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Abstract: The development of new interaction paradigms requires a natural interaction. This means that people should 
be able to interact with technology with the same models used to interact with everyday real life, that is 
through gestures, expressions, voice. Following this idea, in this paper we propose a non intrusive vision 
based tracking system able to capture hand motion and simple hand gestures. The proposed device allows to 
use the hand as a “natural” 3D mouse, where the forefinger tip or the palm centre are used to identify a 3D 
marker and the hand gesture can be used to simulate the mouse buttons. The approach is based on a 
monoscopic tracking algorithm which is computationally fast and robust against noise and cluttered 
backgrounds. Two image streams are processed in parallel exploiting multi-core architectures, and their 
results are combined to obtain a constrained stereoscopic problem. The system has been implemented and 
thoroughly tested in an experimental environment where the 3D hand mouse has been used to interact with 
objects in a virtual reality application. We also provide results about the performances of the tracker, which 
demonstrate precision and robustness of the proposed system. 

1. INTRODUCTION 

In the recent years there has been a growing interest in the scientific and industrial communities to develop 
innovative devices allowing a natural interaction with machines, and recent products, like the Nintendo Wii 
console and the Microsoft Surface, try to introduce novel habits for computer users. From this point of view, 
one of the most natural ways to interact with objects is using our bare hands. In real world, we use our hands to 
touch, grasp and move the objects and we typically use our fingers to point at something. Acting in the same 
way on the objects, allows people to transfer already acquired abilities to the interaction with the computer and 
to expand possibilities and complexities in human-to-computer communication.  
Several commercial gesture based devices exist at present. They usually require extraneous wearable hardware, 
such as markers or sensing gloves. These solutions provide high quality results but they are expensive, intrusive 
and they could disturb the movements of the user.  
On the contrary, vision based techniques could offer a simple, expressive, and meaningful manner to interact 
with the computer. These techniques are cost-effective and non invasive, and they have been used in many 
contexts.  
In this paper, we propose a simple, fast and robust hand tracking system that can be used to develop a “natural” 
3D mouse. The output of the tracker is the position of a 3D marker and an indication of the actual posture of the 
hand, which can be used to mimic the click of the mouse buttons. Our system uses two video cameras and the 
proposed approach separates the elaboration of the two image streams, refining the results in a merging stage at 
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the end of the process. In more details, for each image stream, we evaluate the perceived hand posture and the 
2D position, on the image plane, of the reference point. The results are then combined in order to evaluate the 
final 3D marker position and hand posture. 
Experimental results demonstrate that the proposed system is fast, robust and computationally manageable on 
medium level computers. The paper is organized as follows. In Section 2, we describe our approach. Section 3 
evaluates the experimental results. Concluding remarks are reported in Section 4. 

1.1 Related works 

The general approach to vision based hand tracking usually requires three main processes: hand segmentation, 
hand tracking and gesture estimation. Colour is the most common image clue for feature extraction (Bradski 
(1998), Chen, Fu and Huang (2003), Pantrigo, Montemayor and Sanchez (2005)). Other visual cues, like 
motion, edges and shading have been proposed in order to reduce influences of varying illumination and 
cluttered background (Cui and Weng (2000), Liu and Jia (2004)). Recent results in integrating different visual 
information offer more robust solutions (Akyol and Alvarado (2001), Shan Lu et al (2003)). 
Several approaches have been applied to the tracking problem: a review of the most popular algorithms is 
presented in Mahmoudi and Parviz (2006). The CAMShift algorithm (Bradski, 1998) is a robust nonparametric 
technique derived form Mean Shift (Cheng, 1995). Improvements of CAMShift algorithm can be found in Liu 
et al. (2003), Zhai et al.  (2005). The Condensation algorithm (Isard and Blake, 1998)  is a powerful stochastic 
approach based on Monte Carlo method that has been applied to several challenging environments, such as 
wearable computers (Liu and Jia (2004)) and real-time humanoid interaction (Gumpp et al, 2006). 
Improvements of Condensation are Icondesation (Isard and Blake, 1998), particle filtering (Weiser and Brown 
(1995), Shan et al (2004)), smart particle filtering (Bray, Koller-Meier and Van Gool, 2004) and local search 
particle filter (Pantrigo, Montemayor and Sanchez, 2005). Articulated and deformable 3D hand model driven 
techniques have also been proposed by Stenger, Mendonca and Cipolla (2001), Heap and Hogg (1996). 
As for the gesture estimation problem, a good survey on the subject is Erol et al. (2007). We can have partial 
pose approaches (Oka, Sato and Koike (2002), Letessier and Bèrard (2004)), which are usually based on rough 
models of the hand and cannot reconstruct all the degrees of freedom (DOF) of the hand, and full DOF 
approaches, usually exploiting complex 3D models (Drummond and Cipolla (2002)), and performing single 
frame pose estimation offering the advantage of self-initializing and re-initializing algorithms, capable of 
handling fast hand motion where time coherence is an useless clue (Stenger et al, (2004), Tomasi, Petrov and 
Sastry, (2003)). 

