in which it was shown that the dynamic CNBC
design could cope up with such incremental evolution without necessarily need-
ing to re-evolve the existing classifiers between the class additions. The extended
evaluations performed in publication [P4] with 12- and 20-class databases veri-
fied the results of [P3] with large databases. The properties of scalability and
dynamic adaptability of the CNBC negate the necessity of configuring the clas-
sifier parameters and configurations strictly for some specific audio dataset only.
Despite such generalisation, the classification results showed that the CNBC can
compete and also surpass other powerful classifiers such as SVMs, and RFs with
their best kernels and parameters set a priori.

The EFS research presented in publications [P5] and [P6] provided notable
improvements in terms of audio content-based retrieval performances. The fea-
ture extraction procedure was changed somewhat compared to publications [P3]
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and [P4]. This was to increase the number of different types of feature vectors
and also to ease the repeatability of the work, as now all the features were ex-
tracted using the publicly available LibXtract [Bul07] library. In [P5], the MD
PSO algorithm (with FGBF and SA) was able to find the (near-)optimal synthesis
parameters from the defined parameter space. In some of the performed exper-
iments, the synthesized features improved the retrieval precisions by over 10%
with consecutive EFS runs. In the case of classification, the classification errors
were improved when comparing to those obtained with an SVM classifier with
several different parameter settings. Especially with the ”audio statistics” fea-
ture set, the achieved improvement was notable. In [P6], where the heterogeneous
particle behaviour was applied with the MD PSO algorithm, clear improvements
were achieved compared to the original low-level audio features. This improve-
ment was also the main interest of the work, and not the absolute classification
or retrieval performance as such. In other words, the purpose was to provide
new and powerful (artificial) audio features, more than providing solutions for
particular classification problems, such as music genre classification. This is why
the selection of the audio class types may seem somewhat arbitrary if considered
as a pure audio classification problem.

As shown by Tables 10 and 12 in [P6], in the 12-class case the results were
better than those obtained using evolutionary artificial neural networks as feature
synthesizers. This demonstrates the importance of applying several operators and
feature selection to the synthesis process. However, the results achieved with a
6-class database shown in Table 10 suggest (when compared to Table 12) that
when it comes to discriminating features of a relatively small and distinguishable
database, the EFS technique may not provide much improvement. Nonetheless,
as discovered from Table 11, in most cases the EFS technique was able to pro-
vide significant retrieval improvements with an additional property of finding
also the optimal output vector dimensionality, which is rarely considered in the
feature generation literature in general. It should be also noted that the results
shown in Table 9 in [P6] should not be confused to the actual performance of
the EFS method, as their purpose was to act as a reference for the performance
improvement achieved once all the operators and the dynamic output vector di-
mensionality were enabled (in Table 10). Finally, another important foundation
was the performance level achieved with the baseline MFCC features, which was
only beaten after applying several consecutive EFS runs. This indicates the effi-
ciency of these features and reveals that once modified, the effective outcome is
more likely to be negative than positive.

In a sense, all the optimization problems considered in this thesis can be
though of as inverse problems. This is most obvious in the case of sniper po-
sitioning, in which the observed shock waves represent the ”desired” output for
the applied shock wave model. This desired output is then applied to adjust the
underlying model parameters through using the particle filtering and simulated
annealing approaches. In the classifier parameter optimization, the ground truth
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class labels of the training data represent the desired output, and the similar
logic applies also with the binary target vector - based feature synthesis ap-
proach. Thus, although the actual application areas are rather different from
each other, the stochastic optimization algorithms presented in this thesis were
proven applicable to them with fundamentally similar approaches. This demon-
strates the high range of applicability of such methods to various application
areas and optimization tasks.

6.2 Future Work
Excluding the few discussions and verbal comparisons, a significant branch of
the stochastic optimization algorithms family, the genetic algorithms, were not
considered in this thesis. The potential of these algorithms, e.g. the mutation
property, could be researched more in the sense of utilizing the advantages of these
algorithms together with those already considered in the work. Another way of
proceeding could include performing and studying analytical parameter setting
for the optimization algorithms. Experimental parameter adjustment is often
time consuming and non-optimal, not to mention the ”wasted” computational
effort in performing several experimental optimization processes. As an algorith-
mic development, combining the CNBC framework with the EFS technique is a
potential way to proceed with the work, as this would enable optimizing both
the structures/parameters of the applied classifiers and the features themselves
simultaneously. Also a recent and emerging area of machine learning called deep
learning [Are10] should be included to the research in the future.

Considering the applications presented in this thesis, new gunshot recordings
with calibrated microphones could be performed to allow including the absolute
sound pressure information to the data. This would provide valuable informa-
tion regarding to estimating the bullet miss distances. Furthermore, this could
give additional performance enhancement considering a real prototype, where a
soldier helmet is used as a microphone array. Although no real prototype helmet
was applied in the published studies, the made research forms a solid ground
for potential future attempts in bringing such a sniper detection system to life.
With respect to content-based classification, new perceptually motivated audio
features and several types of classifiers could be applied to the CNBC framework.
The EFS technique could be experimented with other types of fitness functions
and databases, and the list of available operators could be optimized or updated
during the synthesis process based on the performed operator selections. At least
in theory, the application of each operator could be also expanded to several
features at a time, instead of the feature pair - based approach mimicked from
artificial neural networks. Finally, the considered directional and contextual au-
dio estimation approaches could be combined in a novel and natural way to bring
more value and new experiences for the end user.
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Errata and Clarifications for the
Publications

• Publication [P1]: The applied microphone array is the same one that is used
and defined in publication [P2].

• Publication [P3]: In Introduction, the claim that in unsupervised learn-
ing techniques the number of classes needs to be fixed a priori is not always true.
For example, in [Mar10] the number of sound classes can incrementally change.

• Publication [P3]: In Introduction, the sentence beginning with ”Rather
high training dataset ...” should be corrected as ”Relatively high percent of
the entire database samples (70%) were used as training data in achieving the
results, whereas ...”.

• Publication [P4]: In Introduction, after the statement beginning with
”Support for any dynamic update...”, it should be mentioned that some studies
of Gaussian mixture models (GMMs), such as [Kri08], do support dynamic
adaptation to data updates (on-line learning).

• Publication [P4]: In Section 2.2.4, the first sentence should state: ”Sub-
band centroid (SC) frequency is the first moment of the band spectral
distribution (spectrum), and it can be estimated as the balancing frequency
value for the absolute spectral values.”

• Publication [P4]: In Conclusions, the first sentence should not claim the
novelty of the CNBC framework itself, but the application of it to the domain
of audio classification.

• Publication [P6]: At the beginning of the ”Related work” section, the
term ”pattern recognition” should be used instead of ”machine learning”.
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• Publication [P6]: The equation (1) should be

ydp(t)
p (t+ 1) =

ydp(t)
p (t), if F(xdp(t)

p (t)) > F(ydp(t)
p (t))

xdp(t)
p (t), else.

(1)
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Abstract—Due to an increasing number of sniper attacks in
different crises and security threats around the world, there
is a need for new technologies and applications to take place
in helping to prepare against such offensives [1]. Estimation of
sound wave direction of arrival (DOA) based on time differences
between separate microphones is typically applied for sound
source localization, and the existing research achievements of
the field are utilized in the presented study. In this paper, a new
method for estimating the state of a supersonic bullet is proposed.
State is defined here to consist of bullet’s trajectory, caliber,
and speed. The method is based on a mathematical modeling of
the bullet shock wave, and the parameter estimation procedure
is built over the Bayesian inference. Both simulations and real
shooting data are used to test and verify the performance of the
proposed method. Bringing shock wave modeling and Bayesian
inference together is the main focus of the study.

I. INTRODUCTION

In security and peacekeeping it is vital to efficiently estimate
the direction of a hostile shooter. Studies have been made
in the field of bullet shock waves and trajectory estima-
tion [2], [3], and [4]. In these papers, the mathematical mod-
eling of a shooting event is identical, whereas the methods for
detecting waveform signatures and the algorithms for sound
source localization differs. Some anti-sniper systems ([5], [6])
are already being used in certain crisis situations, but there still
exists a need for improving the reliability of the estimation.

This paper applies a mathematical model of the acoustic
waveform of a bullet, that has been studied and measured
by Whitman [7]. The previous studies exploit some basic
principles of the shock wave signature in the estimation. In
contrast, this work applies a Bayesian approach to bullet
state estimation based on measured data and the mathematical
model [7]. The bullet trajectory properties, as well as the
caliber and speed, are enclosed by the mentioned bullet state,
which is estimated with an inverse Bayesian method. Bayesian
method gives an optimal solution in a case where prior
knowledge exists. The state estimation problem is of high
dimension and the underlying likelihood distribution is highly
irregular. Particle filters are suitable for such problems [8],
and are therefore applied in this work.

Acoustical bullet trajectory estimation methods can be di-
vided into three categories: 1) methods using shock waves,

2) methods using the muzzle blast caused by the gun itself,
and 3) methods using both of the features. The methods
belonging to category 3 have more uncertainty involved in
the estimation, since the number of error sources grows
higher. Silencers and long shooting distances can prohibit the
existence of muzzle blast, causing the category 2 methods to
become useless. Nevertheless, they are used in some restless
environments in the USA [9]. The proposed method here
belongs to category 1, meaning that no observation of the
muzzle blast is needed. However, since subsonic bullets do
not cause shock waves, only the supersonic bullet states can
be estimated. The category 1 methods are still suitable against
snipers, who generally prefer rifles yielding supersonic bullets
in order to ensure accuracy.

The structure of this paper is the following: First, in Sec-
tion II the mathematical modeling of a shock wave is reviewed.
The following Section III covers the main contribution of
the paper: the use of particle filtering to solve the inference
problems regarding to the state estimation. In Sections IV
and V, the testing and performance of the developed system is
covered, and finally conclusions and future work is presented
in the last Section VI.

II. MODELING OF A SHOCK WAVE

As a bullet propagates in a homogeneous medium at super-
sonic speed, it creates omni-directionally propagating sound
waves, which together form an acoustical shock wave front.
As a result, a cone-shaped pattern is formed behind the bullet,
see Fig. 1. The angle of the shock wave front with respect
to the bullet’s trajectory is proportional to the speed of the
projectile [10]:

θM = arcsin

(
1

M

)
, (1)

where M is a Mach number, which is defined as M = v/c,
where v and c are the speed of the projectile and sound,
respectively.

The waveform of a shock wave is a function of projectile’s
diameter φ, speed v, and the distance between the trajectory
and the receiving microphone position mi. This miss distance
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Fig. 1. As a bullet propagates from left to right, a shock wave cone is formed
behind the bullet, marked with a purple dashed line. The shock wave front is
propagating at the speed of sound c, while the bullet has a decreasing speed,
approximated here as a constant v. Vector h determines the heading of the
bullet trajectory, whereas the different time indexes are marked by tn, where
n is running from 0 to 4.

is measured from the trajectory’s CPA-point (Closest Point of
Approach), marked here as a. A line drawn from this point
to the microphone position mi lies always perpendicular to
the trajectory. The shock wave’s waveform is mathematically
defined using (2) and (3), which form the Whitman model: [7]

Ai =
0.53P0(M

2 − 1)1/8φ

d
3/4
mi,al

1/4
[Pa], (2)

Li =
1.82Md

1/4
mi,aφ

c(M2 − 1)3/8l1/4
[m], (3)

where P0 is the atmospheric air pressure, dmi,a is the miss
distance, and l is the length of the bullet, which is related to
its diameter by [3]

l ≈ 4.35φ [m]. (4)

In addition, the shock wave’s time of arrival τi to a given
microphone mi from a specific point s of the trajectory is
needed to model a shock wave caused by a bullet. The term
τi is defined as

τi =
||mi − s||

c
=

dmi,s

c
[s], (5)

where dmi,s is the distance between the microphone mi and
the S-point s, which is defined in the next Section II-A.

The actual shock wave’s waveform is commonly known as
N-shaped wave (or simply N-wave). This is because the time
domain waveform has very dramatic rising and falling edges,
which are literally making it to look like a letter ”N”. This
kind of a function can be formed by as is shown in (6), where
Ãi represents the normalized version of Ai of (2) [2]:

yi(t) =

{
Ãi

(
1− 2 t−τi

L

)
, τi ≤ t ≤ τi + Li

0, otherwise.
(6)

Obviously, the amplitude of the shock wave increases as
the miss distance decreases. Also the shock wave length is
varying as a function of distance to the trajectory. This can
be seen from (3), where the waveform of the shock wave
becomes longer, as the trajectory moves further away from
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Fig. 2. Modeled and recorded shock waves and the necessary parameters,
τ , A and L, for the modeling. Red dashed line on the left image represents
an ideal shock wave with zero noise level.

the microphone. In Fig. 2, in the left image, an example of
N-wave’s waveform with all the necessary parameters can be
seen. In order to compare the modeled signal with a real shock
wave, also a waveform of a recorded shock wave signal is
shown in the right image.

A. Shock Wave’s Launching Point

The trajectory’s CPA-point differs from the point where the
bullet’s shock wave is actually launched from, i.e. the S-point.
In order to estimate the trajectory of a projectile, the derivation
of the CPA-point using the S-point must be obtained — or vice
versa. An illustration of the S-point with respect to the CPA
is shown in Fig. 3. The blue line represents the line of fire,
i.e. the trajectory to be estimated. Vector g is the position
vector for the weapon, while vector h stands for the direction
(heading) vector for the bullet. The position vectors are defined
in Cartesian coordinates for a particular point, for example
g = [gx, gy, gz]

T . Mach angle θM shown in Fig. 3 is estimated
here between the shock wave front and the bullet trajectory.
The Mach angle can vary significantly, depending on the speed
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Fig. 3. The geometry of the shock wave front with respect to the CPA -
point a and S-point s. The view of the figure is from above.



of the bullet (1). For bullets that are only slightly faster than
the speed of sound, θM is nearly 90◦, whereas for very fast
bullets, say v = 1000 m/s, θM can is as small as ≈ 20◦ [10].
The different angles and metrics of Fig. 3 are obtained by
the means of geometry, as will be seen with the simulation in
Section IV. As a resulting outcome, the relations between the
S-point and CPA can be derived.

III. ESTIMATION OF THE BULLET’S TRAJECTORY

It is assumed that a shock wave — caused by a certain
type of a gun and a bullet — has been observed by an
array of microphones. Furthermore, the coordinates for the
microphones are assumed known. An unambiguous direction
of arriving (DOA) shock wave can be then calculated, when
at least four microphones have observed the shock wave. The
DOA estimate for the shock wave is based on time differences
between the shock wave observations of each microphone.
With these assumptions, an idea of using probabilistic infer-
ence methods to estimate the bullet state is proposed.

In Sections III-A and III-B observed data is used to build a
so-called data model, which is then used to draw conclusions
about the unobserved quantities [11]. Here Bayes-methods are
considered, since dealing with probability distributions instead
of point estimates is a complete solution for the problem.

A. Estimating the Likelihood of a Trajectory

Likelihood function gives probabilities for different sys-
tem outcomes, given that the observed outcome is formed
according to some known parameters. It is possible to con-
struct a likelihood function for estimating the probabilities
for the observed shock wave being caused by a bullet with
an arbitrary chosen trajectory, speed and caliber. Likelihood
function values are here calculated using a generalized cross
correlation (GCC) method. The GCC is calculated between
the shock wave observations and the modeled shock waves
based on (6). The correlation is calculated separately for all
the microphones, and a so-called phase transform (PHAT)
frequency weighting is also used with the GCC:

Ci(t) = IFFT
(

XiY
∗
i

|Xi||Y ∗
i |

)
, (7)

where IFFT stands for an inverse Fourier-transform, Xi and Yi

are the Fourier-transforms of the observed and generated shock
waves xi(t) and yi(t) of microphone channel i, respectively,
(·)∗ stands for a complex conjugate, | · | is an absolute value,
and Ci(t) is the correlation function of microphone channel
i at lag t, where t can have values t ∈ (−τmax, τmax), τmax

being the maximum delay between two microphones. The used
phase transform makes the magnitude spectrums of the shock
wave signals flat, so that only the phase information is used in
calculating the correlation functions [12]. The likelihood value
for a bullet state p is determined by

P (p|O) = max

(
n∏

i=1

Ci(t)

)
, t ∈ (−τmax, τmax) (8)

where O is a n×N matrix containing the observed signals of
length N by n different microphones, and p is a state vector
containing the different parameter values:

p =
[
aT , φ, v

]T
. (9)

Other methods to determine the likelihood value could also
be considered, such as Mean Square Error (MSE) between
the observed and modeled signals, but here the best results
were obtained by using GCC.

In Fig. 4 a outdoor shooting range is shown from above,
and the likelihood function of a bullet CPA is plotted on
the top by altering the CPA’s coordinate. The data used to
calculate the likelihood function is taken from the gunshot
recordings, discussed in more detail in Section V. The blue
areas in Fig. 4 are corresponding to low-probability regions,
whereas the dark red color shows the position of the likelihood
function’s global maximum. The resulting function contains
several local maximums and some clutter caused by some non-
bullet objects and the background noise. This makes the use
of gradient-based search methods difficult. Instead, the particle
filters are studied more closely to solve the estimation problem.
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B. Particle Filter
Particle filter consists of m particles pj and weights W (pj),

where j = 1, . . . ,m. Particles represent a ”state” of the system
to be studied. Particle filters are also known as sequential
Monte Carlo-methods, and they can be used to numerically es-
timate the hidden parameters or state of the system, based only
on the observed data. This is often needed with the inference
problems that are too complex to be solved analytically [8].

Since particle filtering is an approximation of Bayesian
optimal solution, it follows the Bayes rule (see also (8)):

P (O|p) ∝ P (p|O)P (O), (10)

where ∝ stands for linear proportionality, and P (O) means
the prior probability distribution assigned to the observations.



Considering the state estimation problem, the functionality
of particle filter is bounded to the following process: First,
particles are generated to populate the state space based on the
a priori information of each parameter: CPA-point is located at
radius r from the array, bullet diameter is distributed according
to common bullet calibers, and the velocity ranges upwards
from the speed of sound. Second, the corresponding shock
waves that the microphones would observe are generated based
on the parameters. After the actual shock wave front has
been detected by the used microphone array, i.e. the signals
xi(t) have been received, the process continues by calculating
the weight values W (pj) for each particle pj using (7)
and (8). Note that the bullet shock wave must be detected.
The detection methods vary, see e.g. [13] and [14] for details.
Here the detection stage is omitted for the sake of brevity.

After all the particles are gone through, they are moved
randomly in the state space by using here the Brown’s motion.
New weights are calculated and Metropolis algorithm is then
utilized to update the particles [11]. If a new particle produces
a higher weight than the previous one, the upgrading is certain
to be done. However, movement towards the lower probability
can also occur. The criteria for updating the particles can be
mathematically derived by using a random variable α with a
uniform distribution over the interval (0, 1). A new particle is
then accepted if

P (p⋆
j ,p

t
j) ≥ α, (11)

where p⋆
j is the new candidate particle and pt

j the particle of
the current time index t. Updating is done with the probability

P (p⋆
j ,p

t
j) = min

(
1,

W (p⋆
j )

W (pt
j)

)
, (12)

where W (·) represents the weight of a corresponding particle,
obtained from (8). Equation (12) also shows, that if the update
from pt

j to p⋆
j increases the weight, the candidate particle is

certain to be kept, that is pt+1
j = p⋆

j . Metropolis algorithm is
a way to avoid converging into a local maximum, since the
particles are allowed to move around and to search for the
global maximum [11]. Also, in order to prevent the particle
filter from converging into any local maximum, 5 % of the
particles are randomly distributed again in the state space after
each iteration round.

Another very essential concept, called resampling, has been
developed to help the particles in converging near to the global
maximum of the likelihood function. Resampling is used for
replacing the particles with low weights with higher weighted
ones. This is practically done to avoid the degeneracy problem,
which can easily occur, if all but one of the particle have
weights near zero. In this paper, the systematic resampling is
used [8]. After the iterative particle moving, median of the
resampled particles is taken to represent the output of the
particle filter. The iterations are done in total for k times, as is
seen in Alg. 1, where the main steps of the proposed procedure
are roughly gone through. Because of the orthogonality, the

Algorithm 1: A rough algorithm for estimating the CPA.
Input: The observed shock wave by each n microphones
Output: Estimated CPA
Initialize the particles according to the prior knowledge.1

for iteration← 1 to k do2

for particle← 1 to m do3

Derive S-point using the current CPA (sec. II-A).4

for each microphone channel i do5

Model the shock wave addressed by the6

current particle pj (Eq. (2), (3), (5)).
Calculate the cross correlation between the7

observed and modeled shock wave (Eq. (7)).
Multiply the correlation results and take the8

maximum value (Eq. (8)).
Update pj using Metropolis algorithm (Eq. (12)).9

Resample p1:m with the resampling algorithm.10

pbest ← median{p1:m}.11

a← pbest(1 : 3) .12

obtained CPA contains all the necessary information to derive
the bullet trajectory.

IV. SIMULATIONS

For testing the capability of a particle filter to find the
global maximum of a likelihood function, a simulation based
on the theory of Section II was created. In the simulation, the
positions of the gun and each microphone can be determined,
along with the bullet’s direction, speed and caliber. All of
the parameters can be chosen freely, so that the testing
environment can be considered as relatively diverse. The
distances between the settled microphones and the trajectory
are calculated by [15]

dmi,a =
||(mi − g)× h||

||h|| , (13)

where ||h|| is the norm of vector h, × represents the cross
product of two vectors, and rest of the symbols are described
in Section II. Considering again the metrics of Fig. 3, the
relations between the CPA and the S-point can be found by
solving all the geometric distances. The angle β = 90◦− θM ,
whereas the terms dmi,s and ds,a are found as is shown in (14)
(using a sine rule):

dmi,s =
dmi,a

sinβ
, ds,a =

dmi,a sin γ

sinβ
. (14)

Now the observations xi(t) of the shock wave can be
modeled according to the chosen simulation settings. Also
some Gaussian noise was added to the ”observed” signals to
test the estimation performance with different Signal-To-Noise
Ratio (SNR) levels, which are computed for each channel i by

SNRi = 10 log10
Exi

Eni

, (15)



where Exi and Eni are the energies of the observed signals
xi(t) and the added noise for each channel, respectively.
Energy for signal xi(t) of length N is calculated by

Exi =
1

N

N∑

t=1

xi(t)
2. (16)

The probability of finding the real likelihood maximum and,
unfortunately, the computational burden increases as the num-
ber of particles is increased. During the testing it was found out
that 2000–3000 particles are enough for the filter to converge
in a computational time of about 10 seconds (using Matlab).
The number of iterations k was now set to 20, which was
decided by following the general progression of the particle
weights. The estimation method was tested by generating four
separate trajectories with a common microphone array located
at the origin. The geometrical parameters of the trajectories
are shown in Table I. Simulated gunshots were shot 5-7 times
along each trajectory, so that in total over 20 estimations were
made for each different noise level.

