8,871 research outputs found

    Disparity map generation based on trapezoidal camera architecture for multiview video

    Get PDF
    Visual content acquisition is a strategic functional block of any visual system. Despite its wide possibilities, the arrangement of cameras for the acquisition of good quality visual content for use in multi-view video remains a huge challenge. This paper presents the mathematical description of trapezoidal camera architecture and relationships which facilitate the determination of camera position for visual content acquisition in multi-view video, and depth map generation. The strong point of Trapezoidal Camera Architecture is that it allows for adaptive camera topology by which points within the scene, especially the occluded ones can be optically and geometrically viewed from several different viewpoints either on the edge of the trapezoid or inside it. The concept of maximum independent set, trapezoid characteristics, and the fact that the positions of cameras (with the exception of few) differ in their vertical coordinate description could very well be used to address the issue of occlusion which continues to be a major problem in computer vision with regards to the generation of depth map

    A fast and robust hand-driven 3D mouse

    Get PDF
    The development of new interaction paradigms requires a natural interaction. This means that people should be able to interact with technology with the same models used to interact with everyday real life, that is through gestures, expressions, voice. Following this idea, in this paper we propose a non intrusive vision based tracking system able to capture hand motion and simple hand gestures. The proposed device allows to use the hand as a "natural" 3D mouse, where the forefinger tip or the palm centre are used to identify a 3D marker and the hand gesture can be used to simulate the mouse buttons. The approach is based on a monoscopic tracking algorithm which is computationally fast and robust against noise and cluttered backgrounds. Two image streams are processed in parallel exploiting multi-core architectures, and their results are combined to obtain a constrained stereoscopic problem. The system has been implemented and thoroughly tested in an experimental environment where the 3D hand mouse has been used to interact with objects in a virtual reality application. We also provide results about the performances of the tracker, which demonstrate precision and robustness of the proposed syste

    An Immersive Telepresence System using RGB-D Sensors and Head Mounted Display

    Get PDF
    We present a tele-immersive system that enables people to interact with each other in a virtual world using body gestures in addition to verbal communication. Beyond the obvious applications, including general online conversations and gaming, we hypothesize that our proposed system would be particularly beneficial to education by offering rich visual contents and interactivity. One distinct feature is the integration of egocentric pose recognition that allows participants to use their gestures to demonstrate and manipulate virtual objects simultaneously. This functionality enables the instructor to ef- fectively and efficiently explain and illustrate complex concepts or sophisticated problems in an intuitive manner. The highly interactive and flexible environment can capture and sustain more student attention than the traditional classroom setting and, thus, delivers a compelling experience to the students. Our main focus here is to investigate possible solutions for the system design and implementation and devise strategies for fast, efficient computation suitable for visual data processing and network transmission. We describe the technique and experiments in details and provide quantitative performance results, demonstrating our system can be run comfortably and reliably for different application scenarios. Our preliminary results are promising and demonstrate the potential for more compelling directions in cyberlearning.Comment: IEEE International Symposium on Multimedia 201

    DBCollab: Automated feedback for face-to-face group database design

    Full text link
    © 2017 Asia-Pacific Society for Computers in Education. All rights reserved. Developing effective teamwork and collaboration skills is regarded as a key graduate attribute for employability. As a result, higher education institutions are striving to help students foster these skills through authentic learning scenarios. Although face-to-face (f2f) group tasks are common in most classrooms, it is challenging to collect evidence about the group processes. As a result, to date, it is difficult to assess group tasks in ways other than through teachers' direct observations and students' self-reports, or by measuring the quality of their final product. However, there are other critical aspects of group-work that students need to receive feedback on, for example, interaction dynamics or the collaboration processes. This paper explores the potential of using interactive surfaces and sensors to track key indicators of group-work, to provide automated feedback about epistemic and social aspects. We conducted a pilot study in an authentic classroom, in the context of database design. The contributions of this paper are: 1) the operationalisation of the DBCollab tool as a means for supporting group database design and collecting multimodal traces of the activity using interactive surfaces and sensors; and 2) empirical evidence that points at the potential of presenting these traces to group members in order to provoke immediate and post-hoc productive reflection about their activity

    Activity Recognition based on a Magnitude-Orientation Stream Network

    Full text link
    The temporal component of videos provides an important clue for activity recognition, as a number of activities can be reliably recognized based on the motion information. In view of that, this work proposes a novel temporal stream for two-stream convolutional networks based on images computed from the optical flow magnitude and orientation, named Magnitude-Orientation Stream (MOS), to learn the motion in a better and richer manner. Our method applies simple nonlinear transformations on the vertical and horizontal components of the optical flow to generate input images for the temporal stream. Experimental results, carried on two well-known datasets (HMDB51 and UCF101), demonstrate that using our proposed temporal stream as input to existing neural network architectures can improve their performance for activity recognition. Results demonstrate that our temporal stream provides complementary information able to improve the classical two-stream methods, indicating the suitability of our approach to be used as a temporal video representation.Comment: 8 pages, SIBGRAPI 201
    • 

    corecore