2. THE MULTIPLE CAMERA APPROACH TO HAND TRACKING 

The goal of our work is to develop a simple and effective input device which allows a “natural” way of 
interacting with the computer using the bare hands. In our scenario, a single user sitting at a desktop interacts 
with a VR application picking 3D points, selecting and moving objects in the environment or changing the 
view on the simulated world. To perform these tasks, the 3D counterpart of a desktop mouse, that is a device 
capable of moving a 3D marker in the environment and to issue commands by pushing some buttons, could be 
sufficient. From the point of view of the user, which is immersed in a virtual environment where the objects are 
floating in front of his eyes, the most natural way to select an object would be by touching it, to change its 
position by moving it with the hand, and picking a location by pointing it.  To select a different view of the 
scene, a commonly used approach is the virtual trackball paradigm: the objects are enclosed in a glass ball 
which can be rotated around its centre to change the world view.  Again, a natural way to perform this 
operation would be to touch the glass ball and rotate it with the hand. Therefore, the position of the forefinger 
tip can be used as a “natural” 3D marker that can be controlled moving the hand (Figure 1a-b). A simple way to 
simulate the click of the mouse could be to associate the event to a specific, and comfortable, hand posture. For 
instance, when the forefinger is extended, such a posture could be the one where also the thumb is stretched out 
(Figure 1c-d). Thumb-index enslaving is not a problem for ergonomy, since Olafsdottir (2005) shows that the 
indices of digit interaction does not depend whether the thumb is one of the involved digits. 
 



 

 
Figure 1: interaction with the virtual environment 

 
The click of a second button, e.g. the right button, could then be mimicked with another posture. We 
experienced that extending another finger is not comfortable for the user, while it is much easier to close the 
hand. Using this posture, the forefinger tip cannot be used anymore as 3D marker, and another reference point, 
for instance the centre of the palm, can be chosen. 
The proposed hand tracking system uses two cameras to reconstruct the (x,y,z) position of the marker and of 
the hand posture. The two cameras are located on the sides of the desktop where the user sits and are positioned 
and oriented in order to observe a common area, the active area, where the user can move its hand.  
Our approach works in two phases. First, the information about 2D marker position and perceived hand posture 
are extracted from each image stream separately. Then, these data are combined in order to obtain precise 3D 
information. The rationale of this approach is that the 2D information can be obtained in a fast and reliable 
way, and that processing separately the two image streams allows the two threads to be executed in parallel on 
multi-cpu or multi-core based architecture, guaranteeing a substantial improvement of the execution times.  
The result is a simple and computationally fast system, which is very robust against noise and cluttered 
backgrounds. The outline of the proposed hand tracking system is the following. 
After initializing some of the parameters used by the system, the two image streams are processed separately. 
This step involves three processes: 

1. detection/tracking: identifies in the incoming image the user hands and tracks it along the video 
sequence 

2. segmentation: extracts the silhouettes of the hand from the incoming image 
3. recognition: identifies the posture of the hand and the 2D marker position 

Finally, stereoscopy is used to combine 2D information and to obtain the required 3D marker posture and hand 
gesture. In the following, the single components of these processes will be described in details. 
 