TABLE I
THE USED GEOMETRICAL PARAMETERS IN THE SIMULATIONS.

parameter x (m) y (m) z (m)
g1 20.000 90.000 1.000
h1 -60.000 -150.000 0.000
g2 -15.000 110.000 0.000
h2 55.000 -150.000 0.000
g3 15.000 80.000 1.000
h3 -20.000 -150.000 0.000
g4 -25.000 80.000 1.000
h4 20.000 -150.000 0.000
m1 -0.150 0.000 0.040
m2 0.149 0.000 0.040
m3 0.000 0.175 0.040
m4 0.000 0.094 0.196

The normalized Root-Mean-Square errors (RMSE) of the
averaged S-point estimates are drawn as a function of SNR in
Fig. 5. The RMS error is defined for an observation sequence
of length s as

RMSE =

√√√√1

s

s∑

ind=1

(θ̂ind − θind)2, (17)

where θ̂ and θ are the estimated and observed parameter
vectors of length s, respectively. Normalization is done here by
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Fig. 5. Normalized RMSE values for the averaged S-point estimates as a
function of SNR level.

mapping both the known and the estimated S-point vectors into
unit vectors before calculating the RMSE values. Hence only
the direction of the S-point is considered, which simplifies the
comparison between estimation performances at different SNR
levels. As the SNR value decreases, the RMS error starts to
increase, as one would expect. However, the performance is
still good at the SNR level of -8 dB, after which a sudden
rise on the error values occur. The results are promising
considering the usability of the method in a noisy environment.

V. RESULTS USING REAL-DATA

The simulation does not take into account any non-ideal
aspects, such as echo, noise, or wind, which can render the
observation circumstances challenging. Moreover, due to the
aforementioned facts, the actual observed shock wave form
does not perfectly obey the simplified signal model (6), as
could be clearly seen in Fig. 2. Therefore, the state estimation
procedure was also tested with over a hundred actual shock
wave recordings, recorded in a outdoor shooting range with
a 7.62 mm rifle and two separate microphone arrays with
four Sennheiser MKE 2P-C condenser microphones attached
to both ([16]). Rifle shots were recorded with both arrays at
the same time, meaning that the caused shock waves were
the same for the both arrays. The shooting sites, as well as
the target point, were roughly spatially annotated during the
recordings, so that the real bullet trajectory can be kept as
more or less known. The microphone positions mi are exactly
known, and the shock wave observation moments are here
manually annotated to avoid false detections and misses.

In Fig. 6, the CPA and S-point estimation results for both
the microphone arrays with the recorded 7.62 mm rifle shots
can be seen. Totally 114 shots from three different distances
(75 m, 50 m, and 25 m) were used. The estimations were
done using 2500 particles with 20 iteration rounds, yielding
the results with averages µ and standard deviations σ shown in
Table II. The average bullet trajectories are plotted with blue
dashed lines in Fig. 6, and they are based on the µ results of
Table II. The column D on the Table II stands for the estimated
miss distance, and it is determined as

D =
1

n

n∑

i=1

||mi − a||. (18)

The prior knowledge used to initialize the particles is also
shown on the last row of Table II. The particle values are
kept within these borders during the estimation, e.g. no caliber
values less than 2.50 mm are allowed.

TABLE II
THE AVERAGE RESULTS FOR THE CALIBER, BULLET SPEED, AND MISS

DISTANCE ESTIMATIONS FOR BOTH ARRAYS.

Array 1 caliber (mm) speed (m/s) D (m)
ground truth 7.62 ≈ 670− 690 ≈ 3.0− 7.0

µ± σ 6.85 ± 1.31 673 ± 105 11.3 ± 6.0
Array 2 caliber (mm) speed (m/s) D (m)

ground truth 7.62 ≈ 670− 690 ≈ 16.0− 20.0
µ± σ 7.98 ± 1.14 665 ± 108 16.2 ± 6.8
Priors φ ∈ (2.50, 12.00) v ∈ (450, 900) D ∈ (0.0, 40.0)
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Fig. 6. Estimated CPAs (black crosses) and S-points (red circles) of both
microphone arrays for 114 rifle shots. The average bullet trajectories are
plotted with blue dashed lines.

In the case of array 1, the miss distance estimates of the
nearest 25 m shooting site are too large, which affects also
on the overall miss distance result. As the gun is close to the
array, the delay between the shock wave and muzzle blast be-
comes much shorter than with longer shooting distances. The
muzzle blast signature can thus easily mix up the estimation,
especially since the annotated shock wave observations are
not perfect. Due to a rather high amount of separate gunshots,
also the standard deviation values are quite high. However,
the mean values are approximately correct, as most of the
state estimates are concentrated near the ground truth values.
It should be yet noted, that the actual trajectory estimation
results of Fig. 6 are not completely comparable between the
two arrays, since the arrays are not sharing exactly the same
Cartesian coordinate grid. Nevertheless, it can be stated that
the estimation procedure is verified to work with real data.

VI. CONCLUSIONS

Using particle filters for trajectory estimation is shown to be
working trustworthily with a moderate computational effort.
The amount of particles needed in the estimation procedure
is scalable, allowing adjustment to be made between the
speed and accuracy of the method. Estimations of the bullet
caliber and speed are also working relatively well, although the
standard deviation can raise rather large, due to misestimated
single shots in a longer series.

The proposed estimation approach is shown to be capable
to solve the multidimensional inference problem of bullet state
estimation. The cross correlation is not dependent on the signal
amplitude, which, again, is the most reliable signature for
determining the miss distance for the trajectory. Therefore,
more research is focused on refining the proposed scheme, as
some new recordings with calibrated microphones are planned
to be made. Testing the method with correlating noise sources
is another future task to be studied.
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Abstract—In this paper, a novel collective network of binary 
classifiers (CNBC) framework is presented for content-based 
audio classification. The topic has been studied in several 
publications before, but in many cases the number of different 
classification categories is quite limited and needed to be fixed a 
priori. We focus our efforts to increase both the classification 
accuracy and the number of classes, as well as to create a scalable 
network design, which allows introducing new audio classes 
incrementally. The approach is based on dividing a major 
classification problem into several networks of binary classifiers 
(NBCs), where each NBC adapts its internal topology according 
to the classification problem at hand, by using evolutionary 
Artificial Neural Networks (ANNs). In the current work, feed-
forward ANNs, or the so-called Multilayer Perceptrons (MLPs), 
are evolved within an architecture space, where a stochastic 
optimization is applied to seek for the optimal classifier 
configuration and parameters. The performance evaluations of 
the proposed framework over an 8-class benchmark audio 
database demonstrate its scalability and notable potential, as 
classification error rates of less than 9% are achieved. 

Keywords - audio content - based classification; evolutionary 
neural networks; particle swarm optimization; multilayer 
perceptron 

I.  INTRODUCTION 
The rapid growth of the database sizes both in the Internet 

and home computers has created new and challenging tasks in 
maintaining the flexibility in handling such large amounts of 
data. Audio content-based retrieval offers several advantages 
and possibilities over traditional text-based queries, as manual 
annotation of audio information in large databases is not 
convenient or perhaps feasible at all. Moreover, in many 
practical situations it would be ideal to retrieve certain kind of 
audio content from a large database using a reference audio 
clip, for example when searching for a certain type of music or 
environmental sounds. For this, audio content-based 
classification is needed, which is studied in this work using a 
novel approach of collective (evolutionary) classifier networks. 

The idea of content-based audio indexing and retrieval was 
first presented by Wold et al. in [1], where pitch, loudness, 
brightness and bandwidth features were used in classifying the 
used audio database (Muscle Fish). Since then, the research has 
been rather active, and many classification schemes have been 
proposed to improve the accuracy of the classification 

performance. In this paper, the focus is put purely on the audio 
classification problem, meaning that audio segmentation and 
change-point detection approaches are out of the scope of this 
study. The pure audio classification approaches found from the 
literature can be divided into two main categories, namely the 
model-based and the rule-based methods. The latter ones are 
convenient when no complete training data is available, as the 
classification is performed in an unsupervised manner. This is 
accomplished by using thresholds for different audio features, 
as performed in [2]-[4]. There are, however, several problems 
with the unsupervised learning techniques, such as the need for 
high amount of heuristics, and the limited number of classes 
that need to be fixed a priori. Such drawbacks limit their 
practical use for dynamic, ever-growing multimedia 
repositories, which are common in many environments and 
applications today. 

In model-based methods, based on supervised learning, 
Chen et al. in [5] used a Support Vector Machine (SVM) to 
classify audio from two movies into 5 classes, namely music, 
speech, environmental sound, speech with music, and music 
with environmental sound. The results (~78% classification 
accuracy) showed improvements in classification error rates 
when compared to k-Nearest Neighbour (kNN), Artificial 
Neural Networks (ANNs), and Naive Bayes (NB) classifiers. 
Rather high training dataset (70% of the entire database) was 
used in achieving the results, whereas Zhu et al. in [6] used the 
same kind of SVM approach with a smaller training set and 
additional validation set, achieving more or less similar 
outcome with [5]. Chu and Champagne [7] used a slightly 
different approach for SVM-based classification by introducing 
their FFT-based noise-robust spectrum. Improved classification 
results were achieved in noisy test cases, but only speech, 
music, and noise were classified in their work. SVM was used 
also in [8], where it was applied to transform domain indexing 
by using a non-standard audio codec in a music genre- 
classification application. As a popular classifier, SVM was 
also used, along with the Hidden Markov Models (HMMs), in 
[9] to classify audio content into five non-silent classes. In [9], 
a unique HMM-model is trained for each non-silent class using 
MPEG-7 features. Training set encapsulated 50% of the entire 
dataset in achieving the reported accuracy rates, which are, 
however, highly dependent on the selection of the SVM 
parameters, which is a well-known fact in the field. Peeters in 
[10] used Gaussian Mixture Models (GMMs) together with the 
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HMMs to model individual classes in the context of music 
genre recognition (with six categories). Principal Component 
Analysis (PCA) and Linear Discriminant Analysis (LDA) were 
needed to lower the feature space dimensionality, whereas the 
classification itself was done based on the generated statistical 
models. The classification results obtained in music genre 
recognition are close to the state-of-the-art, but selection of the 
best classifier configuration remains an unsolved problem. 
Another supervised classification approach was presented by 
Harb and Chen in [11], where modeling based on human 
perception was applied. An average classification accuracy of 
63.5% was achieved for six music genres.  

In general, the aforementioned audio classification efforts, 
and many alike, put lots of effort in adjusting the classifier 
parameters, so as to “fit” to the specific classification problem 
at hand as close as possible. However, it is obvious that this is 
not too applicable for a general classifier that should achieve 
robust and efficient performance levels over generic audio 
databases. Therefore, for any audio repository, the setting of 
the classifier parameters, as well as the choice of the classifier 
configuration, should be optimal, so as to maximize the 
classification accuracy. Also, the number of different classes is 
usually quite limited and specific to a certain audio domain, 
whereas in order to have a reliable retrieval performance on a 
versatile database, more classes should be supported. 
Furthermore, support for dynamic updates in the databases is 
rare at the moment, as in most cases the training dataset and the 
number of classes need to be fixed beforehand. 

In order to address these problems, in this paper, we shall 
focus on a global and data-adaptive framework design that 
embodies a collective network of evolutionary binary 
classifiers (CNBC). The main idea of the framework was first 
introduced in a previous work [12], for another application 
area, being now specifically designed for audio classification 
purpose. Earlier, fundamentally similar type of approaches of 
constructing an ensemble of neural networks (a.k.a. neuro-
ensemble) have been introduced (see e.g. [13]), but, to our 
knowledge, the framework structure presented in this paper has 
not been used in audio classification scheme before. The issues 
specifically targeted in our approach are: 

• Evolutionary Search: Seeking for the optimum 
classifier network architecture among a certain 
collection of different configurations (the so-called 
Architecture Space, AS). 

• Evolutionary Update in the AS: Keeping only “the 
best” individual configuration in the AS among 
indefinite number of evolution runs. 

• Class / feature Scalability: Support for varying number 
of classes and audio features. A new class / feature can 
be dynamically inserted into the framework without 
requiring a full-scale re-configuration or re-training. 

• High efficiency for the evolution (training) process: 
Using as compact and simple classifiers as possible. 

• Maximizing the classification accuracy: Using several 
audio features to take advantage of the discrimination 
power of each one of them.   

In this work, Multilayer Perceptrons (MLPs) are evolved in the 
proposed CNBC framework. The recently proposed Multi-
Dimensional Particle Swarm Optimization (MD-PSO) [14] is 
used as the primary evolutionary search technique. 

The rest of the paper is organized as follows. Section II 
briefly presents the applied evolutionary ANNs and the MD-
PSO technique, whereas Section III describes the feature 
extraction process and introduces the audio features used. The 
proposed CNBC framework and the evolutionary update 
mechanisms are explained in detail in Section IV, and the 
classification results and performance evaluation over an 8-
class database are given in Section V. Finally, Section VI 
concludes the paper and discusses future research directions. 

II. EVOLUTIONARY NEURAL NETWORKS 
In this section, we will first briefly discuss the applied 

evolutionary technique, MD-PSO, which is used in an 
architecture space to search for the optimal classifier 
configuration. Second, the concept of evolutionary feed-
forward artificial neural networks is introduced. Finally, an 
overview of the well-known Back Propagation (BP) method 
will be given, which can be used also exhaustively to perform a 
sequential search for the optimal classifier in an AS. 

A. Multi-Dimensional Particle Swarm Optimization 
The Particle Swarm Optimization (PSO) was introduced by 

Kennedy and Eberhart [15] in 1995 as a population-based 
stochastic search and optimization process. In a PSO process, a 
swarm of particles, each of which represents a potential 
solution to the optimization problem at hand, navigates through 
a search space. The particles are randomly distributed over the 
search space, and the goal is to converge to the global optimum 
of a function or a system. Each particle keeps track of both its 
current position, and the best position achieved so far in the 
search space. The latter is called the personal best value 
(pbest), while the PSO process keeps also track of the global 
best solution achieved so far by the whole swarm (gbest). 
During their journey in the search space with discrete time 
iterations, the velocity of each particle in the next iteration is 
computed by the best position of the swarm (position of the 
particle gbest, the social component), the best personal position 
of the particle (pbest, the cognitive component), and the current 
velocity of the particle (the memory term). Both social and 
cognitive components contribute randomly to the position of 
the particle in the next iteration.  

In this research we will use the multi-dimensional (MD) 
extension of the basic PSO (bPSO) method, the MD-PSO. 
Instead of operating with a fixed number of dimensions, D, the 
MD-PSO algorithm is designed to seek both positional and 
dimensional optima within a certain dimension range {Dmin, 
Dmax}. For this, each particle has two sets of components, each 
of which has been subjected to two independent and 
consecutive processes. The first set is a regular positional PSO, 
taking care of the traditional velocity updates and positional 
shifts in the D-dimensional search (solution) space, whereas the 
second set is the dimensional PSO, allowing the particles to 
navigate through dimensions. Accordingly, now each particle 
keeps track of its latest position, velocity and personal best 
position in a particular dimension, so that when the particle re-



visits the same dimension later, it can perform its regular 
“positional” update. The dimensional PSO process of each 
particle may then move the particle to another dimension, 
where it will remember its positional status and shall be 
updated with the positional PSO process at that dimension. The 
swarm, on the other hand, keeps now track of the gbest particle 
in each dimension, and the dimensional PSO process of each 
particle uses its personal best dimension (in which the personal 
best fitness score has been achieved so far). Finally, the swarm 
keeps track of the global best dimension, dbest, among all the 
personal best dimensions. Thus, the gbest particle in the dbest 
dimension represents the optimum solution found.  

In a MD-PSO process at time (iteration) ݐ, each particle a in 
the swarm with S particles, ξ = {x1,..,xa,..,xS}, is represented by 
the following symbols: ݔ௔,௝ௗೌሺ௧ሻሺݐሻ : jth component of the position of particle a in 

dimension ݀௔ሺݐሻ. ݔ෤௔,௝ௗೌሺ௧ሻሺݐሻ: jth component of the personal best position of 
particle a in dimension ݀௔ሺݐሻ.  ݒ௔,௝ௗೌሺ௧ሻሺݐሻ:  jth component of the velocity of particle a in 
dimension ݀௔ሺݐሻ. ݀௔ሺݐሻ: dimension of particle a. ሚ݀௔ሺݐሻ: personal best dimension of particle a. ݀ݒ௔ሺݐሻ: dimensional velocity of particle a. ݃ݔ௝ௗሺݐሻ: jth component of the global best position of swarm  
in dimension ݀. 

Let f denote a fitness function that is to be optimized within a 
certain dimension range, {Dmin, Dmax}. Without loss of 
generality, assume that the objective is to find the minimum of f 
at the optimum dimension within a multi-dimensional search 
space. Assume also, that the particle a visits (back) the same 
dimension after T iterations (i.e. ݀௔ሺݐሻ ൌ  ݀௔ሺݐ ൅ ܶሻ). Then, 
the personal best position can be updated at iteration t+T as, 

ݐ෤௔,௝ௗೌሺ௧ା்ሻሺݔ  ൅ ܶሻ ൌൌ ቐݔ෤௔,௝ௗೌሺ௧ሻሺݐሻ   ݂݅ ݂ ൬ݔ௔,௝ௗೌሺ௧ା்ሻሺݐ ൅ ܶሻ൰ ൐ ݂ ൬ݔ෤௔,௝ௗೌሺ௧ሻሺݐሻ൰ݔ௔,௝ௗೌሺ௧ା்ሻሺݐ ൅ ܶሻ     ݈݁(1)                                    ,݁ݏ 

݆ ൌ  1, 2, … , ݀௔ሺݐ ൅ ܶሻ. 

Furthermore, the personal best dimension of particle a can be 
updated in iteration ݐ ൅ 1 as, 

 ሚ݀௔ሺݐ ൅ 1ሻ ൌൌ ൝ ሚ݀௔ሺݐሻ   ݂݅ ݂ ൬ݔ௔,௝ௗೌሺ௧ାଵሻሺݐ ൅ 1ሻ൰ ൐ ݂ ൬ݔ෤௔,௝ௗ෨ೌሺ௧ሻሺݐሻ൰݀௔ሺݐ ൅ 1ሻ                ݈݁(2)                                       .݁ݏ 

Fig. 1 shows an example MD-PSO and bPSO particles. 
Particle a in bPSO is at (fixed) dimension, D = 5, and contains 
only positional components, whereas in MD-PSO, particle a 
contains both the positional and dimensional components. The 
dimension range for MD-PSO is given by {Dmin, Dmax} = {2, 
10}, so that 9 sets of positional components are included in a.   

In this example the particle a currently resides at dimension 2 
(݀௔ሺݐሻ = 2), while its personal best dimension is 3 ( ሚ݀௔ሺݐሻ ൌ 3). 
Hence, at time t a positional PSO update is first performed over 
the positional components of ݔ௔ଶሺݐሻ,  after which the particle 
may move to another dimension with respect to the 
dimensional PSO. Recall that each positional component ݔ௔ଶሺݐሻ 
represents a potential solution in the data space to the problem. 
The algorithmic flowchart and further details about MD-PSO 
can be obtained from [16].  

B. MD – PSO for Evolving MLPs 
The MD-PSO seeks (near-) optimal networks in an AS, 

which can be defined over any type of ANNs with any 
properties. All network configurations in the AS are 
enumerated into a hash table with a proper hash function, 
which ranks the networks with respect to their complexity, i.e. 
associates higher hash indices to networks with higher 
complexity. The MD-PSO can then treat each index as a unique 
dimension in the search space. The dimension thus corresponds 
to the optimal classifier architecture, while the position 
(solution) encapsulates the optimum network parameters 
(connections, weights and biases). Suppose, for the sake of 
simplicity, that a certain range is defined for the minimum and 
maximum number of MLP layers, ሼܮ୫୧୬,  ୫ୟ୶ሽ, as well as forܮ
the number of neurons in the hidden layer l, {ܰ୫୧୬௟ , ܰ୫ୟ୶௟ }. The 
sizes of both input and output layers, ሼ ௜ܰ, ௢ܰሽ, are determined 
by the problem, and hence fixed. The AS can then be defined 
by only two range arrays: ܴ୫୧୬ ൌ ൛ ௜ܰ, ܰ୫୧୬ଵ , … , ܰ୫୧୬௅ౣ౗౮ିଵ, ௢ܰൟ, ܴ୫ୟ୶ ൌ ൛ ௜ܰ, ܰ୫ୟ୶ଵ , … , ܰ୫ୟ୶௅ౣ౗౮ିଵ, ௢ܰൟ,   

where the first one is for the minimum-, and the second one is 
for the maximum number of neurons allowed for each layer of 
a MLP. The size of the both arrays is naturally ܮ୫ୟ୶  + 1, where 
the corresponding entries define the range of the lth hidden 
layer for all those MLPs that can have the lth hidden layer. The 
terms ܮ୫୧୬ ≥ 1 and ܮ୫ୟ୶ can be set to any value meaningful for 
the problem at stake. The hash function then enumerates all 
potential MLP configurations into hash indices, starting from 
the simplest MLP with ܮ୫୧୬ – 1 hidden layers (each of which 
has the minimum number of neurons given by ܴ୫୧୬), to the 

Figure 1. MD-PSO (left) vs. bPSO (right) particle structures for dimensions 
{Dmin=2, Dmax=10}. At time t, ࢇࢊሺ࢚ሻ ൌ ૛, ሺ࢚ሻࢇ෩ࢊ ൌ ૜. 



most complex one with ܮ୫ୟ୶   – 1 hidden layers (each of which 
has the maximum number of neurons given by ܴ୫ୟ୶).  

Let Nl be the number of hidden neurons in layer l of a MLP 
with the input and output layer of sizes ௜ܰ and ௢ܰ, respectively. 
The input neurons are merely fan-out units, as no processing is 
done in them. Let ݃ be the activation function (e.g. sigmoid) 
applied over the weighted inputs and a bias. Thus we can write, 
௡௟ݕ  ሺ݌ሻ ൌ ݃൫ ௡ܻ௣,௟൯, ௡ܻ௣,௟ ൌ ෍ ሻ݌௠௟ିଵሺݕ௠௡௟ିଵݓ ൅ ௡௟௠ߠ ,  

(3) 

where ݕ௡௟ ሺ݌ሻ is the output of the nth neuron of the lth hidden / 
output layer when a pattern p is fed into it, ݓ௠௡௟ିଵ is the weight 
from the mth neuron in layer ݈ െ 1 to the nth neuron in layer ݈, 
and ߠ௡௟  is the bias value of the nth neuron in the lth layer. The 
training mean square error, ܧܵܯ, is formulated as: 

ܧܵܯ  ൌ 12ܲ ௢ܰ ෍ ෍൫ݐ௡ሺ݌ሻ െ ሻ൯ଶே೚݌௡௢ሺݕ
௡ୀଵ௣א஺ ,  

(4) 

where ݐ௡ሺ݌ሻ  is the target (desired) output, and ݕ௡௢ሺ݌ሻ  is the 
actual output from the nth neuron in the output layer, l=o, for 
pattern p in the training dataset A with size P, respectively. At 
time t, the particle a has the positional component formed as, 

ሻݐ௔,௝ௗೌሺ௧ሻሺݔ  ൌൌ Ψୢ౗ሺ୲ሻ൛ሼݓ௠௡଴ ሽ, ሼݓ௠௡ଵ ሽ, ሼߠ୬ଵሽ, … , ሼݓ௠௡௢ିଵሽ, ሼߠ୬௢ିଵሽ, ሼߠ୬௢ሽൟ, (5) 

where ሼݓ௠௡௟ ሽ and ሼߠ୬௟ ሽ represent the sets of weights and biases 
of the layer l of the MLP-configuration Ψୢ౗ሺ୲ሻ. Note that the 
input layer (l=0) contains only weights, whereas the output 
layer (l=o) contains only biases. By the means of such a direct 
encoding scheme, the particle a thus represents all potential 
network parameters of the MLP architecture at the dimension 
(hash index) ݀௔ሺݐሻ. As mentioned earlier, the dimension range 
{Dmin, Dmax} where the MD-PSO particles can make inter-
dimensional jumps, is determined by the AS defined. Apart 
from the regular limits, such as (positional) velocity range, 
{Vmin, Vmax}, and dimensional velocity range, {VDmin, VDmax}, 
the data space can be also limited by some practical range, i.e. ܺ୫୧୬ ൏ ሻݐ௔,௝ௗೌሺ௧ሻሺݔ ൏ ܺ୫ୟ୶. Setting the ܧܵܯ in (4) as the fitness 
function, to be used in the MD-PSO, enables then performing 
evolutions of both the network parameters and the network 
architectures. Further details and an extensive set of network 
evolution experiments can be found in [14].  

