2 research outputs found

    Verification of the Tree-Based Hierarchical Read-Copy Update in the Linux Kernel

    Full text link
    Read-Copy Update (RCU) is a scalable, high-performance Linux-kernel synchronization mechanism that runs low-overhead readers concurrently with updaters. Production-quality RCU implementations for multi-core systems are decidedly non-trivial. Giving the ubiquity of Linux, a rare "million-year" bug can occur several times per day across the installed base. Stringent validation of RCU's complex behaviors is thus critically important. Exhaustive testing is infeasible due to the exponential number of possible executions, which suggests use of formal verification. Previous verification efforts on RCU either focus on simple implementations or use modeling languages, the latter requiring error-prone manual translation that must be repeated frequently due to regular changes in the Linux kernel's RCU implementation. In this paper, we first describe the implementation of Tree RCU in the Linux kernel. We then discuss how to construct a model directly from Tree RCU's source code in C, and use the CBMC model checker to verify its safety and liveness properties. To our best knowledge, this is the first verification of a significant part of RCU's source code, and is an important step towards integration of formal verification into the Linux kernel's regression test suite.Comment: This is a long version of a conference paper published in the 2018 Design, Automation and Test in Europe Conference (DATE

    Multi-core systems modeling for formal verification of parallel algorithms

    No full text
    Modeling parallel algorithms at the architecture level enables exploring side-effects of the weakly ordered nature of modern processors. Formal verification of such models with model-checking can ensure that algorithm guarantees will hold even in the presence of the most aggressive compiler and processor optimizations. This paper proposes a virtual architecture to model the effects of such optimizations. It first presents the OoOmem framework to model out-of-order memory accesses. It then presents the OoOisched framework to model the effects of out-of-order instruction scheduling. These two frameworks are explained and tested using weaklyordered memory interaction scenarios known to be affected by weak ordering. Then, modeling of user-level RCU (Read- Copy Update) synchronization algorithms is presented. It uses the virtual architecture proposed to verify that the RCU guarantees are indeed respected.</jats:p
    corecore