7 research outputs found

    Energy Efficient Parallel K-Means Clustering for an Intel Hybrid Multi-Chip Package

    Get PDF
    International audienceFPGA devices have been proving to be good candidates to accelerate applications from different research topics. For instance, machine learning applications such as K-Means clustering usually relies on large amount of data to be processed, and, despite the performance offered by other architectures, FPGAs can offer better energy efficiency. With that in mind, Intel ® has launched a platform that integrates a multicore and an FPGA in the same package, enabling low latency and coherent fine-grained data offload. In this paper, we present a parallel implementation of the K-Means clustering algorithm, for this novel platform, using OpenCL language, and compared it against other platforms. We found that the CPU+FPGA platform was more energy efficient than the CPU-only approach from 70.71% to 85.92%, with Standard and Tiny input sizes respectively, and up to 68.21% of performance improvement was obtained with Tiny input size. Furthermore, it was up to 7.2× more energy efficient than an Intel® Xeon Phi ™, 21.5× than a cluster of Raspberry Pi boards, and 3.8× than the low-power MPPA-256 architecture, when the Standard input size was used

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems

    Multi-core for k-means clustering on FPGA

    No full text
    In this paper, a configurable many-core hardware/ software architecture is proposed to efficiently execute the widely known and commonly used K-means clustering algorithm. A prototype was designed and implemented on a Xilinx Zynq- 7000 All Programmable SoC. A single core configured with the slowest configuration achieves a 10X speed-up compared to the software only solution. The system is fully scalable and capable of achieving much higher speed-ups by increasing its parallelism
    corecore