C. The Back-Propagation Algorithm 
Back Propagation (BP) is the most commonly used training 

technique for feed-forward ANNs. It is a supervised training 
technique that has been used in pattern recognition and 
classification problems in many application areas. Essentially, 
BP is just a gradient descent algorithm in the error space, 
which may be complex and contain many deceiving local 
minima (multi-modal). Therefore, BP gets easily trapped into a 
local minimum, making it entirely dependent on the initial 
(weight) settings. However, due to its simplicity and relatively 
lower computational cost, BP can be applied exhaustively over 
the network architectures with random initializations, to find 

out the optimal architecture. Since the AS is composed of only 
compact networks, with such an exhaustive search the 
probability of finding (converging) to a (near-) optimum 
solution in the error space is significantly increased. 

 The used BP algorithm can be summarized as follows: 

1. Initialize the weights ݓ௠௡௟  and biases ߠ௡௟  randomly. 

2. Feed a pattern p to the network and compute the output ݕ௡௟ ሺ݌ሻ of each neuron n in each hidden layer l. 

3. Calculate the error between the final output ݕ௡௢ሺ݌ሻ of 
each output neuron and the desired output ݐ௡ሺ݌ሻ  as ݁௡௢ሺ݌ሻ ൌ ሻ݌௡ሺݐ െ   .ሻ݌௡௢ሺݕ

4. For each neuron n, calculate the partial derivatives డாሺ௣ሻడ௛೙೗ , where ܧሺ݌ሻis the total error energy defined as ܧሺ݌ሻ ൌ ଵଶ ∑ ൫݁௡௢ሺ݌ሻ൯ଶ௡א௢ ,  and ݄௡௟ is a uniform symbol 
for the parameters ݓ௠௡௟  and ߠ௡௟ . 

5. Update the parameters as follows: ݄௡௟ ሺݐ ൅ 1ሻ ൌ ݄௡௟ ሺݐሻ െ ߟ ሻ߲݄௡௟݌ሺܧ߲ , (6) 

where ߟ is a learning rate parameter. 

6. Repeat steps 2-5 until some stopping criterion is 
reached. 

One complete run over the training dataset is called an 
epoch. Usually many epochs are required to obtain the best 
training results, but, on the other hand, too many training 
epochs can lead to over-fitting. In the above realization of the 
BP algorithm, the network parameters are updated after every 
training sample (pattern p). This is called an online or 
sequential training mode. Another possibility is the batch 
mode, where all the training samples are first presented to the 
network, and then the parameters are adjusted so to minimize 
the total training error. The sequential mode is often favored 
over the batch mode, as less storage space is required. 
Moreover, the sequential mode is less likely to get trapped into 
a local minimum, as updates at every training sample make the 
search stochastic in nature. Hence, sequential BP mode is used 
for MLP training in this study.  

III. AUDIO FEATURE EXTRACTION 
As a common approach in audio signal processing, the 

audio signal to be analyzed is first divided into short time 
windows / frames (20-40 ms), from which the audio features 
are extracted. This is to prevent averaging the signal over long 
segments, in which case the discrimination of audio features 
may decrease significantly. In this study, three sets of features 
are extracted from each audio clip to be classified, divided as: 

• General Audio Features: These consist of sub-band 
power (4 bands), band energy ratio (BER), sub-band 
centroid (SC), zero-crossing rate (ZCR), short average 
energy (SAE), brightness, bandwidth, spectral roll-off, 
spectral flux, and fundamental frequency (FF). 

• MFCCs: The first 24 coefficients of the extracted Mel-
frequency cepstral coefficients.  



• Linear Prediction Coefficients (LPC): The 8th order LP 
coefficients (the order is based on the 16 kHz sampling 
frequency used in the classified audio samples). 

The feature vector (FV) dimensions for each feature set are 
thus 13, 24, and 8, respectively.  

Extracting the features from short time frames leads into a 
rather big number of FVs even from a short audio clip. 
Therefore, in our work, a certain amount of key frames (KFs, 
see [4]), are first selected among the frames, being sort of 
“prototypes”, which are chosen so to represent the others as 
accurately as possible. The ultimate goal is to find concise and 
representative feature sets from each audio clip, to speed up the 
classification process without losing any vital information of 
the original signals. The reasoning behind the idea of exploiting 
only a small fraction of the audio frames is based on an 
assumption, that the elementary sounds within an audio clip are 
immensely repetitive, and often entirely alike. For an efficient 
KF selection, audio frames with similar acoustical features 
within an audio clip are clustered, and only one or few frames 
from each cluster are considered as KFs to represent the others 
in that cluster. Here the number of KFs is empirically set 
between ~1-2% of the total amount of frames, being relatively 
lower for longer clips. Thus, the actual number of key frames 
selected from each clip varies approximately between 40 and 
200 frames, depending on the length and variation of the signal. 
Once the number of KFs is determined, a Minimum Spanning 
Tree (MST) clustering technique is applied. Every node in the 
tree represents the extracted features of a unique audio frame. 
The clustering scheme is illustrated in Fig. 2, where the word 
“Speech Lab” is divided into seven separate clusters, according 
to the similarity of the extracted frames. More technical details 
about the audio clustering scheme can be found in [4].  

For each of the three extracted features sets, the proposed 
classification framework evolves a separate binary classifier 
(BC) per each pre-determined class, so that a unique network of 
BCs (NBC) is created for each class. Note that, as such, the 
proposed framework performs classification over the KFs, and 
not the actual audio clips. Hence, a majority rule is applied to 
the classified KFs to decide the final class of the corresponding 
clip. For this, a specific table is created, where the KF indices 
corresponding to each audio clip in the database are stored.  

IV. THE CLASSIFICATION FRAMEWORK 
This section describes in detail the proposed classification 

framework: the Collective Network of (Evolutionary) Binary 
Classifiers (CNBC). The framework takes as an input the 
extracted feature vectors from the training dataset KFs, after 
which the internal network topology is configured, and all the 
corresponding binary classifiers are evolved individually. 
Before going into full details of the CNBC, the used AS 
evolutionary update mechanism will be introduced. 

A. Evolutionary Update in the Architecture Space 
Since the primary evolution technique used, MD-PSO, is a 

stochastic optimization method, it is not guaranteed that it will 
always find the optimal solution. Thus, in order to improve the 
probability of convergence to the global optimum, several 
evolutionary runs can be performed. Let QR be the number of 
runs and QC be the number of configurations in the AS. For 
each run, the objective is to find the optimal classifier within 
the AS, with respect to some pre-defined criterion. Note that, 
along with the best classifier, all the other configurations in the 
AS are also evolved simultaneously, so that the configurations 
are continuously (re-)trained within each run. Thus, during the 
process, any network configuration may replace the current 
best one in the AS, if it is surpassed in terms of the 
classification performance criterion. This is also true in the 
exhaustive search, where each network configuration in the AS 
is evolved using QR Back-Propagation (BP) runs.  

Fig. 3 demonstrates the evolutionary update operation over 
a sample AS containing 5 MLP configurations. The bigger 
table in Fig. 3 shows the training Mean Square Error (MSE), 
which is the criterion used to select the optimal configuration at 
each run. The best runs for each configuration are highlighted, 
and the best configuration in each run is tagged with ‘*’. In this 
case, at the end of three runs, the overall best network with 
MSE = 0.1 has a configuration 15x3x2, and thus it is used as 
the classifier for all the forthcoming classification tasks, until a 
new configuration may surpass it in a future run. As can be 
seen from this example, each BC configuration in the AS can 
only evolve into a better state from the previous one (in terms 
of the training MSE), which is the main motivation for the 
proposed evolutionary update mechanism. 

 

Figure 3. Evolutionary update in a sample AS for MLP configuration arrays ࢔࢏࢓ࡾ ൌ ሼ૚૞, ૙, ૛ሽ and ࢞ࢇ࢓ࡾ ൌ ሼ૚૞, ૝, ૛ሽ, where QR = 3 and QC = 5. The best 
runs for each configurations are highlighted, and the best configuration in 

each run is tagged with ‘*’. 
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B. Collective Network of Binary Classifiers 
1) The Topology: 

In the CNBC framework, the individual networks of BCs 
(NBCs) evolve continuously with the ongoing evolution 
sessions by using the ground truth training data (GTD) given 
by the user. Each BC in a particular NBC performs binary 
classification using one of the three extracted FVs. Each NBC 
has also a “fuser” BC in its output layer, which collects and 
fuses the binary outputs of all the BCs in the input layer. A 
single binary output is then generated from each NBC, 
indicating the relevancy of the current input KF to the NBC’s 
corresponding class. Due to its structure, the CNBC can be 
dynamically scaled into any number of classes, as whenever a 
new class is defined, a new corresponding NBC will be created 
and evolved on top of the existing structure. The procedure 
does not require changing or updating the other NBCs, as long 
as they pass the so-called verification test, which is performed 
by selecting a specific accuracy threshold, and by seeing 
whether the existing NBCs classify the training samples of the 
new class(es) accurately enough (and not confuse with them). 
In this work, an accuracy threshold of 95% was applied.  

As is shown in Fig. 4, in CNBC, a learning problem with 
many classes and features can be divided into as many NBCs 
(and BCs within) as necessary, so as to negate the need for 
complex classifiers. This is a notable advantage, since the 
performance of the training and evolution processes degrades 
significantly as the classifier complexity increases (due to the 
well-known curse of dimensionality – phenomenon). Another 
major benefit of the approach, with respect to efficiency, is that 
the configurations in the AS can be kept very compact, so that 
unfeasibly large storages and heavy computations can be 
avoided. This is especially important for the BP method, since 
the amount of deceiving local minima is significantly lower in 
the error space for simple and compact ANNs. 

In order to maximize the final classification accuracy, a 
dedicated class selection technique is applied. In all the BCs, a 
1-of-M encoding scheme, with M=2, is used. Let us denote ܥ ௙ܸ,ଵ and ܥ ௙ܸ,ଶ as the first and second output of the ݂୲୦ BC’s 
class vector (CV), respectively. The class selection in the 1-of-2 
encoding scheme is then performed by comparing the two 
individual outputs, and the encoded output is determined as 
positive if ܥ ௙ܸ,ଶ ൐ ܥ ௙ܸ,ଵ,  and negative otherwise. The same 
encoding scheme applies for the fuser BC output, which 
determines the output of the whole NBC. A class selection 
block, illustrated at the bottom of Fig. 4, then collects the CVs 
of each NBC, and selects the “most positive” output among all 
the NBCs as the final classification outcome. Here a so-called 
winner-takes-all strategy is utilized, where the positive class 
index, c*, (“the winner”) is defined as,  

כܿ  ൌ arg max௖ אሾ଴,஼ିଵሿሺܥ ௖ܸ,ଶ െ ܥ ௖ܸ,ଵሻ,   (7)

where C is the number of classes (NBCs). This way the 
erroneous cases (false positives), where there exist more than 
one NBC with positive outcome, can be handled properly.  

2) Evolution of the CNBC: 
The evolution of the CNBC, or a subset of NBCs, is per-

formed for each NBC individually with a two-phase operation, 
as is illustrated in the upper part of Fig. 4. In Phase 1, the BCs 

of each NBC are first evolved by giving an input set of FVs 
and the target CVs (the GTD). Recall, that each CV is 
associated with a unique NBC, and that the fuser BCs are not 
yet used at this phase. Once the evolution session is over, the 
AS of each BC is saved, so as to be used for potential 
(incremental) evolution sessions in the future (Section IV.B.3). 
The best BC configuration in the AS is used to forward-
propagate the respective FVs of the training dataset, in order to 
compose the BC outputs, which, again, are used as input FV 
for the corresponding fuser BC. The fuser BCs are then 
evolved in Phase 2 of the CNBC evolution process, where each 
fuser BC learns the significance of its individual BCs (and their 
feature sets). This can be viewed as a way of applying an 
efficient feature selection scheme, so that the fuser, if properly 
evolved and trained, can “weight” each BC accordingly. This 
way the potential of each feature set (and its BC) will be 
optimally fused according to their discrimination power over 
each class. Similarly, each BC in the first layer shall in time 
learn the significance of the individual feature components of 
the corresponding feature set. That is, the CNBC, if properly 
evolved, will learn the significance (or the discrimination 
power) of each feature set, as well as their individual 
components (the single features). 

3) Incremental Evolution of the CNBC: 
The proposed CNBC framework is designed for continuous 

“incremental” evolution sessions, where each session may 
further improve the classification performance of each BC 
using the advantage of the “evolutionary updates”. The main 
difference between the initial and the subsequent evolution 
sessions is in the initialization phase of the evolution process: 
the former uses random initialization, whereas the latter starts 
from the previously saved AS parameters of each classifier in 
each NBC. Note that the training dataset used for the 

Figure 4. Illustration of the two-phase evolution session over BC architecture 
spaces in each NBC, and the topology of the CNBC framework with C classes 

and F feature sets. 



incremental evolution session may differ from the ones used in 
the previous sessions, and that each session may contain 
several runs. The evolutionary update rule hence compares the 
performance between the previously received, and the current 
(after the update) network over the current training dataset. 
Consequently, for the proposed MD-PSO evolutionary 
technique, the swarm particles are randomly initialized (as in 
the initial evolutionary step), with the exception that the first 
particle has its personal best value, pbest, set to the optimal 
solution found in the previous evolutionary session. That is,  

෤଴ௗሺ0ሻݔ  ൌൌ Ψௗ൛ሼݓ௠௡଴ ሽ, ሼݓ௠௡ଵ ሽ, ሼߠ௡ଵሽ, … , ሼݓ௠௡௢ିଵሽ, ሼߠ௡௢ିଵሽ, ሼߠ௡௢ሽൟ, ݀׊ א ሾ2, ௠௔௫ܮ ൅ 1ሿ,                                                 
(8) 

where Ψௗ is the d-dimensional MLP-configuration retrieved 
from the previous AS search. 

It is expected that, especially at the early stages of the MD-
PSO run, the first particle is likely to be the gbest particle in 
every dimension, guiding the swarm towards the previous 
solution. However, if the training dataset is considerably 
different in the incremental evolution sessions, it is quite 
probable that MD-PSO will converge to a new solution, while 
taking the past solution (experience) into account. In the case 
of the BP training technique, the weights ݓ௠௡௟  and biases ߠ௡௟  
will be initialized with the parameters retrieved from the last 
AS search. Starting from this as the initial point, and using the 
current training dataset with the target CVs, the BP algorithm 
can then perform its gradient descent in the error space. 

V. EXPERIMENTAL RESULTS 
The audio database used in the classification experiments 

consists of 367 clips, divided into 8 classes. The database is 
gathered mostly from the “FreeSound Project” web page [17], 
but also RWC Music Database [18] was used to collect the 
music classes. The abbreviations of the used audio classes are 
as follows: MS (male speech), FS (female speech), FV (female 
vocals/singing), MV (male vocals/singing), B (bird chirping), 
W (water sounds), CM (classical music) and GM (general 
(pop) music). We left the majority of the database clips (75%) 
for testing, while a training set containing only 25% of the 
samples from each class was used to evolve the CNBC. For the 
AS, we used simple ANN configurations with the following 
range arrays: ܴ୫୧୬ ൌ ሼ ௜ܰ, 8, 2ሽ  and ܴ୫ୟ୶ ൌ ሼ ௜ܰ, 16, 2ሽ,  which 
indicate that, besides a single-layer perceptron (SLP), all the 
MLPs contain only one hidden layer, i.e. ܮ୫ୟ୶ ൌ 2, with no 
more than 16 hidden neurons. The software implementations 
were made using Visual C++ 6.0 with FFTW library for FFT 
processing. Parallel processing was utilized in evolving the 
CNBC classifiers, yielding an approximate CPU time of 1-1.5 
h to obtain the classification results with the exhaustive BP 
method. However, the needed CPU time is highly dependent on 
the parameters used, i.e. the number of runs, QR, and epochs, 
QE, so that the reported CPU time should be considered as 
suggestive only (for example, with QR=1 and QE=100, the CPU 
time decreases to only 10-15 minutes). The processor used was 
Intel® CoreTM2 Quad Q9400, 2.66 GHz with 8 Gb of RAM.  

For the both evolution methods, exhaustive BP and MD-
PSO, the number of runs and training epochs (or iterations in 
the case of MD-PSO) were varied to see their effect on the 

classification performance, as is shown in Table I. In order to 
compare the results with a method representing the current 
state of the art ([5], [6]), also SVM classifiers were tested by 
applying the libSVM library. Results with four different kernels 
(linear, polynomial, radial basis function (RBF), and sigmoid) 
were evaluated, for which the best classification accuracy of 
89.38% was obtained. Here a “one against one” approach (one 
SVM for each pair of classes) was applied in evaluating the 
results for the stated multi-class problem.  

The performed CNBC evolutions of Table I are much alike 
to the (batch) training of traditional classifiers (such as ANNs, 
K-nearest neighbour, Bayesian), where the training data (the 
features) and the number of classes are all fixed, and the entire 
GTD is used during the training (evolution). However, as 
detailed earlier, the CNBC can be also evolved incrementally, 
i.e. the evolutions can be performed whenever new features / 
classes are introduced. For evaluating the incremental evolution 
performance, the training dataset was divided into three distinct 
partitions, containing 4 (MS, FS, CM, and W), 2 (B and MV) 
and 2 (FV and GM) classes, respectively. Three stages of 
incremental evolutions were then performed, where at each 
stage the CNBC was further evolved using only the dataset 
belonging to the new classes in the corresponding partition. At 
the end, the resulting CNBC with 4 ൅ 2 ൅ 2 ൌ 8  NBCs, 
encapsulating 8 ൈ ሺ3 ൅ 1ሻ ൌ 32  BCs within, was created.  
Verification test between each stage was performed (with the 
95% accuracy threshold) to determine whether the existing 
NBCs needed to be re-trained with the new training samples. A 
final classification accuracy of 87.38% was achieved, 
indicating only a moderate loss of performance when compared 
to the classification accuracies listed in Table I. It is thus 
evident that the proposed CNBC design can cope up with the 
incremental evolutions also. 

The confusion matrix (CM) given in Table II is composed 
from the classification results of the exhaustive BP evolutions 
with QR = 5, and QE = 200. The rows of the CM correspond to 
the ground truth labels of the classes, whereas the columns 
indicate the actual classifications results. The average precision 
(P) and recall (R) calculated from the CM are:  

P = 0.9151  R = 0.9005,  

respectively. The overall classification error rate of ~8.8% with 
8 classes indicates a substantial level of classification accuracy, 
considering the quite limited training dataset used (25%), and 
the somewhat overlapping audio classes with inter-class 
similarities (e.g. male speech / male vocals). It can be noticed 
that the music classes are classified perfectly, whereas some 

TABLE I.  CLASSIFICATION ACCURACIES OF THE BOTH EVOLUTIONARY 
TECHNIQUES WITH DIFFERENT NUMBER OF EPOCHS AND RUNS. 

Number of Epochs / Iterations

Evol.  Method QE =100 QE =200 QE =300 

QR =1 
BP 90.11% 91.07% 91.07%

MD PSO 87.91% 88.64% 88.64%
QR =5 

BP 90.48% 91.21% 91.21%

MD PSO 89.01% 91.21% 87.91%



TABLE II.  CONFUSION MATRIX OF THE EXHAUSTIVE BP EVOLUTIONS 
WITH QR = 5, AND QE = 200. 

confusion occurs between the speech classes and, rather 
surprisingly, between the water sound and general pop music 
classes. Nevertheless, for the tested database, the results are 
more accurate than those obtained using the “one against one” 
SVM approach. 

VI. CONCLUSIONS 
In this paper, a novel CNBC framework was introduced to 

address the problem of accurate and efficient content-based 
audio classification within large and dynamic audio databases. 
The achieved classification results show improvements in 
accuracy when compared to the tested Support vector machine 
(SVM) classifiers. Furthermore, two notable advantages can be 
mentioned on behalf of the proposed approach: First, the 
dynamic and evolving structure of the framework supports for 
dynamic variations of audio classes in the considered database, 
meaning that there is no need to re-train the entire classifier 
network again whenever new data is added to the database. 
Second, the optimum classifier for the classification problem at 
hand can be searched by the underlying evolution technique, 
which allows creating a dedicated classifier to discriminate a 
certain class type from the others by using only some specific 
feature set. This negates the necessity of configuring the 
classifier parameters and configurations strictly for some 
specific audio dataset, and thus, hopefully, broadens the usage 
of the framework for varying type of audio databases.  

Future research will be concentrating on supporting larger 
number of audio classes and developing more descriptive audio 
features. Due to the structure of the CNBC, it would be ideal to 
have features with high discrimination power over one (or 
some particular) class(es). We aim to develop a perceptual 
audio key frame extraction scheme that would take into 
account the human auditory system. Also, additional classifiers, 
such as weak classifiers, RBFs and random forests, are planned 
to be applied within the CNBC network, because of their strong 
discriminating power reported for certain type of classification 
tasks in the literature. Finally, content-based indexing and 
retrieval of audio (and video) clips is a natural way to add more 
value to the framework, and will be certainly put under study in 

a near future. Based on the achieved classification accuracy, 
reliable retrieval results can be expected in the future research. 
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ABSTRACT 

 

Many commonly applied audio features suffer from certain 

limitations in describing the data content for classification 

and retrieval purposes. To remedy this drawback, in this 

paper we propose an evolutionary feature synthesis (EFS) 

technique, which is applied over traditional audio features to 

improve their data discrimination power. The underlying 

evolutionary optimization algorithm performs both feature 

selection and feature generation in an interleaved manner, 

optimizing also the dimensionality of the synthesized feature 

vector. The process is based on multi-dimensional particle 

swarm optimization (MD PSO) with two additional 

techniques: the fractional global best formation (FGBF) and 

simulated annealing (SA). The experimented classification 

and retrieval performances over a 16-class audio database 

show improvements of up to 11% when compared to the 

corresponding performances of the original features. 

 

Index Terms— Feature generation, particle swarm 

optimization, neural networks, content-based classification 

 

1. INTRODUCTION 

 

Content-based audio classification and retrieval is a widely 

studied topic in the field of signal processing and, 

especially, machine learning. Since the pioneer work of [1], 

the development of supervised machine learning techniques 

has led to more advanced and expanded classification 

methods, such as the one proposed in [2], where support 

vector machines (SVM) were successfully applied. 

Statistical models, specifically Gaussian mixture models 

(GMM) and hidden Markov models (HMM) have also 

provided satisfactory classification and retrieval results (see 

e.g. [3] and [4], respectively). The idea in these is to 

estimate the probability density function (pdf) for the feature 

vectors of each predefined audio class. Recently, studies 

related to environmental sounds and context recognition 

have also emerged. In [5], environmental sounds were 

indexed and retrieved successfully in both indoor and 

outdoor conditions using HMMs and a modified spectral 

clustering algorithm, whereas in [6] event histogram-based 

context recognition was proposed with a versatile collection 

of environmental sounds, providing a recognition rate of 

92.4%. In addition to context recognition, several other 

applications can be mentioned for audio indexing and 

retrieval, such as advanced database browsing, query-by-

example, and highlight spotting. 

In this work, a distinct feature generation phase is to 

precede the actual audio classification and retrieval. An 

early work of feature generation (proposed in [7] for digit 

recognition) suggested taking the originally extracted 

features and combining those in a proper manner to produce 

more descriptive new (or transformed) features. A similar 

fundamental idea was applied by Krawiec and Bhanu in [8], 

where the term evolutionary feature synthesis (EFS) was 

first adopted to describe the use of evolutionary algorithms, 

such as genetic programming (GP), for feature generation 

purposes. The idea was to encode potential object 

recognition procedures, while the training process consisted 

of co-evolving feature extraction procedures, each being a 

sequence of elementary image processing and feature 

extraction operations. The method avoided recurring to the 

means commonly used in recognition systems, whereas the 

obtained recognition ratios themselves were not superior to 

those achieved by standard methods. In [9] and [10], the 

idea of feature generation was brought into audio domain, as 

GP was used to produce new (artificial) audio features. 

Encouraging results were reported e.g. over music genre 

classification, although only 4 classes were involved. 

In this paper, we propose an evolutionary feature 

synthesis (EFS) technique to enhance common audio 

descriptors. The technique uses multi-dimensional particle 

swarm optimization (MD PSO) [11] to search for the 

optimal feature synthesis parameters among a predefined 

search space. An initial work of the method was reported in 

[12] for image retrieval, whereas here the focus is on audio 

classification (by support vector machines) and retrieval. An 

overview of an ideal feature synthesis process is illustrated 

in Figure 1, in which considerable improvements in feature 

discrimination can be observed after the synthesis operation. 

Contrary to the figure, in our approach also the output 

feature vector dimension is optimized, which is a property 

being omitted in the previous feature generation approaches. 
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Fig. 1. An illustrative example of an ideal feature synthesis 

operation over 2-D feature vectors of a 3-class dataset. 

The rest of the paper organizes as follows: Section 2 

introduces the underlying stochastic optimization algorithm 

applied in the process, the MD PSO, whereas the feature 

synthesis process itself is presented in Section 3. The 

obtained classification and retrieval results are shown in 

Section 4, and Section 5 concludes the paper.  

 
2. STOCHASTIC OPTIMIZATION ALGORITHM 

 

2.1. Multi-dimensional particle swarm optimization 

 

Particle swam optimization (PSO) was first introduced by 

Kennedy and Eberhart in [13]. It is a population-based 

optimization technique, in which a swarm of particles 

propagates iteratively in a predefined search space. After the 

initialization phase of the algorithm, where the particles are 

randomly (uniformly) distributed, each particle is evaluated 

using a proper fitness function,  [ ], and moved 

accordingly within the search space. The ultimate goal is to 

converge to the global optimum of the search space, for 

which each particle   has the so-called social and cognitive 

terms. The former corresponds to the best position found by 

the entire swarm (the global best, GB), whereas the latter 

stands for the best position found by the particle   itself. 

In the case of MD PSO, the native PSO operation is 

extended by allowing the particles to perform inter-

dimensional jumps within a set dimension range,   
[         ]. Thus, the MD PSO searches for the global 

best solution among several search spaces with different 

dimensions. The dimensional navigation is controlled by a 

dimensional PSO process interleaved with the traditional 

PSO operations, in which each particle keeps also track of 

the global and personal best dimension (from which the best 

fitness value so far has been achieved). The pseudo-code 

and more details about MD PSO can be found in [11]. 

 

2.2. Global convergence methods 

 

2.2.1. Fractional global best formation 

In order to better avoid local minima during the MD PSO 

search process, a fractional global best formation (FGBF) 

method [14] is performed within the MD PSO process. The 

method exploits the potential of individual particle elements, 

evaluating a separate fitness score for each. It then produces 

a new artificial global best (aGB) particle by combining the  

 

Fig. 2. An illustration of the formation of an aGB particle in 

dimension 4. Elements of three different particles, a, b, and 

c (of dimensions of 2, 6, and 3) are combined in the process. 

best elements found from the entire swarm. Whenever the 

new aGB particle surpasses in fitness the native global best, 

the aGB is considered as the new global best. In the case of 

MD PSO, a separate aGB is assigned for every dimension. 

Thus, as illustrated in Figure 2, the aGB particle can be 

formed by combining elements collected from several 

dimensions, which further increases the probability of 

finding aGB particles with improved fitness scores. 

 
2.2.2. Simulated annealing 

As suggested in [15], a simulated annealing (SA) algorithm 

can be utilized within the PSO process to search around the 

current global best position found by the swarm. In short, 

after each PSO iteration, a new “neighbor” solution is 

suggested, which may then replace the current global best. 

The process is controlled by a specific temperature term,   , 

an update constant  , and a cooling constant,    . The 

number of iterations,     , needs to be assigned for the SA 

algorithm, for which the pseudo-code is given in Table 1. 

 

3. EVOLUTIONARY FEATURE SYNTHESIS 

 

3.1. Overview of the system 

 

To meet the objectives assigned for an ideal feature 

synthesis process, i.e. to perform an optimal feature 

selection and modification in an optimal output feature 

vector dimension, four processing steps are performed. For 

Table 1. The SA algorithm in the MD PSO process 

1. Randomly distribute the particles into the search space. 

2. Evaluate the fitness of each particle,  [ ],   [   ]. 
3. For (              ) { 

    3.1 Set      ;    ; 

    3.2       (      ) { 

        3.2.1 Generate a neighbor solution,     : 

                          ( )   ;  

            // (     ( ) is a  -dimensional random vector) 

        3.2.2 Evaluate the fitness of      

        3.2.3 Compute    [    ]   [   ]; 
        3.2.4 If (   [     (     )]      [   ])  

Set         ; 

        3.2.5 Set         ;   // (  is the cooling constant) 

    } 

} 

4. Update the particle positions, see [11] for details. 

5. If (PSO iterations left) return to 2. 

1475



each new synthesized feature, the system, with a specified 

synthesis depth value  , 

 

1. selects     original features        , 

2. scales the selected features with weights        , 

3. selects   operators,        , to be applied over 

the selected and scaled features, and 

4. bounds the output with a non-linear operator (here 

tangent hyperbolic is applied). 

 

Suppose   (     ), where   [   ], stands for applying a 

specific operator    over the features    and   . Then, a 

formula for synthesizing a new feature    can be defined as 

 

       [  (    (   (  (         )     )  )     )]   

  (1) 

that is, first the operator    is applied to the weighted 

features    and   , after which the operator    is applied to 

the result of the first operation and the weighted feature   , 

and so on. Finally, the operator    is applied to the result of 

all the previous operations and the weighted feature   . 

The term “evolutionary” applied in this work refers to 

both the underlying computing technique, the MD-PSO, as 

well as the nature of the feature synthesis process itself, 

which can be performed in either one or several runs. Here 

the idea is that each additional run can further synthesize the 

features from the previous run and further increase the 

discrimination power. A block diagram of the overall 

synthesis process is illustrated in Figure 3, where R 

synthesis runs are performed. 

 

3.2. Particle encoding 

 

In a MD PSO process, the search space dimension, 

  [         ], corresponds to the number of features to 

be synthesized into the output feature vector (FV), that is, 

the output FV dimension. Each particle position represents a 

potential solution on how to perform the synthesis for the 

original features. For this, each particle position 

encapsulates a complete set of synthesis parameters: the 

indices of the selected features, the feature weights, and the 

selected operators. Accordingly, the  th element of the 

position of a particle   corresponds to a way of synthesizing 

the  th feature of the output feature vector. Thus, each 

positional element must include the following:     

feature indices,     feature weights, and   operators. For 

this, the positional elements of each particle are encoded as 

a vector of length     , including     “ -type” and   

 

 

Fig. 3. A block diagram of the proposed EFS with R runs. 

The arrows correspond to distinct feature vectors (FVs). 

 “ -type” components. These define the corresponding 

synthesis parameters as follows: 

 

    ⌊  ⌋              {   }, 
      ⌊  ⌋        {   }, 
   ⌈  ⌉                 {   }, 

(2) 

 

where the ⌊ ⌋ and ⌈ ⌉ operators correspond to the floor and 

ceiling mathematical integer functions, respectively. The 

value ranges for the components can be defined based on the 

input feature vector dimension,  , and the total number of 

operators available,  , as    [   [ and    ]   ]. The 

weight values are limited to       . 

To give an example of the encoding, Figure 4 presents a 

particle   position in dimension 6 with the corresponding 

synthesis process. The synthesis process of the first element 

of the output feature vector at run r, FV(r), is shown in 

detail, while a similar process is performed separately for all 

the output vector elements. For simplicity, the synthesis 

depth value,  , is set to 3, meaning that       features, 

       , are selected from input feature vector FV(r-1). 

Thus, as is demonstrated in the figure, each of the particle 

elements include        encoded synthesis parameters, 

        and        . The dimension of the input feature 

vector is     and the total number of available operators 

is    , meaning that the value ranges for the two 

component types can be defined as    [   [ and    
]   ]. According to Figure 4, the selected features obtained 

by the underlying MD PSO process are the  th
,  rd

,  st
, and 

again the  rd
 element of the input feature vector, while the 

corresponding operators are selected as ‘ ’, ‘   ’, and ‘ ’. 
Thus, performing the synthesis process as given in (1), the 

 st
 element of the output FV is obtained by 

 

       [   ((   [ ]     [ ])    [ ])     [ ]]   (3) 

  

 

Fig. 4. An example of a particle encoding in a 6-

dimensional search space with a synthesis depth set to 

   , input feature vector dimension of    , and the 

number of operators set to    . 
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where  [ ] stands for the  th
 element of the input FV.  

Note that by setting      , discarding the feature 

selection as     [ ], and setting each operator    to ‘ ’, 

the approach becomes identical to a single-layer perceptron 

(SLP) classifier. Also, performing several runs with such 

synthesis parameters corresponds to a multi-layer 

perceptron (MLP) with a one-to-one analogy between the 

number of hidden layers and the number of runs performed 

in the synthesis process. In this sense, it can be stated that a 

regular feed-forward artificial neural network (ANN) is a 

special case of the proposed synthesis approach. 

 

3.3. The fitness function 

 

The fitness measure for evaluating the discrimination ability 

provided by the synthesized features plays an important role 

in the whole synthesis process. Here we propose a measure 

based on clustering criteria. Suppose the different labels of a 

 -class database are denoted as          , and the 

corresponding class centroids as          . Then, a 

discrimination measure (  ) can be defined for a set of 

synthesized feature vectors,   { }, as 

 

   [ ]    ( )       (  )     (     )⁄ , 

where 

     (  )  
 

 
∑

∑ ‖    ‖     

|  |

   

   

  

 

    (     )        (‖     ‖). 

(4) 

 

The terms of (4) are defined as follows:   ( ) stands for 

the number of false positive feature vectors occurring among 

the synthesized feature vectors   (meaning that those feature 

vectors are actually located in a closer proximity to some 

other class centroid than their own),      (  ) is the 

average intra-class distance, and     (     ) corresponds to 

the minimum centroid distance among all the classes. The 

  [ ] measure strives for minimizing the intra-class 

distance, while maximizing the shortest inter-class distance. 

Ideally, minimizing this fitness measure leads to a situation 

where each synthesized feature vector is in the closest 

proximity of its own class centroid, thus leading to a high 

discrimination among classes as illustrated in Figure 1. 

 

4. EXPERIMENTAL RESULTS 

 

The features obtained by the proposed evolutionary feature 

synthesis (EFS) technique were tested with classification 

and retrieval experiments. For this, three feature vectors, 

consisting of commonly applied low-level audio features 

(see e.g. [3], [5]), 

 

 STATISTICS (39-D): audio signal statistics (mean, 

variance, standard deviation, average deviation, 

skewness, kurtosis) + band energy ratio, spectral 

centroid, transition rate, fundamental frequency, 

irregularity, flatness, and tonality, 

 MFCC (39-D): 13
th

 order coefficients + deltas, 

 ACOUSTIC (38-D): tri-stimulus, smoothness, 

spectral spread, spectral roll-off, RMS, amplitude, 

inharmonicity, spectral crest, loudness, noisiness, 

power, odd-to-even ratio, and 6 sub-band powers, 

 

were extracted from a general audio database of 1421 clips. 

Frame features of 40 ms were first extracted, which were 

then merged and averaged over longer segments to decrease 

the total number of feature vectors per clip. The database 

included 16 pre-defined general audio classes of wide range: 

male/female speech, male/female singing, whistling, bird 

sounds, dog barking, fire sounds, breaking glass, 

classical/rock/techno music, motorcycle sounds, footsteps, 

applause, and crowd cheering. The samples were gathered 

from TIMIT corpus (speech), RWC music database (music), 

and StockMusic.com net store (environmental sounds). Such 

a database was selected to demonstrate the EFS scalability 

and performance with several types (and rather high 

number) of classes. The EFS parameters were empirically 

set to no. of particles      , no. of MD PSO iterations 

     , and synthesis depth    . The output dimension 

range was set to [         ]  [     ], while the total 

number of operators, listed in Table 2 for features    and   , 

was set to     . Finally, the number of iterations for the 

SA algorithm was, also empirically, set to        . 

In all the shown experiments, a randomly selected EFS 

train set (45% of the original features) was first used in 

searching the optimal synthesis parameters (     ). These 

were then used to synthesize the actual output features for 

the whole dataset. In the first experiment, the discrimination 

measure (DM) was evaluated for all the feature vectors 

before and after the synthesis. The obtained results are 

presented in Table 3, demonstrating a considerable 

improvement with all the features (recall that the smaller the 

DM value, the better the separation between individual 

classes). This strongly supports the suitability of the EFS to  

Table 2. List of operators applied for features    and    

   formula    formula 

0     9       

1     10   (     ) 
2    (     ) 11       

3    (     ) 12    (    (     )) 

4       13    (    (     )) 

5       14    (         ) 

6       15    (    (     )) 

7   (     ) 16        ( (     )  (     )) 

8       17        ( (     )  (     )) 

Table 3. The obtained discrimination measures (DM) for 

the original and synthesized features 

 STATISTICS MFCC ACOUSTIC 

Orig. DM 4092 10560 3895 

Synth. DM 1086 4948 1290 
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Table 4. The classification error (CE) statistics obtained by 

SVM over the original and synthesized features 

 STATISTICS MFCC ACOUSTIC 

Orig. CE (%) 25.4 ± 2.8 11.1 ± 1.5 19.1 ± 2.5 

Synth. CE (%) 14.4 ± 1.5 10.7 ± 2.0 17.0 ± 1.9 

 

clustering tasks. Next, classification evaluations were 

performed in a five-fold cross-validation manner, so that 

every sample in the database was tested during the process. 

The classification was done using SVMs (libSVM, [16]) 

with sigmoid kernel and different parameter combinations, 

ranging from   {           } and   {       }  Such 

a kernel selection makes the SVM model equivalent to a 2-

layer-perceptron ANN. As can be seen in Table 4, the 

smallest average classification errors demonstrate clear 

improvements with the synthesized features, especially with 

the STATISTICS features. The MFCCs are designed to be 

treated more as “a whole”, so that the rather sparse feature 

selection may diminish the performance obtained with them. 

As a final experiment, Table 5 shows the retrieval 

average precisions (AP) obtained for each feature vector. 

Precision stands for the percentage of true positives in the 

retrieved results, whereas the average was obtained after 

querying all the database items one by one (by taking the 

Euclidean distance between the FVs of the query item and 

each database item). Interestingly, now the MFCCs show an 

increase of 11% in AP score after 2 EFS runs, and the AP 

values of other features are also notably improved. 

Moreover, performing consecutive EFS runs can further 

enhance the results in most cases. The minor contradiction 

obtained between the MFCC classification and retrieval 

performance may suggest that the used fitness function is 

actually more applicable for clustering than classification.  

 

5. CONCLUSIONS 

 

An evolutionary feature synthesis (EFS) approach for 

providing discriminative (artificial) features for audio 

classification and retrieval purposes was proposed. The 

applied multi-dimensional PSO algorithm proved being able 

to find the (near-) optimal parameters for the synthesis 

process. The EFS combines feature selection and feature 

generation, being also capable of searching the optimal 

solution among several output vector dimensions. 

Depending on the original feature vector, the EFS method is 

capable of improving the classification and retrieval 

precisions by over 10% with consecutive EFS runs. Testing 

the method with other databases, classifiers, and fitness 

functions are potential topics for future research. 

Table 5. The average precision (AP) retrieval performances 

over original and synthesized features 

Feature set 
Original 

AP (%) 

EFS Run 1 

AP (%) 

EFS Run 2 

AP (%) 

EFS Run 3 

AP (%) 

STATISTICS 44.7 51.4 53.2 54.9 

MFCC 35.0 39.4 46.0 44.6 

ACOUSTIC 48.5 50.6 52.1 52.6 
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An evolutionary feature synthesis approach for
content-based audio retrieval
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Abstract

A vast amount of audio features have been proposed in the literature to characterize the content of audio signals.
In order to overcome specific problems related to the existing features (such as lack of discriminative power), as
well as to reduce the need for manual feature selection, in this article, we propose an evolutionary feature synthesis
technique with a built-in feature selection scheme. The proposed synthesis process searches for optimal linear/
nonlinear operators and feature weights from a pre-defined multi-dimensional search space to generate a highly
discriminative set of new (artificial) features. The evolutionary search process is based on a stochastic optimization
approach in which a multi-dimensional particle swarm optimization algorithm, along with fractional global best
formation and heterogeneous particle behavior techniques, is applied. Unlike many existing feature generation
approaches, the dimensionality of the synthesized feature vector is also searched and optimized within a set range
in order to better meet the varying requirements set by many practical applications and classifiers. The new
features generated by the proposed synthesis approach are compared with typical low-level audio features in
several classification and retrieval tasks. The results demonstrate a clear improvement of up to 15–20% in average
retrieval performance. Moreover, the proposed synthesis technique surpasses the synthesis performance of
evolutionary artificial neural networks, exhibiting a considerable capability to accurately distinguish among different
audio classes.

Keywords: Content-based retrieval, Evolutionary computation, Particle swarm optimization, Feature selection,
Feature generation

Introduction
Due to the drastically increased amount of multimedia
data available in the Internet and in various public and
personal databases, the development of efficient index-
ing and retrieval methods for large multimedia databases
has become a widely studied research topic. Scientific
fields, such as digital signal processing (DSP) and com-
puter science (particularly machine learning), provide ef-
ficient and mathematically well-defined methods for
data mining and knowledge discovery from specific
observations or databases [1]. One of the major research
foci in the field is concentrated around content-based
classification using supervised learning methods. In
these, a dataset together with its perceived class labels,
known as “ground truth,” is used to train a classifier, so
that it can learn to discriminate among the individual

classes in the training dataset. This enables the classifier
to classify new, previously unseen data items with a cer-
tain degree of accuracy. Once successful such methods
can be applied to several application areas, such as
advanced database browsing, query-by-example retrieval,
highlight-spotting from movies and/or sport events,
speaker recognition, and so on.
In general, whenever machine learning techniques are

to be applied to data classification or clustering tasks,
certain features need to be extracted from the data. The
features can be numerical or nominal scalars or vectors
describing specific characteristics of the data such as, in
the case of audio signals, tonality or fundamental fre-
quency (FF). Because the data classification and mining
methods are strongly dependent on the extracted fea-
tures, their quality and discriminative capability have an
obvious influence on overall classification performance.
Unfortunately, despite the enormous number of different
audio feature extraction methods available in the

* Correspondence: toni.makinen@tut.fi
Department of Signal Processing, Tampere University of Technology, P.O. Box
553, Tampere, Finland

© 2012 Mäkinen et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Mäkinen et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:23
http://asmp.eurasipjournals.com/content/2012/1/23



literature, the features have limitations and drawbacks in
describing the data content, so that the current audio
classifiers cannot really compete with the human auditory
perception system. As will be shortly reviewed, such a
lack of semantic representation, the “semantic gap,” has
led to developing several promising techniques to obtain
more power of discrimination from the extracted low-
level features. The related work in this field is presented
in the following section, which focuses on the two most
important feature enhancement methods in the literature,
feature selection and feature synthesis (also known as fea-
ture generation/construction/transformation).

Related work
Generally in machine learning, it is desirable to work
with low-dimensional feature vectors (FVs) to reduce
computational complexity, and also to avoid the so-
called curse of dimensionality phenomenon [2], which
basically states that in high-dimensional representations
the available data become too sparse for any decent stat-
istical or structural analysis. In a feature selection
scheme, the FV dimensionality is lowered by selectively
choosing an expressive and compact set of features
among a possibly much larger original set. Evolutionary
algorithms, such as genetic algorithms (GAs) [3] and gen-
etic programming (GP) [4], are encountered in several
feature selection approaches in the literature (see, e.g.,
[5,6]). Recently, another population-based stochastic
optimization algorithm, particle swarm optimization
(PSO) [7], was used by Ramadan and Abdel-Kader [8].
They applied PSO to features extracted by discrete
cosine transform and discrete wavelet transform. The
face-recognition results were comparable to GA-based
feature selection but with the benefit of fewer features.
Another PSO-based feature selection approach was
presented by Chuang et al. [9] in which an improved
binary particle swarm optimization was applied to a set
of gene expression data classification problems. The
highest classification accuracy was obtained in 9 out of
the 11 tested gene expression problems. It was also
reported that the average classification accuracy
obtained by a K-nearest neighbor classifier was increased
by 2.85% when compared to the previously published
methods. Other types of classifiers, such as support vec-
tor machines (SVM) [10,11] and back-propagation net-
works [12], have also been tested with PSO-based feature
selection in varying types of classification problems. Fi-
nally, in [13], a survey of several other feature selection
methods was presented, leading the authors to conclude
that “applying first a method of automatic feature con-
struction yields improved performance and a more com-
pact set of features.” Hence, research for generating
completely new (or modified) features has gained more
attention during the past few years.

To date, several feature generation approaches have
been proposed [14], which have shown improvements
over many types of classification problems. In one of the
pioneer works, Markovitch and Rosenstein [15] pro-
posed a framework for feature generation based on a
grammar consisting of feature construction functions
(such as arithmetic and logic operators). In their re-
search, new features were iteratively constructed using
decision trees, while the evaluation of the framework
was done using the Irvine repository of (symbolic) classi-
fication problems. Improved classification results were
obtained with several tested classifiers when applying
them with the original and constructed feature sets (FS).
However, such grammar-based methods lack the ability
to generalize across more concrete and realistic cases,
where, instead of symbols, the input data consists of raw
signals. The challenge with signals is that there are no
“universally good” features available; rather one has to
manually choose and extract a specific set of features
among the huge amount of existing possibilities. Thus, it
can never be guaranteed that the selected features truly
represent the optimal set of features for the problem at
stake. To address the issue, a fascinating and rather re-
cent idea of automatic feature generation has proven to
be a promising approach, as it allows going beyond the
limitations of human imagination in producing new
transformations and (artificial) features.
Automated feature generation approaches are gener-

ally based on a “trial and attempt” type of methodology,
meaning that stochastic searching and optimization algo-
rithms are commonly applied. In [16], a combination of
both feature selection and generation was proposed
based on a modified GA. The algorithm was applied for
the feature transformation process, and an inductive
learner was used to evaluate the constructed features on
an interpretation of chromatography time series. It was
confirmed that one can significantly improve the learn-
ing performance when using the constructed features in-
stead of the original time series data. The term “feature
synthesis” was first used by Krawiec and Bhanu [17] in
the context of object recognition. They applied linear
GP to encode potential recognition procedure synthesis
solutions, expressed in terms of elementary operations.
The training consisted of co-evolving feature extraction
procedures, each being a sequence of elementary image
processing and feature extraction operations. The recog-
nition accuracies obtained were comparable to those
achieved by standard methods. Bhanu et al. [18,19] con-
tinued the work in the context of face expression recog-
nition, where a Gabor-wavelet representation was used
for primitive features and linear/nonlinear operators
were selected among 37 different options to synthesize
new features. Each individual in the applied GP algo-
rithm was represented by a binary tree, each of which
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corresponded to a single composite operator (consisting
of several primitive operators). The operator selection
was tuned using a Bayesian classifier, and the operator
yielding the best classification accuracy was used in syn-
thesizing new FVs for each image in the database.
Improved classification accuracy with fewer features was
obtained compared to results obtained using the original
set of primitive features in the expression recognition
task. The work was expanded in [20], where co-evolu-
tionary processing was added to the approach to enable
using several sub-populations in the GP algorithm. In
this case, the final FVs were formed by combining the
composite features synthesized by each individual sub-
population. The obtained classification results for
synthetic aperture radar images showed occasional
improvements compared to the primitive features; as
before, fewer features were required to obtain compar-
able recognition rates. However, the authors also
conclude that “. . . it is still very important to design
effective primitive features. We cannot entirely rely on
CGP (co-evolutionary GP) to generate good features.”
Probably the first audio feature generation system was

one proposed by Pachet and Zils [21]. Their approach
uses GP as the core feature generation algorithm in an
extractor discovery system (EDS) framework, to explore
large operator function space and to automatically dis-
cover new high-level audio features. The search is
guided by specific heuristics, which enable applying
knowledge representation schemes about signal proces-
sing functions as part of the feature generation process.
More recently, Pachet and Roy [22] applied the same
EDS framework, where analytical features (AF) were
also introduced. These represent a large subset of all
possible audio DSP functions, and are expressed as a
functional term consisting of basic operators. The main
idea in [22] is to apply genetic transformations in order
to improve the current population of the (first random)
AFs, while the fitness of each AF is evaluated using an
SVM classifier. The idea of EDS bears some similarities
to the framework proposed in [15] and some other fea-
ture generation approaches, but differs in providing op-
erator knowledge (such as function patterns and
heuristics) within the process. As a result, improved clas-
sification results compared to common audio features
were obtained with the AFs in several challenging classi-
fication tasks. The authors also participated to the re-
search made in [23] with AFs proposing a method to
improve search performance involved in feature gener-
ation tasks. The applied algorithm is a variant of simu-
lated annealing, guided by the so-called spin patterns,
which are statistical properties of the feature space.
Three audio classification problems were evaluated using
the generated features, and significant improvements in
execution time were reported when the results were

compared to those obtained with features searched using
GA, as described in [22].
Generally in audio signal processing, ad hoc domain-

specific features have also gained considerable attention
during the past few years, mainly applied to specific
audio classification problems. For example, Mörchen
et al. [24] constructed a large set of features by applying
cross products between several existing short- and long-
term (obtained by several aggregation methods) feature
functions, resulting in approximately 40,000 audio fea-
tures in total. It was shown that some of the constructed
features could indeed improve music classification per-
formance relative to conventional features. Another such
example was presented by Mierswa and Morik [25],
where method trees consisting of ad hoc features for a
given audio signal were introduced. The trees were auto-
matically generated with GP by combining elementary
feature extraction methods. To do this, an additional
complexity constraint was applied to keep the computa-
tional processing feasible. Improvements were reported
in music genre classification accuracy over approaches
with traditional audio features. Furthermore, in [26] the
same approach was applied to speech emotion recogni-
tion with comparable results.
Considering potential drawbacks and uncertainties in

the previously proposed feature generation approaches,
an important issue relates to the computational time and
complexity required for the synthesis process. More spe-
cifically, generating new FVs with high dimensionality
may be laborious and time-consuming; for example, in
[20], a separate subpopulation needed to be generated
for each new generated feature. However, despite the in-
creasing amount of computation required, also high-
dimensional representations should be considered when
striving to generate efficient new FVs. The individual
feature search method, introduced in [23], provides a sig-
nificant contribution to the field in decreasing computa-
tion time with respect to GP (by an order of magnitude).
Due to the somewhat constrained set of experiments,
however, eventually the method shows particularly sig-
nificant differences to traditional GP mainly at the initial
stage of the search, whereas the fitness difference
becomes less significant as the search goes on. The
allowed search space size in general plays an important
role, as it may become too large to be explored efficiently
(and throughout). For example, in the case of the AF pro-
posed in [22], it was said that “the space of ‘reasonable
size’AFs is huge” (as it should be to allow capturing a suf-
ficient collection of DSP functions), and, later, that “even-
tually the EDS framework reaches the fringe of the space,
although it certainly does not explore all of it.” Now, de-
pending on the case, such partial exploration might cause
some lack of performance to the generated features,
which is addressed in this article by applying two
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dedicated techniques for converging towards the global
optimum of the parameter search space. The EDS frame-
work applied and discussed in [22] uses several heuristics
as a vital component to guide the search. These may
complicate the system implementation and, in some
cases, cause additional uncertainty or fuzziness (due to
stochastic behavior) to the process. Considering the com-
bined feature selection and feature generation methods
proposed so far, a separate feature selection scheme is
generally required as a part of the main system topology,
whereas the approach proposed in this article provides
feature selection as a built-in property within the under-
lying PSO algorithm. This makes the overall design and
implementation of the method easier, and possibly
decreases the number of adjustable parameters. Finally,
in some cases (e.g., in [20] or in [24] with most of the
cases), it was demonstrated that the generated features
cannot always improve the final classification results,
which is an issue worth taking into a deeper discussion in
order to discover valid reasoning for such synthesis behav-
ior. It could be that the search for the optimal synthesis
parameters in a high-dimensional solution space gets
trapped into a local optimum, ultimately yielding deficient
synthesis results. Another reason could be that the evalu-
ation of the feature quality does not correlate with the ac-
tual performance obtained using the features. The
problem might also relate to the manually selected di-
mension for the synthesized FV, which may serve as an
apparent source of sub-optimality. Nonetheless, in the
previously proposed feature generation approaches, the
dimensionality issue is only rarely considered and dis-
cussed. In [22,27], separate classification experiments with
different FS dimensions are performed and compared.
Automatic, simultaneous, and on-going search and
optimization regarding to output FV dimensionality, how-
ever, is a novel property provided by the synthesis tech-
nique proposed in this article.

The proposed feature synthesis technique
In this article, we aim to overcome the mentioned pro-
blems by proposing an evolutionary feature synthesis
(EFS) technique based on PSO. The technique is applied

for audio feature selection and synthesis. The main mo-
tivation for the work is to provide improved content-
based audio classification and retrieval performance. To
motivate the selection of PSO instead of the generally
applied GA (or its derivatives), a comparison of the two
algorithms, based on [9], is provided in Table 1. In short,
the main advantage of PSO over GAs is that the algo-
rithm provides more profound intelligent background
[28], and it can be performed more easily than GAs [28].
Also, the computation time of PSO is usually less than
for GAs, because all the particles in PSO tend to con-
verge to the best solution rather quickly [29]. The syn-
thesis approach presented in this article provides the
ability to apply any fitness measure found appropriate
for the final feature task at hand (such as classification).
Furthermore, we apply a multi-dimensional extension of
the basic PSO algorithm (MD PSO, [30]) to allow dy-
namic output FV dimensions. This avoids the need of
fixing the dimension of the solution space (correspond-
ing to the dimensionality of the synthesized vector) in
advance, which is a property not considered in the audio
feature generation methods published before.
In order to better avoid the problem of premature con-

vergence related to the traditional PSO, a recent tech-
nique, the fractional global best formation (FGBF)
suggested in [31], is also adopted within the proposed
synthesis approach. A preliminary work was presented
in [32], in which the performance improvement pro-
vided by the approach was tentatively verified in the
context of images. Furthermore, in this article, a hetero-
geneous particle behavior approach, recently proposed
by Engelbrecht [33], is considered. The approach pro-
vides further assistance for the particle swarm to con-
verge to the global optimum of the search space by
altering the particle velocity update rules. Hence, finally,
as a combination of all the PSO extensions, in this study
we propose applying an MD PSO algorithm with FGBF
and heterogeneous particle behaviors for audio feature
synthesis. To the best of the authors’ knowledge, we are
not aware that such an approach (or PSO in general)
should have been proposed earlier in the audio feature
generation field.

Table 1 Comparison of GA and PSO as search algorithms

Property GA PSO

Genetic operators Included Excluded

Key functions Crossover Social particle interaction

Mutation Particle velocity updates

Information source All the chromosomes (the whole
population moves in one group)

The global best particle (evolution
only looks for the best solution)

Update occurrence Probabilistic (cross-over and
mutation rates)

All particles are updated after each
iteration

Local optimum Can become easily trapped Can avoid well the local optima
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The rest of the article is organized as follows. The
low-level audio features considered in this research are
described in “Low-level audio features” section, whereas
in “Evolutionary optimization techniques” section, the
underlying evolutionary optimization technique, the MD
PSO, is introduced in detail. “EFS and selection” section
presents an overview and technical details of the pro-
posed feature synthesis approach, and the experimental
results with comparative evaluations are shown and dis-
cussed in “Experimental results” section. Finally, “Con-
clusion” section concludes the article and discusses
topics for future research.

Low-level audio features
In order to provide some important background infor-
mation for the ultimate goal of this study, i.e., improving
the audio retrieval performance, we start by introducing
the applied original (low-level) audio features and the
extraction procedures preceding the actual feature syn-
thesis process. As mentioned in “Introduction” section,
audio features play an essential role in content-based
classification and retrieval tasks, so that selecting and
extracting the “correct” features for the problem at hand
is of utmost importance. Thus, the major focus is on
synthesizing new features from the low-level audio fea-
tures most typically used in the literature. This provides
us a solid “baseline” FSs and allows us to demonstrate
the effectiveness of the proposed synthesis technique.
Two separate audio feature extraction approaches are

used to evaluate the performance of the feature synthesis
with different types of features. In order to detect specific
temporal signal characteristics, the considered audio clips
are processed in short time frames of 40-ms duration.
The first approach extracts segment-based features, while
the second one is based on the so-called “bag-of-frames”
approach [34], where the features are extracted directly
from the short-time frames. The details of the extraction
methods are provided in the following sections.

Segment features
The segment features are extracted based on the method
introduced in [35]. The energy levels of the audio frames
are computed, and then compared to the average energy
level of the whole audio signal to detect and discard si-
lent audio frames. In the second phase, seven audio FSs
(specified on the left column of Table 2) are extracted
from the non-silent frames, and consecutive non-silent
frames are merged to form distinct audio segments.
Hence, theoretically, an audio signal with no silent sec-
tions would be considered as a single segment. However,
due to some background noise or environmental acous-
tics, occasional non-silent frames may occur in the mid-
dle of a silent section. To filter out such noisy frames in
the process, an empirically determined threshold of five

consecutive frames was set as a minimum duration for a
signal segment. Finally, the actual audio segment fea-
tures are formed by computing the mean (μ) and stand-
ard deviation (σ) statistics of each FS (including also the
STAT features, i.e., means of means, etc.) over the
formed segments. Thus, as an example, an audio signal
consisting of four separate segments is represented by
four corresponding segment FVs of each FS. For a more
detailed description of the segment feature extraction,
the reader is referred to [35].

Key-frame features
In the second feature extraction approach, the features
are extracted directly from the short time frames. Due to
this, the frames are first Hamming-windowed to avoid
sharp discontinuities at the frame edges. Because there
are many frames already in a single audio clip, a specific
key-frame extraction method, proposed in [36], is ap-
plied to reduce the most redundant frames. Such redun-
dancy occurs because many audio classes, such as music
or speech, contain similar and almost identical sounds
(such as common vowels or same notes of an instru-
ment). In short, the main idea in the frame reduction ap-
proach is to partition the extracted frame features into
distinct clusters (based on their similarity/distance be-
tween each other) and to select only one or few key-
frames from each cluster to represent its corresponding
sound. For this, a minimum spanning tree clustering al-
gorithm is applied, which is detailed in [36]. As an out-
come of the procedure, the overall amount of frames is

Table 2 The extracted low-level audio features

Segment features Key-frame features

STATa (39-D) MFCC+Δ-MFCC+ΔΔ-MFCC (39-D)

13 Mel-frequency cepstral
coefficients (MFCC) (26-D)

12th-order LPC+ 14th-order
LPCC (26-D)

13 Δ-MFCC (26-D) K_AUDIOc (31-D)

13 ΔΔ-MFCC (26-D)

10th-order linear prediction
coefficients (LPC) (20-D)

14th-order linear prediction
cepstral coefficients (LPCC) (28-D)

S_AUDIOb (38-D)
aSTAT includes the mean (μ) and standard deviation (σ) values of signal
statistical features, both in time and frequency domain: mean, variance,
standard deviation, average deviation, skewness, kurtosis, and also the
following segment features (μ,σ): band-energy ratio (BER), spectral centroid,
transition rate, FF, irregularity (2 versions), flatness (both in linear and decibel
scale), and tonality.
bS_AUDIO includes the following segment features (μ,σ): tristimulus,
smoothness, spectral spread, spectral roll-off, RMS amplitude, inharmonicity,
spectral crest, loudness, noisiness, power, odd-to-even ratio, and sub-band
powers of six frequency bands.
cK_AUDIO includes the following key-frame features: irregularity (two versions),
tristimulus, smoothness, spectral spread, zero-crossing rate, spectral roll-off,
loudness, flatness (linear and decibel scale), tonality, noisiness, RMS amplitude,
inharmonicity, spectral crest, odd-to-even ratio, spectral slope, FF, skewness,
kurtosis, spectral skewness, spectral kurtosis, and 7-band sub-band powers.
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significantly decreased, whereas most of the feature de-
scription power is still maintained. The three frame-level
FSs used in this study are listed on the right column of
Table 2.
The extracted features of Table 2 represent an inclu-

sive set of common audio features found from the litera-
ture. The feature implementations are based on a
publicly available “LibXtract” library [37], although some
of the segment features, such as dominant BER and seg-
ment FF, are extracted as described in [35]. The dimen-
sions of the extracted FSs/vectors are also given in
parenthesis for all sets in Table 2. For example, taking
the mean and standard deviation of the 13th-order seg-
ment MFCC features results to a 26-dimensional FV.
The feature values of each segment/key-frame—as well
as their corresponding ground truth class labels and clip
indices (describing from which audio file a particular FV
is extracted from)—are stored in a single plain text file,
so that the actual audio files are not needed anymore
after the feature extraction phase. For specific definitions
and formulas for the extracted features, the reader is re-
ferred to the audio signal processing literature (see, e.g.,
[38-40]).

Evolutionary optimization techniques
In this section, the PSO algorithm, its multi-dimensional
extension, and the FGBF technique are introduced. The
adaptation of heterogeneous particle behaviors within the
MD PSO process is discussed in detail at the end of the
section.

MD PSO
PSO was first introduced by Kennedy and Eberhart [7].
The PSO algorithm is a population-based optimization
technique, in which a swarm of particles propagates in a
pre-defined search space. Each individual particle, p, of
the swarm represents a potential solution to an under-
lying optimization problem, in which the particles are
evaluated using a proper fitness function, F p½ �. The PSO
algorithm is specifically designed for solving nonlinear
optimization problems. Due to the diversity associated
with randomly distributed particles, the algorithm is
capable of searching the best solution among several
local minima. After the initialization phase of the algo-
rithm, where the particle randomization is performed,
the particles are evaluated and moved iteratively in the
search space. In order to eventually converge to the

global optimum of the search space, each particle p
holds in its memory both social and cognitive terms,
where the former corresponds to the best position found
so far by the entire swarm (the global best) and the latter
stands for the best position found by the particle p itself
(personal best). As will be shortly seen, both the social
and cognitive terms contribute in a stochastic manner to
the particle position at the next iteration round.
An MD PSO algorithm was proposed in [30]. The al-

gorithm allows the particles to make inter-dimensional
jumps and visit any dimension, d, within a given range,
d 2 Dmin;Dmax½ �. Thus, in order to provide improved
fitness scores, the MD PSO searches for the global best
solution among several search spaces with different
dimensions. The particle navigation among the dimen-
sions is controlled by a separate dimensional PSO
process, which is interleaved with the regular positional
update process. For this, each particle keeps also track of
its personal (and the global) best dimension (from which
the best fitness value so far has been achieved).
In a MD PSO process, the components of each par-

ticle p at iteration round t in a swarm of P particles are
presented as,

dp tð Þ: dimension of particle p,

x
dp tð Þ
p;j tð Þ: jth element of the position of particle p in
dimension dp(t),

v
dp tð Þ
p;j tð Þ: jth element of the velocity of particle p in
dimension dp(t),

y
dp tð Þ
p;j tð Þ: jth element of the personal best position of
particle p in dimension dp(t),

vdp tð Þ: dimensional velocity of particle p,

ydp tð Þ: personal best dimension of particle p,
ŷdj tð Þ: jth element of the global best position of the
whole swarm in dimension d, j, 2 [1,d]
ŷdðtÞ: global best dimension of the whole swarm,

where (if not stated otherwise) j 2{1,. . .,dp (t)}. The par-
ticle fitness values are only evaluated within its current di-
mension, meaning that the positional PSO components in
all other dimensions remain the same for the next iter-
ation round t+1, that is, xdp t þ 1ð Þ ¼ xdp tð Þ; vdp t þ 1ð Þ ¼
vdp tð Þ; ydp t þ 1ð Þ ¼ ydp tð Þ; 8d 2 Dmin;Dmax½ �∧d 6¼ dp tð Þ:
After computing the fitness score of each particle position
with the applied fitness function , the following update
equations are used for the personal best position and

ydp tþ1ð Þ
p t þ 1ð Þ ¼ ydp tþ1ð Þ

p tð Þ; if F xdp tþ1ð Þ
p t þ 1ð Þ

h i
> F ydp tþ1ð Þ

p tð Þ
h i

x
dp tþ1ð Þ
p t þ 1ð Þ; else; ð1Þ

8<
:
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dimension of particle p for iteration t+1:
and

ydp t þ 1ð Þ ¼ ydp tð Þ; if F x
dp tþ1ð Þ
p t þ 1ð Þ

h i
> F y

ydp tð Þ
p tð Þ

h i
dp t þ 1ð Þ; else:

(

ð2Þ

Furthermore, for each dimension d 2 Dmin;Dmax½ �, the
global best particle position is updated as

ŷ d t þ 1ð Þ¼

(
ŷd tð Þ; if min

p
F ydp t þ 1ð Þ
h i� �

≥F ŷd tð Þ� �
argmin
ydp tþ1ð Þ

F ydp t þ 1ð Þ
h i� �

; else;

ð3Þ

and, finally, the global best dimension is updated as

ŷd t þ 1ð Þ¼

(
ŷ d tð Þ; if min

p
F yydp tþ1ð Þ

p t þ 1ð Þ
h i� �

≥F ŷŷ d tð Þ tð Þ
h i

argmin
ydp tþ1ð Þ

F yydp tþ1ð Þ
p t þ 1ð Þ

h i� �
; else;

ð4Þ
where, in both (3) and (4), p 2 1;P½ �.
The particle positions within the current dimension

dp(t) are updated after each iteration as shown in (5),
where w(t) is a so-called inertia weight, c1 and c2 are
pre-determined constants, �r1 and �r2 are vectors of uni-
formly distributed random variables, that is r1;j; r2;j �
U 0; 1ð Þ;8j 2 1; dp tð Þ� �

, and ∁ z�; Zmin;Zmax½ �ð Þ works as a
clamping operator that limits the elements of vector �z
between the specified values Zmin and Zmax. Typical
PSO parameters [41] were used in this study, that is,
the inertia weight was linearly decreased from 0.9 to
0.4, and c1 and c2 were both set to 2. The limiting
values for the particle position, velocity, and dimen-
sional velocity, X,V, and VD, respectively, were empiric-
ally set into proper values, as will be discussed later in
“Experimental results” section. Note that the new par-

ticle position, x
dp tð Þ
p t þ 1ð Þ; remains in the current di-

mension dp tð Þ after the positional update, whereas the
dimension may change afterwards in the dimension
update process defined in (6), which is performed at
the end of each iteration round. The b•c operator in
(6) stands for a floor function, and r1 and r2 are
now scalar uniformly distributed random variables;
otherwise the update is performed similarly to the
positional updates. For an interested reader, the
pseudo-code and further details of the MD PSO are
provided in [30].

vdp tð Þ
p;j t þ 1ð Þ ¼ w tð Þvdp tð Þ

p;j tð Þ þ c1r1;j tð Þ ydp tð Þ
p;j tð Þ

�
�xdp tð Þ

p;j tð Þ
�
þ c2r2;j tð Þ ŷ

dp tð Þ
j tð Þ � x

dp tð Þ
p;j tð Þ

� �
p;jdp tð Þ
x t þ 1ð Þ ¼ x

dp tð Þ
p;j tð Þ þ ∁ v

dp tð Þ
p;j t þ 1ð Þ; Vmin;Vmax½ �

� �
x
dp tð Þ
p;j t þ 1ð Þ  ∁ x

dp tð Þ
p;j t þ 1ð Þ; Xmin;Xmax½ �

� �
ð5Þ

vdp t þ 1ð Þ ¼ bvdp tð Þ þ c1r1 tð Þ ydp tð Þ � dp tð Þ� �
þc2r2 tð Þðŷd tð Þ � dp tð ÞÞc

dp t þ 1ð Þ ¼ dp tð Þ þ ∁ vdp t þ 1ð Þ; VDmin;VDmax½ �� �
dp t þ 1ð Þ  ∁ dp t þ 1ð Þ; Dmin;Dmax½ �� �

ð6Þ

FGBF algorithm
In some cases, the (MD) PSO algorithm suffers from the
so-called premature convergence problem, meaning that
the global best particle traps into a local minimum in the
search space. This is especially true in high-dimensional
and multi-modal search spaces, which are often encoun-
tered in real-world applications. The problem is mainly
caused by the loss of diversity, meaning that all the parti-
cles are clamped too close to each other in the search
space. A recent method called FGBF [31] has been pro-
posed to tackle this problem by exploiting the potential of
individual particle elements of each particle position. The
idea in the technique is to evaluate a separate fitness
score for each particle element, in order to form an artifi-
cial global best (aGB) particle by combining the best ele-
ments found from the entire swarm. The formed aGB
particle is then applied whenever it surpasses in fitness

the regular global best particle, ŷd tð Þ , of the swarm. For
MD PSO, this means that a separate aGB particle needs
to be assigned for each search space dimension,
d 2 Dmin;Dmax½ �. However, in this case the aGB particle
of a particular dimension can be also formed by combin-
ing particle elements from dimensions other than the cur-
rent one. This is demonstrated in Figure 1, where elements
from three different particles from separate dimensions,

Figure 1 An illustration of the formation of an aGB particle
dimension of 4. Elements of three different particles, a, b, and c,
having the dimensions of 2, 6, and 3, respectively, are brought
together and combined in the formation process. Note that several
elements can be taken from a single particle.
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xdp tð Þ
p;j tð Þ , are combined to form the aGB particle. Such an

approach increases the probability of finding an aGB par-

ticle with a higher fitness score than the existing ŷd tð Þ so-
lution for the dimension d at stake. For the sake of clarity,
pseudo-code for the FGBF approach within the MD PSO
algorithm is shown in Algorithm 1.

Algorithm 1 Pseudo-code of the FGBF algorithm in MD
PSO

Let j½ � ¼ argminp2 1;P½ �F x
dp tð Þ
p;j tð Þ

h i
, then

1. Select the best particle indices for each element, b[j],
where j 2 [1,Dmax], among all the particles, p2[1,P].

2. For (d2[Dmin, Dmax]) do:

a. Assign the best elements into the aGB solution:
aGBd

j tð Þ ¼ x
db j½ � tð Þ
b j½ �;j ; j 2 1; d½ �:

b. If F aGBd tð Þ� �
< F ŷd tð Þ� �� �

, then
ŷd tð Þ ¼ aGBd tð Þ:

3. Re-evaluate: ŷd tð Þ ¼ argmindF ŷd tð Þ� �
:

Heterogeneous particle behaviors
As proposed recently by Engelbrecht [33], variation of the
particle behaviors, i.e., the velocity update rules, is another
efficient way to enhance the convergence ability of the
swarm in highly multi-modal problems. In addition to the
particle velocity update equations (5) and (6), four other
update models are introduced in this section. The models
are extended to be used with the MD PSO approach so
that the corresponding dimensional update rules are
changed accordingly. Whenever a particle seems to get
stuck into a local optimum, a new behavior model is
assigned to it in a random manner. As well, the initial
behaviors are chosen randomly for each particle.

Cognitive-only MD PSO model
In the cognitive-only MD PSO model [42], as the name
suggests, the social terms ŷjdp tð Þ tð Þ and ŷd tð Þ of the parti-
cles (i.e., the latter terms of (5) and (6) with the c2 coeffi-
cients) are removed from the velocity update equations.
This leads to broader particle exploration as interaction
among particles ceases. This, instead, causes every par-
ticle to become an independent hill-climber in the search
space. Thus, whenever the particle position is updated
using this model, the (artificial) global best particle pos-
ition is not considered in the update process.

Social-only MD PSO model
Like the previous model, in the social-only velocity rules

[42], the cognitive terms y
dp tð Þ
p;j tð Þ and ydp tð Þ of the particles

(i.e., the former terms of (5) and (6) with the c1 coefficients)
are removed from the velocity update equations. Such a
behavior provides faster particle exploitation, as now the
entire swarm becomes a single stochastic hill-climber.

Barebones MD PSO
The Barebones PSO was suggested in [43], and in this
model the velocity update rule is replaced by

v
dp tð Þ
p;j t þ 1ð Þ � N

ydp tð Þ
p;j tð Þ þ ŷ

dp tð Þ
j

tð Þ
2

; σ

0
B@

1
CA; ð7Þ

where σ ¼ y
dp tð Þ
p;j tð Þ � ŷ

dp tð Þ
j

tð Þ
����

����: The position update

changes to x
dp tð Þ
p;j t þ 1ð Þ ¼ v

dp tð Þ
p;j t þ 1ð Þ , so that the vel-

ocity ends up being the new position of the particle,
sampled from the described Gaussian distribution N .
Similarly, for the particle dimensional velocity, the fol-
lowing equation is applied

vdp t þ 1ð Þ � N ydp tð Þ þ ŷd tð Þ
2

; σ

	 

; ð8Þ

where σ ¼ ydp tð Þ � ŷd tð Þ�� �� . Again, the dimension vel-
ocity is considered as the actual new dimension, i.e.,
dp t þ 1ð Þ ¼ vdp t þ 1ð Þ. Note that the clamping operation
is still applied to the obtained positions, so that the set
limiting values are not exceeded.
In the positional point of view, the Barebones MD

PSO facilitates an initial exploration, because at first the
personal best positions are far away from the global best
solution, causing large deviations to the Gaussian distri-
bution. However, as more iterations are performed, the
deviation approaches to zero, causing the behavior to
focus on exploitation of the average of the personal best
and global best positions.

Modified barebones MD PSO
A modified version of the Barebones, also suggested in
[43], is defined as

v
dp tð Þ
p;j t þ 1ð Þ ¼

ydp tð Þ
p;j tð Þ; if U 0; 1ð Þ < 0:5

N
y
dp tð Þ
p;j tð Þ þ ŷ

dp tð Þ
j

tð Þ
2 ; σ

0
B@

1
CA; else

8>>><
>>>:

ð9Þ
and for dimensional update, similarly, as,

vdp t þ 1ð Þ ¼
ydp tð Þ; if U 0; 1ð Þ < 0:5

N ydp tð Þ þ ŷd tð Þ
2 ; σ

	 

; else:

8<
:

ð10Þ
Such a modification increases the exploration during

the initial stages of the search process (compared to
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regular Barebones), as now 50% of the time the focus is
on the personal best solutions. As the process converges,
the behavior will turn to exploitation, when all of the
personal best solutions converge towards the global best
solution.
As mentioned, each particle obtains its starting behav-

ior randomly among the introduced models (including
the regular one), after which the behavior is changed
whenever a particle cannot improve its fitness score for
the last ten consecutive iteration rounds. The whole idea
here is that a new behavior model may help the particle
to step out from a possible local optimum, and hence
eventually provide improvements to the particle fitness
score.

EFS and selection
As earlier discussed, the motivation behind proposing
the EFS technique is to obtain enhanced audio features,
so that audio classification and retrieval performance
can be improved. In this section, we will describe the
proposed feature selection and synthesis technique in
detail. It will be shown that, with a proper encoding
scheme (encapsulating several linear/nonlinear operators
and the selected original features with their weights), the
MD PSO particles can perform an evolutionary search
towards finding the optimal synthesis parameters and
output vector dimension. For this, a proper fitness meas-
ure is to be designed, which maximizes the overall clas-
sification (or retrieval) performance. The fitness
functions applied in this study for evaluating the particle
swarm performance during the synthesis procedure are
introduced at the end of the section.

Definition of the main objectives
In an ideal case, a feature synthesis system, also called
here as a feature synthesizer, receives as its input a spe-
cific set of (low-level) audio features, selects the most
representative and appropriate subset among them,
combines and modifies the features by applying a proper
set of transformation operators and feature weights, and
finally produces a set of new and descriptive features in
an optimal dimension with respect to the fitness func-
tion assigned for the problem. Such an ideal feature syn-
thesis operation (for the purpose of clustering) is
demonstrated in Figure 2, where two-dimensional fea-
tures of a 3-class dataset are successfully synthesized
into clearly distinct clusters, enabling a much easier clas-
sification and/or retrieval task compared to the original
feature distribution. Note that, unlike in the figure, the
proposed feature synthesis approach allows the output
dimension to differ from the original dimension.
Changing the output dimensionality makes the ap-

proach somewhat similar to SVM, which attempt to
transform the original features into a higher dimension

to enable linear separation. However, a drawback with
SVMs is their high dependency on the applied kernel
function and the corresponding internal parameters,
which may not fit to the problem at hand properly. This
phenomenon is demonstrated in Figure 3, where two
successful sample feature synthesizers are presented for
a two-class classification problem. The upper case corre-
sponds to an SVM with a polynomial kernel in a quad-
ratic form. It is indeed capable of performing a proper
transformation from 2D to 3D, enabling thus a linear
separation between the two classes. However, in the
lower case, a sinusoid with a proper angular frequency,
ω, needs to be applied instead for satisfactory class dis-
crimination. Hence, it can be seen that searching for the
correct transformation (instead of applying a fixed ker-
nel) is of paramount importance, and this is actually
considered as one of the main motivations for designing
the feature synthesis scheme proposed in this article.
In light of the above discussion, the main objectives of

the proposed EFS technique are to

� perform a proper feature selection among the
original features,

Figure 3 Two examples of feature synthesis (or transform)
performed on 2D (upper case) and 1D (lower case) feature
spaces using SVM. Depending on the original data distributions,
different transformation functions are needed for successful feature
separation.

Figure 2 An example of an ideal feature synthesis performed
to 2D FVs representing three classes. The synthesized features are
much more distinct from each other than the original ones.
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� search for the optimal operators and feature weights
for the synthesis process, and

� search for the optimal output FV dimension among
a defined dimension range.

Overview of the proposed feature synthesis system
To meet the aforementioned objectives, an evolutionary
search procedure is performed. For each new synthe-
sized feature (meaning a specific single feature in the
generated output FV), the system, with a specified
synthesis depth value K,

1. selects K+ 1 original features f0,. . .,fK , ,
2 scales the selected features with proper weights
w0; . . . ;wK ,

3. selects K operators, θ1; . . . ; θK , to be applied over
the selected and scaled features, and

4. bounds the output with a nonlinear operator (here
tangent hyperbolic is applied).

Now, suppose that θn fa; fbð Þ , where n 2 1;K½ �, stands
for performing a specific operator θn over the features fa
and fb. Then, a formula for synthesizing a new feature sj
can be defined as

sj¼ tanh θK θK�1 . . . θ2 θ1 w0f0;w1f1ð Þ;w2f2ð Þ; . . .ð Þ;wKfKð Þ½ �;
ð11Þ

that is, first the operator θ1 is applied to the weighted
features f0 and f1, after which the operator θ2 is applied
to the result of the first operation and the weighted fea-
ture f2, and so on. Finally, the operator θK is applied to
the result of all the previous operations and the
weighted feature fK. With the details provided in “Encod-
ing of the particles” section, the dimension of the
synthesized FV, �s , along with the rest of the parameters
in (11) are simultaneously optimized within the applied
MD PSO search process.
In this article, the term “evolutionary” refers both to

the underlying computing technique, the MD PSO, as
well as to the nature of the feature synthesis process it-
self, which can be performed in one or several runs. The
idea here is that each new run can further synthesize the
features generated at the previous run and, hopefully,

further increase their discrimination power. A block
diagram of the overall synthesis process is illustrated in
Figure 4, where R synthesis runs are performed. The
total number of runs, R, can either be determined in ad-
vance or adaptively, in which case the fitness evaluation
results are monitored after each run, and the process is
stopped after no significant improvement is obtained
anymore. Whether there should be more than a single
set of features to be synthesized, an individual feature
synthesizer will be evolved for each FS. This is done in
order to decrease the computational time needed for the
overall processing, as this enables synthesizing the FSs
in parallel by separate processes.
In a sense, the proposed EFS technique can be seen as

a generalized form of artificial neural networks (ANN).
Considering the four system steps listed above, a single-
layer perceptron (SLP) classifier performs only steps 2
and 4, as neither feature nor operator selection is
involved in the process. Instead, SLP does add a bias
value to its weighted features, which can be mimicked
also in our approach by inserting an additional constant
value of 1 at the end of each original input FV (which
the synthesizer can then select and scale among the
other selected features). However, as no notable per-
formance gain was witnessed by performing such an ac-
tion, in the end the bias encoding is not considered in
the proposed EFS technique. For further comparison,
note that in the SLP topology the output layer dimen-
sion is fixed, whereas in the EFS the output dimension is
(as mentioned) optimized within the set range. Also no-
tice that performing several consecutive EFS runs corre-
sponds to a multi-layer perceptron (MLP), or, in fact,
any feed-forward ANN type. Similarly to SLP, the MLP
does not include feature selection, and it also performs
with fixed operator and output dimension. An important
difference between the MLP and EFS approaches is that
in the EFS technique the fitness of the synthesized FV is
evaluated after each run, whereas in MLPs only the final
fitness score in the output layer is considered, as the
intermediate network layers are “hidden.”

Encoding of the particles
Recalling the PSO definitions introduced in “MD PSO”
section, the position of a dp(t)-dimensional particle p at

Figure 4 A block diagram of the proposed EFS approach with R runs. Different arrows correspond to parallel synthesis processes with
different FSs. The fitness evaluation is performed with a specified fitness function.
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time t, xdp tð Þ
p tð Þ , represents a potential solution on how

to perform the synthesis operation over the original fea-
tures, that is, a potential synthesizer. The search space
dimension, dp tð Þ, corresponds to the number of features
synthesized into the output FV, that is, the output FV di-
mension. Each particle position encapsulates a complete
set of synthesis parameters: the indices of the selected
features, the feature weights, and the selected feature
operators. Accordingly, each positional element of a par-

ticle p, x
dp tð Þ
p;j tð Þ , where j 2 1; dp tð Þ� �

, corresponds to a

way of synthesizing the jth feature of the output FV.
Thus, referring to the previously introduced four system
steps, each such element must contain the following:
K+ 1 indices for selecting the original features, K+ 1 fea-
ture weights, and K operators in an encoded form to
synthesize the corresponding output feature. For this,
the positional elements of each particle in the particle
swarm are encoded in a vector form of length 2K+ 1, in-
cluding K+ 1 “A-type” and K “B-type” components.
These define the corresponding synthesis parameters as
follows:

fn ¼ Anb c þ 1; n 2 0;Kf g;
wn ¼ An � Anb c; n 2 0;Kf g;
θn ¼ Bnd e; n 2 1;Kf g;

ð12Þ

where the b•c and d•e operators correspond to the floor
and ceiling mathematical integer functions, respectively.
The value ranges for the components can be defined
based on the input FV dimension, F, and the total number

of operators available, Θ, as An 2 0; F and Bn 2½ �0;Θ½ � .
The weight values are limited to 0 ≤wn < 1.
To give an example of the particle encoding scheme,

Figure 5 presents a 6D particle p with the corresponding
synthesis process. Note that only the synthesis process
of the first element of the output FV at run r, FV(r), is
shown in detail, although a similar process is performed
for all the output vector elements. For simplicity, the
synthesis depth value, K, is set to 3, meaning that only
K+ 1 = 4 features, f0,. . .,f3, are selected from input FV(r –
1). Thus, as demonstrated in the figure, each of the par-
ticle elements includes 2K+ 1 = 7 encoded synthesis
components, A0,. . .,A3 and B1,. . .,B3. The dimension of
the input FV (which may either refer to the original FV
consisting of a specific set of low-level features, or to an
output FV from a previous EFS run, r – 1) is F= 8. As
the total number of operators is set to Θ= 5, the value
ranges for the two component types can be defined as
An 2 0; 8 and Bn 2½ �0; 5½ �. In Figure 5, the selected features
obtained by the underlying MD PSO process are the 7th,
3rd, 1st, and again the 3rd element of the input FV, while
the corresponding operators are selected as ‘+’, ‘min’, and
‘�’ Thus, performing the synthesis process as given in (11),
the first element of the output FV is obtained by

s1 ¼ tanh min w0f 7½ � þ w1f 3½ �
� �

;w2f 1½ �
� � � w3f 3½ �

� �
;

ð13Þ

where f n½ � stands for the nth element of the input FV.
Considering again the similarities of the EFS technique

and an SLP classifier, it can be noticed that by setting

Figure 5 An example of a particle encoding in a 6D feature space with a synthesis depth set to K=3, an input FV dimension of F=8,
and the number of operators defined as Θ=5.
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K+ 1 = F, discarding the feature selection as fn ¼ f n½ � , and
setting each operator θn to ‘+’, the two approaches be-
come identical. Similarly, by performing several runs
with such synthesis parameters corresponds to an MLP
approach with a one-to-one analogy between the num-
ber of hidden layers and the number of runs performed.
In this sense, it can be stated that a regular feed-forward
ANN is a special case of the proposed EFS approach.

The fitness measures
Proper designing of the applied fitness measure plays an
essential role in the feature synthesis process. The design
is dependent on the intended use of the features, as the
measured fitness value should highly relate to the object-
ive of the synthesis process. Traditionally in content-based
classification and retrieval scheme, specific similarity mea-
sures, such as Euclidean distance, are applied to measure
the distances between the FVs of a classified (or queried)
item and each item belonging to the database. In a re-
trieval case, the performance can be evaluated using the
average precision (AP) metric, or the so-called average
normalized modified retrieval rank (ANMMR), which is
defined in the MPEG-7 standard [44].
As the main goal of the research is to improve audio

retrieval performance by the means of feature synthesis,
an intuitive approach for constructing a proper fitness
function [�] for the task would involve computing ei-
ther the average retrieval precision (AP) or the ANMMR
values. However, neither option would be computation-
ally feasible for large databases, as they both require
conducting a separate batch query (i.e., selecting each
item in the database as a query item one by one, per-
forming a separate query for each of them, and finally
taking the mean of the obtained retrieval results) for
every fitness evaluation during the synthesis process.
Therefore, in this article, we concentrate on obtaining a
maximal discrimination between the features of differ-
ent database classes, which should in turn result in
improved retrieval performance. To achieve this we
propose two alternative ways to form the fitness func-
tion, described in the following sections.

Discrimination measure
First, a measure for evaluating the discrimination capabil-
ity provided by the synthesized features is proposed. The
measure is based on two widely used criteria in clustering:

� Compactness: the database items of one cluster
should be similar and close to each other in the
feature space, and

� Separation: different clusters and their centroids
should be distinct and well separated from each
other.

Suppose the different labels of an L-class database are
denoted as l0; . . . ; lL�1 , and the corresponding class cen-
troids as μ0; . . . ; μL�1. Then, the following discrimination
measure (DM) can be defined over a set of synthesized
FVs, S= {s},

DM S½ � ¼ FP Sð Þ þ δmean lnð Þ=δmin ln; lmð Þ;
where

δmean lnð Þ ¼ 1
L

XL�1
n¼0

X
8s2ln μn � sk k

lnj j ;

δmin ln; lmð Þ ¼ minn 6¼m μn � μmk kð Þ:

ð14Þ

The terms of (14) are defined as follows: FP(S) stands
for the number of false positive FVs occurring among
the synthesized FVs S, meaning that those FVs are actu-
ally located in closer proximity to some other class cen-
troid than their own, δmean lnð Þ is the average intra-class
distance, and δmin ln; lmð Þ corresponds to the minimum
centroid distance among all the classes. Thus, the dis-
crimination measure, DM[S], strives for minimizing the
intra-cluster distance, while maximizing the shortest
inter-cluster distance. Ideally, each synthesized feature is
in the closest proximity of its own class centroid, thus
leading to a high discrimination among classes as illu-
strated in Figure 2. However, minimizing the DM does
not always lead to improved retrieval results. This is due
to the fact that query items located at the outskirt of
their own classes may be actually situated in closer prox-
imity to some other FV located on the outskirt of its
corresponding (wrong) class. Thus, in order to improve
not only the feature discrimination in the feature space,
but also the audio retrieval performance, next we
propose applying a similar methodology that is utilized
in feed-forward ANNs.

Target vector assignment
In the second approach, the idea is to assign a binary
synthesizer target vector for each class, and let the
underlying optimization algorithm to search for the
proper synthesis parameters producing the desired out-
put. The actual fitness value is then obtained by compar-
ing the obtained and desired output vectors in a mean
square error (MSE) sense. However, as the output di-
mension of the EFS is not fixed in advance, a separate
target vector is generated for each dimension d 2
Dmin;Dmax½ � , resulting to a complete target matrix. For
producing the matrix, a so-called error correcting output
code [45] analogy is applied, which suggests two criteria
for generating proper binary target matrices:

� Row separation: The target vectors should be well
separated from each other in the terms of Hamming
distance.
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� Column separation: Also the columns of the target
matrix should be well separated from each other in
the terms of Hamming distance.

Large row separation allows the synthesized vectors
to differ somewhat from the actual target vectors with-
out losing the discrimination between different classes.
The reasoning for large column separation follows
from the fact that each column in the target matrix
can be seen as an individual binary classification task
(between the classes having a value 1 and the classes
having a value −1 in a specific column). Because of
the varying similarity between two arbitrary audio
classes, some of such binary classifications are likely to
become much easier than others. Hence, as the same
target vectors are nonetheless applied to any given in-
put classes, it is also beneficial to keep the binary clas-
sification tasks as different as possible by maximizing
the column separation.
To generate a binary matrix with maximal row and

column separation, the following matrix generation pro-
cedure is used:

1. Compute the minimum number of bits, bmin, needed
to represent the total number of classes, L, in the
database.

2. Form an empty matrix with L rows.
3. For each row, assign a binary representation of the
row number n 2 0; L� 1½ � as the first/next bmin

target vector values.
4. Move the first row of the matrix to the bottom and
shift the other rows up by one.

5. Repeat the steps 3 and 4 until Dmax target vector
values have been assigned.

6. Replace the first L values of each target vector with a
1-of-L coded [46] section.

The procedure generates new columns until the
matrix is rotated back to its original order, resulting into
a high column separation. Simultaneously, the row sep-
aration is greatly increased compared to the regular 1-
of-L coding section. However, in practice it was observed
that for distinct classes it is often easiest to find a
synthesizer that discriminates a certain single class from
the others, and, therefore, sparing the 1-of-L coding sec-
tion at the beginning of the matrix generally improves
the synthesis results. For the vector dimensions d <Dmax,
only the first d elements of the target vectors are consid-
ered. This yields identical target vector elements be-
tween the vectors of different length, allowing the FGBF
algorithm to combine particle position elements from
different dimensions (refer to FGBF algorithm).
For clarification of the procedure, a target matrix for a

4-class database is demonstrated in Figure 6, where the

maximum dimension is set to Dmax = 10, and the mini-
mum number of bits needed to represent the L= 4
classes is bmin = 2. The empty entries of the matrix cor-
respond to values −1, and T ln½ � stands for a target vector
for class ln. As illustrated in this example, the generated
matrix follows the provided algorithm with its 1-of-L
coding section for the first L elements, followed by the
elements created by the shifted rows of 2-bit row num-
ber representations.
By applying the definitions given above, the fitness

value for the jth elements of all the synthesized FVs, Sj,
can be computed as

F j Sj
� � ¼XL�1

n¼0

X
8s2ln

T ln½ �j � sj
� �2

; ð15Þ

where T ln½ �j denotes the jth element of the target vector

of class ln, and sj is the jth element of a single synthe-
sized output vector belonging to class ln. The overall fit-
ness score F S½ � can then be formed by adding the
fractional fitness scores F j Sj

� �
together and applying

normalization with respect to the number of dimensions.
However, due to an observation that the first L vector
elements, having the 1-of-L encoding, are usually the
easiest ones to synthesize (and thus mainly favored in
the dimension search by the MD PSO algorithm), the
first L vector elements are handled separately in
the summation process. Thus, for the dimensions d > L,
the normalizing divisor is strengthened by an additional
power parameter α > 1, which is to moderately increase
the probability of converging into higher output vector
dimensions whenever found beneficial. As a result, the
overall fitness function F S½ � can be formulated as

F S½ � ¼ 1
L

XL
j¼1

XL�1
n¼0

X
8s2ln

T ln½ �j � sj
� �2

þ 1
d � Lð Þα

Xd
j¼Lþ1

XL�1
n¼0

X
8s2ln

T ln½ �j � sj
� �2

; ð16Þ

in which it is assumed that Dmin > L.

Figure 6 An illustration of a target matrix assigned for L=4
classes.
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Experimental results
The EFS technique proposed in this article was tested
with several audio classification and retrieval experi-
ments using two separate audio databases. The first
database consists of six distinct classes, while the second
one was created by adding another six classes to the first
database to form a more challenging 12-class database.
The contents of the two databases are shown in Table 3,
where the class numbers ranging from 1 to 6 belong to
the basic database of 6 classes, and the extended data-
base with 12 classes includes also the class numbers ran-
ging from 7 to 12. The audio class samples are collected
from a few different data sources; the speech classes
(class nos. 1 and 7) are derived from the TIMITa data-
base, the music classes (class nos. 5, 6, and 12) are from
the RWC Music Databaseb and another music collection
at Tampere University of Technology (TUT), the “gen-
eral” audio sounds (class nos. 4, 9, 10, and 11) were pur-
chased from the StockMusic.com webpage,c and, finally,
the singing and whistling samples (class nos. 2, 3, and 8)
are self-recorded and produced at TUT. The reasoning
for two separate databases is to evaluate the scalability
of the proposed feature synthesis system to more com-
plex and difficult classification and retrieval tasks (i.e., to
those cases where good features are truly needed).
In the experiments shown in this section, unless stated

otherwise, the following parameters and settings were
used for the EFS: the depth of the synthesis was set to
K= 7, meaning that 7 operators and K+ 1 = 8 features
were chosen for the synthesis process of each output
vector element, and the total number of operators, listed
in Table 4 for features fa and fb, was set to Θ= 18. Simi-
larly, the parameters for the MD PSO algorithm were set
as follows: the swarm size was set to P= 600 particles,
1,500 iterations were used, the dimension ranges for the
basic and extended databases were set as Dmin;Dmax½ � ¼

7; 45½ � and Dmin;Dmax½ � ¼ 13; 45½ � , respectively, and the
dimensional velocity range was experimentally deter-
mined as VDmin;VDmax½ � ¼ �6; 6½ � . Finally, the param-
eter α > 1 used in (16) was determined separately for the
key-frame and segment features as α= 1.15 and α= 1.3,
respectively, as these values were found out to yield the
best trade-off between the computational cost caused by
higher dimensionality and the possible lack of perform-
ance caused by reduction of the synthesized FV
dimension.
In this study, separate “training sets” were considered

for both databases. The training sets were formed by
random selection, such that 45% of the audio clips of
each class from both databases were included to them.
Analogous to supervised machine learning, extracted
features of these training sets were then used in search-
ing the most suitable synthesis parameters for the corre-
sponding databases, after which the found parameters
were applied in synthesizing the features of the whole
data. Thus, after the parameter search process, the
resulting EFS system may synthesize new features for
the rest of the (unseen) data without further
optimization processes. The final obtained synthesized
features were tested with multiple evaluations, demon-
strating their enhanced discrimination capabilities over
the original FSs.

Performance evaluations on feature discrimination
We will first concentrate on evaluating the feature
DM of the original and synthesized FSs. The DM was
given in (14), and the obtained results for the original
and synthesized segment- and key-frame-level audio
features of low-level audio features are shown in
Table 5. Recall that the higher the DM value, the
more the features are mixed up with each other in
the feature space (indicating less discrimination). As

Table 3 The contents of the two audio databases

Class number Audio class name Number of samples

12-class audio
database (extended)

6-class audio
database (basic)

1 Female speech 111

2 Male singing 63

3 Whistling 94

4 Breaking glass 83

5 Classical music 116

6 Electrical/techno music 107

The 6 added classes 7 Male speech 103

8 Female singing 119

9 Bird singing 91

10 Dog barking 49

11 Fire sounds 96

12 Rock/metal music 72

Total 1104
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expected, it can be seen that discriminating the fea-
tures of the extended 12-class database is significantly
more challenging than those with the basic database.
However, after performing the feature synthesis pro-
cedure with the found synthesis parameters, substan-
tial DM improvements were obtained for all the FSs.
Note that, due to the stochastic nature of the under-
lying optimization approach, ten separate EFS evalua-
tions were performed for all the FSs, and the
obtained mean (μ) and standard deviation (σ) values
are also reported. The rest of the synthesis results
presented in this section conform to the same
protocol.
As the DM as such is not an intuitive measure of

fitness for the FSs, we will concentrate on demon-
strating the audio retrieval performances obtained
with different FSs. Recall, however, that in general the
usage of new synthesized features is not by any
means restricted to merely retrieval purposes. Instead,
as long as a proper fitness function can be designed,
the EFS technique can be applied to basically any task
requiring feature improvement. To show an example,

a rather obvious application is demonstrated, in which
a K-means classifier is applied. The algorithm was
first run with the formed training sets to compute
the class centroids, after which the unseen (55%) test
data samples were classified according to their closest
class centroid. The classification error (CE) results
obtained with the synthesized features for the both
databases were compared to the errors associated
with the original FSs. The results, shown in Table 6,
indicate clearly improved classification performance
obtained by the new synthesized features.

Performance evaluations on audio retrievals
For evaluating the audio retrieval performance, the
metrics, ANMRR and AP, introduced in “The fitness
measures” section were applied. In our approach, we
first compute (using Euclidean distance) the distances
between the first FV of a query item and all the FVs of a
particular database item from which we take the mini-
mum distance (normalized by the vector length) and
store it. Second, we take the next FV of the query item
and continue similarly with all the query item FVs. Fi-
nally, before moving to the next database item, we take
the sum of all the obtained minimum distances to obtain
a single distance value between the queried item and the
database item (which is used to rank that query item). In
order to provide some baseline results, the ANMRR and
AP values obtained by using a batch query and the ori-
ginally extracted audio features are shown in Table 7. As
expected, for both the segment- and the key-frame-
based FSs, the retrieval performance deteriorates
considerably as the database size increases from the
basic 6-class database to the extended 12-class database.
Like in the results shown in Tables 5 and 6, the segment
MFCC features seem to provide the best performance
among the original FSs.

Table 5 The DM statistics of ten separate EFS evaluations for the original and synthesized features

FS Basic database (6 classes) Extended database (12 classes)

Original DM Synthesized DM (μ±σ) Original DM Synthesized DM (μ±σ)

Segment

STAT 500.5 43.6 ± 6.7 1793 406.3 ± 47.6

MFCC 333.4 61.5 ± 8.5 1141 361.0 ± 22.4

Δ-MFCC 515.7 130.5 ± 7.9 1865 620.1 ± 27.1

ΔΔ-MFCC 622.6 140.9 ± 11.5 2072 532.7 ± 23.6

LPC 1114 270.3 ± 8.9 4520 1204± 29.1

LPCC 1638 310.3 ± 12.8 10830 1395± 26.5

S_AUDIO 342.6 56.0 ± 4.1 1365 382.8 ± 15.2

Key-frame

MFCC+deltas 2627 820.6 ± 53.6 7113 3093± 138

LPC+ LPCC 6951 2143± 39.4 23 900 6378± 157

K_AUDIO 3150 782.7 ± 50.5 10 140 2774± 154

Table 4 The list of operators used in the feature synthesis
process for features fa and fb
θn Formula θn Formula

0 –fα 9 fα * fb

1 –fb 10 10 (fα * fb)

2 max (fα, fb) 11 fα/fb

3 min (fα, fb) 12 sin (100π(fα + fb))

4 fα * fα 13 cos(100π(fα + fb))

5 fb * fb 14 tan(100π(fα * fb))

6 fα+ fb 15 tan(100π(fα + fb))

7 10 (fα+ fb) 16 0.5 * exp(− (fα− fb) * (fα− fb))

8 fα – fb 17 0.5 * exp( + (fα+ fb) * (fα+ fb))
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Next, a standard SLP classifier was trained with the
MD PSO approach (by the methods described in [30]),
in order to compare the proposed EFS technique with
neural network-based approaches. Similar to EFS, an
SLP can be treated as a feature synthesizer, in which case
the original audio features are propagated through the
network and the output layer dimensionality is set equal
to the total number of classes, L. We call the resulting
output vector a class vector, as it indicates the class
designated for a particular input FV. The corresponding
ANMRR and AP values obtained with these vectors are
shown in Table 8. Compared to the values obtained with
the original features, a clear improvement can be
observed with nearly all the FSs, excluding some of the
segment features of the extended database. As

mentioned in “Low-level audio features” section, this is
most probably due to the fact that, because of the nature
of the segment-based features, the total number of FVs
per an audio clip is considerably less for segment fea-
tures than for key-frame features. Hence, because the
FV dimensionality is highly decreased during the SLP
synthesis process (to L), the extended database is ex-
tremely complicated for an SLP classifier to learn with
such a limited amount of data. In contrast, the basic
database is well learned by the SLP, as an AP of nearly
90% is achieved with the segment-based MFCC features.
We will now demonstrate the significance of the add-

itional properties associated with the EFS technique

Table 6 CE of a K-means classifier over the original and synthesized features

FS Basic database (6 classes) Extended database (12 classes)

Original CE (%) Synthesized CE (%) Original CE (%) Synthesized CE (%)

Segment

STAT 33.3 15.2 ± 1.6 54.8 37.4 ± 2.4

MFCC 18.2 13.5 ± 1.7 36.0 34.4 ± 2.9

Δ-MFCC 30.7 24.2 ± 1.4 48.3 39.9 ± 1.5

ΔΔ-MFCC 37.8 29.1 ± 2.1 56.7 39.4 ± 2.3

LPC 47.5 41.8 ± 1.3 70.8 68.4 ± 2.0

LPCC 57.6 45.6 ± 1.4 78.9 74.5 ± 1.6

S_AUDIO 22.1 18.0 ± 0.9 42.8 34.3 ± 2.0

Key-frame

MFCC+deltas 37.2 29.2 ± 2.2 50.3 50.0 ± 2.0

LPC+ LPCC 75.6 64.4 ± 1.2 86.8 84.5 ± 1.2

K_AUDIO 53.8 36.0 ± 4.6 69.1 46.2 ± 2.7

Table 7 The retrieval performances obtained with the
original features for both audio databases

FS Basic database
(6 classes)

Extended database
(12 classes)

ANMRR AP (%) ANMRR AP (%)

Segment

STAT 0.358 61.0 0.514 45.9

MFCC 0.228 73.8 0.367 60.2

Δ-MFCC 0.351 62.2 0.507 46.6

ΔΔ-MFCC 0.379 59.5 0.531 44.4

LPC 0.549 43.1 0.686 29.8

LPCC 0.569 41.1 0.717 26.9

S_AUDIO 0.263 71.0 0.450 52.3

Key-frame

MFCC+deltas 0.460 51.4 0.568 41.0

LPC+ LPCC 0.637 34.8 0.787 20.4

K_AUDIO 0.375 59.5 0.524 44.9

Table 8 The retrieval performances obtained with the
class vectors of an MD PSO-trained SLP classifier for both
audio databases

FS Basic database
(6 classes)

Extended database
(12 classes)

ANMRR AP (%) ANMRR AP (%)

Segment

STAT 0.238 75.0 0.626 36.4

MFCC 0.101 89.2 0.518 47.3

Δ-MFCC 0.339 64.7 0.581 40.0

ΔΔ-MFCC 0.290 70.1 0.585 40.1

LPC 0.491 49.7 0.673 31.3

LPCC 0.564 42.3 0.714 27.4

S_AUDIO 0.229 75.7 0.578 41.2

Key-frame

MFCC+deltas 0.279 70.2 0.414 56.5

LPC+ LPCC 0.669 32.1 0.794 19.7

K_AUDIO 0.308 67.7 0.504 47.1
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germane to SLPs. In the first demonstration, the feature
selection property is enabled and applied to the input
FVs, so that only K+ 1 = 8 original features are included
into the actual synthesis process. The output FV dimen-
sionality is fixed to L, and only the ‘+’ and ‘–‘ operators
are included in the synthesis process in order to mimic
the behavior of typical neural networks (the subtraction
operation is also needed to compensate with SLP
weights, which are limited to [−1,1]). Such arrangements
make the EFS similar to an SLP classifier (with the ex-
ception of additional feature selectivity). The retrieval
performance obtained with these settings is shown in
Table 9, from where it can be seen that, excluding the
MFCC features, the results are fairly comparable to
those obtained with the SLP classifier. This is a result
worth noting as only eight features were selected among
the original input FVs. Such a reduction in the number
of original features (without significant performance
loss) suggests that at least some of them may not be es-
sential to attain optimal discrimination capability.
In the next phase, the fixed output dimensionality of

the synthesis method was changed so that the optimal
dimensionality found using the underlying MD PSO al-
gorithm was used in the synthesis process. All the opera-
tors shown in Table 4 were included to the process to
provide the synthesizer more possibilities for modifying
the features. After the changes, a significant improve-
ment in the retrieval performance was obtained, as
shown in Table 10. Hence, optimizing the output FV
dimension (and applying several operators in the
synthesis process) significantly enhances the retrieval

performance. However, it should be noted that retrieval
performance obtained with the original segment-based
MFCC features of the extended database could not be
improved either by the SLP classifiers or by the EFS
experiments made so far. We believe this indicates that
the MFCC features need to be treated as a whole and
that selecting only few of them may decrease the overall
retrieval performance. However, in this instance the per-
formance drop is limited and clear performance
improvements relative to key-frame-based MFCC fea-
tures are still achieved. Also key-frame LPC+LPCC fea-
tures show only minor improvements in AP values,
which implies that certain audio features are not as
synthesizable as others or that different types of arith-
metic or logic operators may be required to achieve sig-
nificant improvements in discrimination performance.
Finally, several consecutive EFS runs were performed

to see whether the obtained synthesis results can be fur-
ther improved (see Figure 4 in “Overview of the pro-
posed feature synthesis system” section). Retrieval
performance associated with certain synthesized FSs
improved over several runs (<25), whereas some other
features could not be enhanced notably. More generally,
the segment-based features were more suitable for con-
secutive EFS runs, as retrieval performance of the key-
frame features remained rather stable during the runs. A
graphical presentation of the experiments is shown in
Figure 7, where the evolution of both the AP results and
the synthesized FV dimensions over 25 synthesis runs
are shown for several FSs and for both databases (L= 6/
L= 12). For simplicity, those FSs unable to demonstrate

Table 9 The retrieval performance statistics obtained
using the EFS technique with fixed output dimension and
only two operators

FS Basic database
(6 classes)

Extended database
(12 classes)

ANMRR
(μ±σ)

AP (%)
(μ±σ)

ANMRR
(μ±σ)

AP (%)
(μ±σ)

Segment

STAT 0.278 ± 0.016 70.4 ± 1.7 0.534 ± 0.024 44.1 ± 2.4

MFCC 0.280 ± 0.022 69.6 ± 2.1 0.528 ± 0.023 44.9 ± 2.2

Δ-MFCC 0.375 ± 0.016 60.6 ± 1.6 0.574 ± 0.011 40.6 ± 1.0

ΔΔ-MFCC 0.393 ± 0.013 59.0 ± 1.3 0.598 ± 0.020 38.3 ± 2.0

LPC 0.549 ± 0.006 43.8 ± 0.6 0.729 ± 0.013 25.7 ± 1.2

LPCC 0.589 ± 0.015 39.6 ± 1.5 0.740 ± 0.006 24.8 ± 0.5

S_AUDIO 0.236 ± 0.015 74.7 ± 1.6 0.480 ± 0.013 49.9 ± 1.2

Key-frame

MFCC+deltas 0.463 ± 0.024 51.4 ± 2.3 0.629 ± 0.030 35.2 ± 2.8

LPC+ LPCC 0.709 ± 0.007 28.4 ± 0.7 0.813 ± 0.003 18.0 ± 0.3

K_AUDIO 0.346 ± 0.016 63.0 ± 1.5 0.532 ± 0.012 44.4 ± 1.2

Table 10 The retrieval performance statistics obtained
using the EFS technique with dynamic output dimension
and 18 operators

FS Basic database
(6 classes)

Extended database
(12 classes)

ANMRR
(μ±σ)

AP (%)
(μ±σ)

ANMRR
(μ±σ)

AP (%)
(μ±σ)

Segment

STAT 0.167 ± 0.013 81.7 ± 1.5 0.425 ± 0.012 55.0 ± 1.2

MFCC 0.221 ± 0.021 75.5 ± 2.2 0.398 ± 0.012 57.5 ± 1.2

Δ-MFCC 0.332 ± 0.015 64.7 ± 1.5 0.511 ± 0.096 43.9 ± 3.1

ΔΔ-MFCC 0.313 ± 0.016 66.7 ± 1.6 0.526 ± 0.033 45.0 ± 3.2

LPC 0.524 ± 0.016 46.1 ± 1.5 0.675 ± 0.008 31.1 ± 0.8

LPCC 0.556 ± 0.010 42.8 ± 1.0 0.720 ± 0.017 26.7 ± 1.6

S_AUDIO 0.171 ± 0.011 81.5 ± 1.2 0.442 ± 0.029 53.4 ± 2.9

Key-frame

MFCC+deltas 0.371 ± 0.012 60.3 ± 1.2 0.470 ± 0.012 50.5 ± 1.1

LPC+ LPCC 0.634 ± 0.013 35.3 ± 1.2 0.775 ± 0.011 21.6 ± 1.0

K_AUDIO 0.289 ± 0.029 68.7 ± 2.8 0.441 ± 0.009 53.2 ± 0.9
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much improvement during the process are not shown in
the graphs, whereas the best obtained AP values of all
the FSs are shown in Table 11. The most significant ob-
servation concerns the behavior of the extended data-
base segment features (upper right plots in Figure 7),
where major improvements can be seen with all the
shown FSs. Moreover, the dimensionality of the
“S_AUDIO” FV could be reduced to only 13. Also note
that now the AP performance of the synthesized
segment-based MFCC features surpasses the original
features after the second EFS run. However, in the case
of key-frame features (the lower plots), the improvement
is more moderate, stating that these features have not as
much additional potential to be found by repeating the

synthesis process, or at least such potential could not be
found in the experiments using the applied MD PSO
and EFS parameters.

Comparative evaluations and discussion
In order to provide some additional comparative results,
an MLP classifier was trained using the MD PSO
algorithm as described in [30]. In this approach, a
specific architecture space (AS) with lower and upper
limits for the number of neurons for each network layer
is specified, from which the applied optimization
algorithm searches for the optimal network structure
for synthesizing new features. Two different ASs
were experimented, specified by the limiting vectors

Figure 7 The consecutive EFS runs performed for basic (left) and extended (right) databases. It can be seen that the AP results generally
improve during the couple of first runs. The segment features seem to improve over several runs, whereas the performance level obtained by
key-frame features saturates more quickly. Note that satisfactory solutions can also be found with low FV dimensions.
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AS1min ¼ F ; 13; Lf g;AS1max F ; 45; Lf g and AS2min ¼
F ; 8; 4; Lf g;AS2max ¼ F ; 16; 8; Lf g , where the fixed in-

put and output layers F and L correspond to the number
of input features and database classes, respectively.
These settings correspond to performing two (AS1) and
three (AS2) consecutive EFS runs. For this reason, the
number of MD PSO iterations were set to 2∗1500 ¼
3000 and 3∗1500 ¼ 4500 , respectively, in order to have
a fair comparison. Both ASs were separately searched
with the MD PSO algorithm and the best network con-
figuration was used to generate the corresponding MLP
class vectors from the original features. The obtained re-
trieval performance measures are shown in Table 12,
where also the AS number (1 or 2) yielding the better
result is shown in parenthesis. The MLP classifier per-
forms notably well with the segment-based MFCC fea-
tures for the basic database, whereas its performance
falls below the EFS results with the extended database.
This result suggests that regular neural networks can
succeed as synthesizers with rather small and simple
databases. Also, as no feature selection is performed, the
MLP can utilize the original MFCCs as a whole, which
may ease the synthesis process. On the other hand, when
it comes to the key-frame-based MFCC feature perform-
ance, the difference is not as significant. This suggests
that the content and nature of the original FV indeed
has an effect on the synthesis process output both with
ANNs and EFS.
Strictly speaking, performing several EFS runs in a row

is analogous to concatenating several SLP classifiers such
that the output class vector of a previous SLP is consid-
ered as an input vector for the next one. To see whether
such an arrangement makes a difference in retrieval

performance, Figure 8 shows the evolution of AP values
of ten concatenated SLP classifiers trained with the MD
PSO. The obtained results are shown also numerically
for all FSs in Table 13. Compared to single SLP evalua-
tions, no significant improvements were achieved by
concatenating the SLP classifiers. Rather, retrieval per-
formance begins to decrease either immediately or after
two or three SLP classifiers. This leads to a conclusion
that, at least with the databases and parameters used in
our study, SLP (as a feature synthesizer) achieves its best
performance almost right away, whereas the proposed
EFS framework can improve its performance over sev-
eral additional synthesis runs. Moreover, in most cases
the EFS results are clearly better than those obtained
with MLPs, which supports the EFS approach of per-
forming the fitness evaluation after every run.
Finally, the evaluation shown in Figure 7 was repeated

for segment-based features so that every EFS run was
repeated three times, with only the best synthesis solu-
tion (i.e., the one maximizing the retrieval performance
in the training dataset) being used. This was done in
order to demonstrate the full potential of the EFS tech-
nique; in this way the occasional sub-optimal solutions
(caused by the stochastic nature of the search process)
can be reduced efficiently. Note that unless grid comput-
ing with parallel processes can be used, the processing
time would be three times longer. Hence, such a demon-
stration is more about providing an idea of EFS’s poten-
tial than a practical application. Nevertheless, Figure 9
shows additional improvements in AP scores, especially
in the case of the extended 12-class database where per-
formance increases notably. With the basic database, the
optimal performance level (in the sense of AP values) is
reached after 5–7 runs. Note that improved retrieval

Table 11 The best retrieval performances obtained by 25
consecutive EFS runs

FS Basic database
(6 classes)

Extended database
(12 classes)

ANMRR
(run no.)

AP (%)
(run no.)

ANMRR
(run no.)

AP (%)
(run no.)

Segment

STAT 0.134 (run 7) 85.8 (run 7) 0.380 (run 23) 60.4 (run 23)

MFCC 0.181 (run 6) 80.9 (run 6) 0.333 (run 22) 65.3 (run 22)

Δ-MFCC 0.235 (run 16) 76.0 (run 16) 0.514 (run 7) 47.0 (run 7)

ΔΔ-MFCC 0.258 (run 10) 73.2 (run 10) 0.467 (run 10) 51.4 (run 10)

LPC 0.446 (run 22) 54.3 (run 22) 0.673 (run 2) 31.4 (run 2)

LPCC 0.521 (run 24) 47.3 (run 24) 0.710 (run 1) 27.7 (run 1)

S_AUDIO 0.135 (run 3) 85.6 (run 3) 0.386 (run 25) 60.0 (run 25)

Key-frame

MFCC+deltas 0.346 (run 4) 63.3 (run 4) 0.462 (run 2) 51.4 (run 2)

LPC+ LPCC 0.638 (run 2) 35.0 (run 2) 0.757 (run 2) 23.3 (run 2)

K_AUDIO 0.251 (run 2) 72.5 (run 2) 0.426 (run 10) 55.6 (run 16)

Table 12 The retrieval performances obtained with the
class vectors of an MLP classifier

FS Basic database
(6 classes)

Extended database
(12 classes)

ANMRR AP (%) ANMRR AP (%)

Segment

STAT 0.334 (1) 66.0 (1) 0.620 (2) 37.1 (2)

MFCC 0.089 (1) 90.4 (1) 0.532 (1) 45.7 (1)

Δ-MFCC 0.340 (2) 65.3 (2) 0.680 (1) 30.9 (1)

ΔΔ-MFCC 0.320 (1) 66.8 (1) 0.634 (2) 35.3 (2)

LPC 0.489 (1) 50.2 (1) 0.704 (2) 28.7 (2)

LPCC 0.562 (1) 42.6 (1) 0.746 (1) 24.4 (1)

S_AUDIO 0.255 (1) 73.6 (1) 0.561 (2) 43.2 (2)

Key-frame

MFCC+deltas 0.334 (1) 64.8 (1) 0.555 (1) 42.7 (1)

LPC+ LPCC 0.669 (1) 32.1 (1) 0.805 (1) 18.8 (1)

K_AUDIO 0.391 (2) 59.4 (2) 0.604 (1) 38.0 (1)
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performance was also obtained using lower FV dimen-
sions than the original ones, which is an attractive prop-
erty considering the computational requirements for
processing the vectors. For example, the dimensionality
of the synthesized vectors can significantly be decreased
for STAT and S_AUDIO features. However, the best FV
dimensions found may vary depending on the FS. Specif-
ically, it was observed that synthesizing the 26-
dimension MFCC features of the extended database into
a lower dimensionality (and yet obtain improved re-
trieval performance) is a challenging task. Nonetheless,
allowing a dynamic output FV dimensionality is an ad-
vantage, as specific applications (or classifiers) requiring
synthesized features may have strict computational (or
other) constraints on the FS dimensions. Such require-
ments can be met with the EFS technique by setting the
output dimension range equal to the requested one, or
by setting it to a single specific value. Furthermore, by
allowing the output vector dimension vary during the

synthesis process, the most suitable FV dimension can
be found concurrently in a single experiment, obviating
the need to perform separate experiments with different
(fixed) FV dimensions.

Computational complexity
Considering the computational complexity of the SLP,
MLP, and EFS approaches, the most important factor is
the number of particles and iterations applied to the
underlying MD PSO algorithm. Their selection is influ-
enced by the number and identity of the FV dimensions
synthesized (i.e., database size, feature extraction
approaches, and the original FSs). In the case of EFS, the
synthesis depth, K, is another important factor, as in
every particle element the synthesis process consists of
K – 1 input features. There is usually a trade-off be-
tween computation time and performance attained, so
that the parameters affecting processing time should be
set depending on the specific task.

Figure 8 The AP performances obtained by consecutive SLP classifiers. In general, the results cannot be further improved by concatenating
the SLPs, except with the segment features for the first few classifiers.
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The structure of the proposed feature synthesis tech-
nique is particularly designed for parallel computing, so
that grid computingd was utilized in computing the
results. Here, each FS was processed on its own, as
shown in Figure 4. With the applied MD PSO and EFS
parameters, the computational time of a single EFS run
varied between 30 min (segment features of the basic
database) and 3.5 h (key-frame features of the extended
database). The corresponding computation times for the
SLP and MLP classifiers trained with MD PSO were
more or less the same. However, it should be kept in
mind that once the synthesis (or network) parameters
are found, features of any previously unseen data can be
synthesized afterwards with no need for any further
search or training processes.

Conclusions
A method for transforming and modifying traditional
audio features by an evolutionary optimization algorithm
is proposed, one that improves feature discrimination as

Table 13 The best retrieval performances obtained by ten
consecutive SLP classifiers

FS Basic database
(6 classes)

Extended database
(12 classes)

ANMRR
(run no.)

AP (%)
(run no.)

ANMRR
(run no.)

AP (%)
(run no.)

Segment

STAT 0.206 (run 3) 78.6 (run 3) 0.579 (run 2) 40.7 (run 2)

MFCC 0.109 (run 3) 89.7 (run 3) 0.479 (run 2) 51.2 (run 2)

Δ-MFCC 0.295 (run 2) 69.8 (run 2) 0.534 (run 3) 45.2 (run 3)

ΔΔ-MFCC 0.269 (run 10) 72.4 (run 10) 0.579 (run 4) 41.3 (run 4)

LPC 0.483 (run 2) 50.9 (run 2) 0.667 (run 4) 32.3 (run 4)

LPCC 0.550 (run 2) 44.2 (run 2) 0.714 (run 1) 27.4 (run 1)

S_AUDIO 0.202 (run 5) 79.4 (run 5) 0.541 (run 2) 44.7 (run 2)

Key-frame

MFCC+deltas 0.279 (run 1) 70.2 (run 1) 0.414 (run 1) 56.5 (run 1)

LPC+ LPCC 0.669 (run 1) 32.1 (run 1) 0.794 (run 1) 19.7 (run 1)

K_AUDIO 0.277 (run 1) 69.6 (run 1) 0.504 (run 1) 47.1 (run 1)

Figure 9 The consecutive EFS runs with three repetitive optimization performances within each run. Significant further improvements
were obtained to the AP results also with low output FV dimensions.
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well as audio classification and retrieval performance.
The process, EFS, is a generalized form of feed-forward
neural networks. In addition to traditional ANNs, the
EFS technique provides (1) numerous linear/nonlinear
attribute operators, (2) a built-in feature selection
scheme, and (3) dynamic output (layer) dimension.
The experimental results obtained from clustering, K-

means classification, and several audio retrieval tasks
demonstrate the ability of the technique to provide sub-
stantial improvements compared with the original fea-
tures. It was also shown that the audio retrieval
performance can be further improved by performing
several synthesis runs, whereas comparable performance
could not be achieved using concatenated SLP evalua-
tions. Based on these experiments, the synthesis ap-
proach appears capable of producing more descriptive/
discriminative (artificial) features than those designed
and selected by humans (i.e., the traditional low-level
audio features).
The underlying optimization algorithm used to dis-

cover the optimal feature synthesis parameters is based
on PSO, extended in our study by the addition of three
properties previously introduced in the literature. First,
an MD PSO was applied, which enables optimizing the
output FV dimension during the synthesis process. Sec-
ond, an FGBF technique was used to increase the prob-
ability of converging to the global optimum of the
search space and third, the heterogeneous particle be-
havior was addressed via the swarm in order to avoid
local optima in the fitness function surface.
In this study, the optimization of output vector dimen-

sion was considered only with respect to classification
and retrieval performance. As a result, the best output
vector dimension found by the EFS was usually higher
than that of the original FS. This may be an important
aspect for certain applications where there is consider-
able post-processing for the output vectors. However, an
appropriate upper limit for the output vector dimension-
ality can be determined and tuned to the specific prob-
lem to be solved. Some of the experiments using the
basic 6-class database suggest that when it comes to dis-
criminating features of a relatively small and distinguish-
able database, the EFS technique may not be worth
implementing. However, with the larger and more over-
lapping (in terms of the pre-determined data classes) 12-
class database, regular neural networks were not able to
achieve as significant improvements to the retrieval per-
formance as those obtained with the EFS.
In general, the EFS framework can be used in any such

tasks in which it is applicable to take advantage of
enhanced feature discrimination. For example, content-
based classification and knowledge mining are suitable
venues for the proposed framework, as are those in
which the quality and description power of the applied

features play an essential role. In future research, the
synthesis performance may be enhanced by experiment-
ing with other optimization techniques (such as simu-
lated annealing and GAs) or by optimizing the
mathematical operators used. This would require analyz-
ing operator selection during the synthesis process so
that some statistical conclusions could be drawn about
the selection behavior. A similar analysis could be ap-
plied, with caution, to the selection of the original fea-
tures in order to avoid using “vain” (or very rarely
selected) features. Unlike general feed-forward ANNs,
where regular gradient-descent training methods (such
as back-propagation) are designed to minimize fixed and
differentiable fitness functions (such as MSE), the EFS
technique can be used to minimize any types of fitness
functions. In this way, the optimization tasks can be
attuned to the specific goals of the research, such as
audio retrieval, as closely as possible. Designing add-
itional fitness functions for particular problems is thus
one of the main advantages of the proposed feature syn-
thesis scheme. Such issues will be addressed in future
research.

Endnotes
aTIMIT (Texas Instruments, Massachusetts Institute

of Technology) is a corpus of phonemically and lexically
transcribed speech of American English male and female
speakers of different dialects. bRWC (Real World Com-
puting) Music Database is a copyright-cleared music
database that is available to researchers as a common
foundation for research (http://staff.aist.go.jp/m.goto/
RWC-MDB/). cThe StockMusic.com web shop (http://
www.stockmusic.com/). dTechila Technologies Ltd.,
Techila Grid, http://www.techila.fi/.

Competing interests
Toni Mäkinen is a PhD student at the Tampere University of Technology
(TUT), from where he receives salary. In order to graduate, scientific
publications are required. The TUT will gain financially from the graduation
itself in the future, but not separately from any specific publication (such as
this one). The authors thus declare that they have no competing interests.

Acknowledgments
The authors would also like to thank Toni Heittola, Anna-Maria Mesaros, and
Tuomas Virtanen from the Tampere University of Technology for kindly
providing several audio databases for testing during this research.

Received: 13 March 2012 Accepted: 13 August 2012
Published: 11 September 2012

References
1. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley-

Interscience Publication, 2001)
2. R.E. Bellman, Adaptive Control Processes—A Guided Tour (Princeton University

Press (Princeton, NJ, 1961)
3. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, 1st edn. ((Addison-Wesley Longman Publishing Co, Boston, MA,
1989)

4. J. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection (MIT Press, Cambridge, MA, 1992)

Mäkinen et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:23 Page 22 of 23
http://asmp.eurasipjournals.com/content/2012/1/23



5. C.-L. Huang, C.-J. Wang, A GA-based feature selection and parameters
optimization for support vector machines. Expert Syst. Appl. 31(231–240)
(2006)

6. L. Zhuo, J. Zheng, F. Wang, X. Li, B. Ai, J. Qian, A genetic algorithm based
wrapper feature selection method for classification of hyperspectral images
using support vector machine. Proc. SPIE 7147(71471J) (2008). doi:10.1117/
12.813256

7. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the
IEEE International Conference on Neural Networks, 4th edn. (, Perth, Australia,
1995), pp. 1942–1948

8. R.M. Ramadan, R.F. Abdel-Kader, Face recognition using particle swarm
optimization-based selected features. Signal Process. Image Process. Pattern
Recognit. 2(2), 51–66 (2009)

9. L.-Y. Chuang, H.-W. Chang, C.-J. Tu, C.-H. Yang, Improved binary PSO for
feature selection using gene expression data. Comput. Biol. Chem. 32(1),
29–37 (2008)

10. S.-W. Lin, K.-C. Ying, S.-C. Chen, Z.-J. Lee, Particle swarm optimization for
parameter determination and feature selection of support vector machines.
Expert Syst. Appl. 35(4), 1817–1824 (2008)

11. Y. Liu, Z. Qin, Z. Xu, X. He, Feature selection with particle swarms, in
Computational and Information Science, in Lecture Notes in Computer Science,
ed. by J. Zhang, J.-H. He, Y. Fu, 3314th edn. (Springer, Berlin, 2005), pp. 425–
430

12. K. Geetha, K. Thanushkodi, A. Kishore Kumar, New particle swarm
optimization for feature selection and classification of microcalcifications in
mammograms, in Proceedings of International Conference on Signal
Processing, Communications and Networking (, Chennai, India, 2008)

13. I. Guyon, A. Elisseeff, An introduction to variable and feature selection.
Mach. Learn. Res. 3(1157–1182) (2003)

14. D. Yang, L. Rendell, G. Blix, A scheme for feature construction and a
comparison of empirical methods, in 12th International Joint Conference on
Artificial Intelligence, IJCAI ’91, ed. by J. Mylopoulos, R. Reiter, 2nd edn.
(Sydney, Australia, 1991), pp. 699–704

15. S. Markovitch, D. Rosenstein, Feature generation using general constructor
functions. Mach. Learn. 49(1), 59–98 (2002)

16. O. Ritthoff, R. Klinkenberg, S. Fischer, I. Mierswa, A hybrid approach to feature
selection and generation using an evolutionary algorithm (Proceedings of the
UK Workshop on Computational Intelligence, Birmingham, UK, 2002), pp.
147–154

17. K. Krawiec, B. Bhanu, Visual learning by evolutionary feature synthesis, in
Proceedings of the International Conference on Machine Learning (,
Washington, DC, USA, 2003), pp. 376–383

18. B. Bhanu, J. Yu, X. Tan, Y. Lin, Feature synthesis using genetic programming for
face expression recognition, in Proceedings of Genetic and Evolutionary
Computation Conference (, Seattle, WA, USA, 2004), pp. 896–907

19. J. Yu, B. Bhanu, Evolutionary feature synthesis for facial expression
recognition. Pattern Recognit. Lett 27(11), 1289–1298 (2006). Special Issue
on Evolutionary Computation

20. Y. Lin, B. Bhanu, Evolutionary feature synthesis for object recognition. IEEE
Trans. Syst. Man Cybern 35(2), 156–171 (2005). C. Applications and Reviews
(Special Issue on Knowledge Extraction and Incorporation in Evolutionary
Computation)

21. F. Pachet, A. Zils, Evolving automatically high-level music descriptors from
acoustic signals. LNCS 2771(42–53) (2003)

22. F. Pachet, P. Roy, Analytical features: a knowledge-based approach to audio
feature generation. EURASIP J. Audio Speech Music Process. 153017, 23
(2009)

23. G. Barbieri, F. Pachet, M. Degli Esposti, P. Roy, Is there a relation between the
syntax and fitness of an audio feature? in Proceedings of the 11th International
Society for Music Information Retrieval Conference (, Utrecht, Netherlands,
2010), pp. 321–326

24. F. Mörchen, I. Mierswa, A. Ultsch, Understandable models of music collections
based on exhaustive feature generation with temporal statistics, in Proceedings
of 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (, Philadelphia, PA, USA, 2006), pp. 882–891

25. I. Mierswa, K. Morik, Automatic feature extraction for classifying audio data.
Mach. Learn. 58(2–3), 127–149 (2005)

26. B. Schuller, S. Reiter, G. Rigoll, Evolutionary feature generation in speech
emotions recognition, in Proceedings of the IEEE International Conference on
Multimedia and Expo (, Toronto, Canada, 2006), pp. 5–8

27. S. Krakowski, F. Pachet, P. Roy, Improving the classification of percussive
sounds with analytical features: a case study, in Proceedings of 8th
International Conference on Music Information Retrieval (ISMIR) (Vienna,
Austria, 2007), pp. 229–232

28. X. Shi, Y. Liang, H. Lee, C. Lu, L. Wang, An improved GA and a novel PSO-
GA-based hybrid algorithm. Inf. Process. Lett. 93(5), 255–261 (2005)

29. R.C. Eberhart, Y. Shi, Comparison between genetic algorithms and particle
swarm optimization, in Evolutionary Programming VII, in Lecture Notes in
Computer Science, ed. by V. Porto, N. Saravanan, D. Waagen, 1447th edn.
(Springer, Berlin, 1998), pp. 611–616

30. S. Kiranyaz, T. Ince, A. Yildirim, M. Gabbouj, Evolutionary artificial neural
networks by multi-dimensional particle swarm optimization. Neural Netw.
22(1448–1462) (2009)

31. S. Kiranyaz, T. Ince, A. Yildirim, M. Gabbouj, Fractional particle swarm
optimization in multi-dimensional search space. IEEE Trans. Syst. Man
Cybern. B. Cybernetics Journal 40(2), 298–319 (2010)

32. S. Kiranyaz, J. Pulkkinen, T. Ince, M. Gabbouj, Multi-dimensional evolutionary
feature synthesis for content-based image retrieval, in Proceedings of the IEEE
International Conference on Image Processing (, Brussels, Belgium, 2011), pp.
11–14

33. A.P. Engelbrecht, Heterogeneous particle swarm optimization, in Proceedings
of 7th International Conference on Swarm Intelligence (, Berlin, Germany,
2010), pp. 191–202

34. K. West, S. Cox, Features and classifiers for the automatic classification of
musical audio signals, in Proceedings of 5th International Conference on Music
Information Retrieval (Barcelona, Spain, 2004)

35. S. Kiranyaz, A.F. Qureshi, M. Gabbouj, A generic audio classification and
segmentation approach for multimedia indexing and retrieval. IEEE Trans.
Audio Speech Lang. Process. 14(3), 1062–1081 (2006)

36. S. Kiranyaz, M. Gabbouj, A generic content-based audio indexing and
retrieval framework. IEEE Proc. Vis. Image Signal Process. 153(3), 285–297
(2006)

37. J. Bullock, Libxtract, A lightweight library for audio feature extraction.
(2012). http://www.postlude.co.uk/postlude/downloads/LibXtract:
_a_lightweight_feature_extraction_library.pdf. Accessed 23 February 2012

38. F. Pachet, P. Roy, Exploring billions of audio features, in Proceedings of
International Workshop on Content Based Multimedia Indexing (, Bordeaux,
France, 2007), pp. 227–235

39. G. Peeters, A large set of audio features for sound description (similarity and
classification) in the CUIDADO project. (2003). http://recherche.ircam.fr/
equipes/analyse-synthese/peeters/ARTICLES/
Peeters_2003_cuidadoaudiofeatures.pdf. Accessed 23 February 2012

40. J. Breebaart, M. McKinney, Features for audio classification, in Proceedings of
Philips Symposium of Intelligent Algorithms (Eindhoven, Netherlands, 2002)

41. Y. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, in
7th Annual Conference on Evolutionary Programming, EP ’98, ed. by V.W.
Porto, N. Saravanan, D.E. Waagen, A.E. Eiben, 7th edn. (Springer-Verlag,
London, 1998), pp. 591–600

42. J. Kennedy, The particle swarm: social adaptation of knowledge, in
Proceedings of the IEEE International Conference on Evolutionary Computation
(, Indianapolis, IN, USA, 1997), pp. 303–308

43. J. Kennedy, Bare bones particle swarms, in Proceedings of the IEEE Swarm
Intelligence Symposium (, Indianapolis, IN, USA, 2003), pp. 80–87

44. B.S. Manjunath, P. Salembier, T. Sikora (eds.), Introduction to MPEG-7:
Multimedia Content Description Interface (Wiley (San Francisco, CA, 2002)

45. T.G. Dietterich, G. Bakiri, Solving multiclass learning problems via error-
correcting output codes. Artif. Intell. Res. 2(263–286) (1995)

46. W.J. Bainbridge, W.B. Toms, D.A. Edwards, S.B. Furber, Delay-insensitive, point-
to-point interconnect using m-of-n codes, in Proceedings of the 9th
International Symposium on Asynchronous Circuits and Systems (, Vancouver,
BC, Canada, 2003), pp. 132–140

doi:10.1186/1687-4722-2012-23
Cite this article as: Mäkinen et al.: An evolutionary feature synthesis
approach for content-based audio retrieval. EURASIP Journal on Audio,
Speech, and Music Processing 2012 2012:23.

Mäkinen et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:23 Page 23 of 23
http://asmp.eurasipjournals.com/content/2012/1/23




	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	List of Included Publications
	Introduction
	Spatial Audio Analysis
	Content-based Audio Management
	Audio Feature Generation
	Outline of the Thesis
	Main Results of the Thesis
	Shooter Localization
	Content-based Audio Classification and Retrieval


	Stochastic Optimization Methods
	Particle Filtering
	Markov Chains
	Markov Chain Monte Carlo Simulation
	Sequential Importance Sampling
	Sampling Importance Resampling Filter

	Particle Swarm Optimization
	Multi-dimensional Particle Swarm Optimization
	Fractional Global Best Formation
	Heterogeneous Particle Behaviour

	Simulated Annealing

	Spatial Audio Analysis and Firing Event Estimation
	Directional Audio Analysis
	Background and General Methods
	Limitations of Time Delay Estimation
	Direction of Arrival Estimation

	Gunshot Events and Geometry
	Muzzle Blast
	Shock Wave
	Firing Event Geometry

	Gunshot Detection and Recognition
	Transient Detection
	Transient Classification

	Bullet Parameter Estimation and Shooter Localization
	Preliminary Work
	Mathematical Shock Wave Modelling
	Spatial Likelihood Function
	Discussion


	Content-based Audio Management
	Machine Learning Principles
	Supervised Learning
	Unsupervised Learning

	Content-based Audio Classification
	Preliminary Work
	Audio Feature Extraction
	Feature Post-processing
	Classification Evaluation Metrics

	Collective Network of Binary Classifiers
	Topology of the Classifier Network
	Evolving Binary Classifiers
	Classification with CNBC
	Incremental Evolution of the CNBC
	Discussion


	Evolutionary Audio Feature Generation
	System Overview and Preliminary Work
	Feature Selection
	Feature Generation

	Particle Swarm Optimization for Feature Synthesis
	Evolutionary Feature Synthesis Overview
	Encoding of the Particles
	Retrieval Evaluation Metrics
	Fitness Measures

	Comparison to Artificial Neural Networks

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Errata and Clarifications for the Publications
	Publication 1
	Publication 2
	Publication 3
	Publication 4
	Publication 5
	Publication 6