2.1 Initialization 

Initialization is an offline process that involves several system’s parameters.  
First, the camera needs to be calibrated. This process establishes a relation between the image planes of the 
cameras and a fixed reference system in the 3D world. In this work we used the approach described in the Open 
Computer Vision Library (n.d.).  
Second, since the tracking algorithm uses a probability distribution image of the chromatic components of the 
objects to be tracked, a reference colour model needs to be initialized. In this case, we are interested in 
detecting skin-like pixels. It has been demonstrated (Bradski, 1998) that different skin colour models are not 
needed for different races of people. This fact allows building a priori a skin model that can be used to identify 
the hand. This is modelled with a simple chromaticity histogram, created interactively by selecting a part of the 
image corresponding to the hand. The RGB values of the pixels of the selected region are converted into the 
Hue Saturation Value (HSV) colour system, allowing to create a simple colour model taking 1D histograms 
from the hue channel.  



 

2.2 Single-stream processing 

Single stream processing is based on the approach presented by Bottino and Laurentini (2007). It combines 
several computer vision algorithms, in order to exploit their strengths and to minimize their weakness.  

2.2.1 Detection/tracking 

The detection/tracking module is a state machine, whose state diagram is shown in Figure 2. In the detection 
state, the input image is processed until a hand enters the image. Then, in the tracking state, the hand is tracked 
until it exits the image.  

 
Figure 2: detection/tracking module 

 
This module uses two different algorithms: Mean shift (Cheng, 1995) for object detection and CAMShift 
(Bradski, 1998) for object tracking 
The input of both algorithms is a probability image, where pixels more likely to belong to the searched object 
have a higher value. This probability image is obtained by back projecting on the image the chromaticity 
histogram evaluated during the initialization step. The probability image is then filtered, as suggested by 
Bradski (1998), in order to ignore pixels whose hue value is not reliable. An example of an image frame and its 
corresponding probability image is shown in Figure 3a and  Figure 3b. 
Mean shift uses a search window, whose size is fixed, which is iteratively moved along the image “climbing” 
the probability distribution until the optimum is reached. At each step, the centre of mass of the search 
windows is evaluated and the search window is centred on it. In our implementation, in order to avoid 
systematic errors, the initial position of the search window is randomly set in several positions of the image. 
The final location giving the best score is chosen  (Figure 3c and  Figure 3d). To find when an object is 
detected, the percent of object-like pixels in the search window is compared with a pre-defined threshold. 
CAMShift is a generalization of the Mean shift. While Mean shift is designed for static distributions, 
CAMShift is designed for dynamically changing distributions, such as those occurring in video sequences 
where the tracked object moves, so that size and location of the probability distribution change in time. Hence, 
at every iteration, also the size of the search windows is adapted to the incoming distribution. Again, to find 
when an object is lost, the percent of object-like pixels in the search window is compared with a pre-defined 
threshold.  
The output of this module is a flag indicating if the object has been detected and the region R where it is 
located. 



 

 
Figure 3: a) An incoming image and b) the corresponding histogram back projection. c) The initial detection region. d) The 
Mean Shift moves the R region to the optimum. 

2.2.2 Segmentation 

The segmentation module, given position and dimension of R, extracts the silhouette of the hand from the 
probability image. First, the probability image is thresholded in order to obtain a binary image. Then, 
morphological operators are applied to remove spurious pixels and holes are removed with a flood fill 
algorithm. Finally, the bounding box of the main connected component contained in the search window is 
evaluated. Any further processing on the images will take place only on this Region of Interest (ROI), reducing 
the computational burden. Other disturbing connected components, not belonging to the hand, are discarded 
(Figure 4). 
 

 
Figure 4: segmentation process. a) source image, b) probability image and R region, c) thresholded image, d) the main 
connected component in R and the correspondng ROI. 

2.2.3 Recognition 

The input of this process is the silhouette of the moving object and the R and ROI regions. The output is the 2D 
position of the marker and the posture of the hand. 
A simple 3D model of the hand is used to reconstruct the desired information. It is composed by one to three 
ellipsoids, depending on the gesture to represent. Each ellipsoid is represented in matrix form as x’Qx, where x’ 
= [x y z 1] and Q is a coefficient matrix. Using this representation, every transformation (translation, rotation, 
scaling) can be applied to the model with a simple matrix multiplication. The model has 7 degrees of freedom, 
3 for the position, 3 for the orientation and 1 for the posture, which determines also the number of ellipsoids 
composing the model. The posture can assume three discrete values: 0, hand closed 1, hand closed with the 



 

forefinger extended, and 2, hand closed with thumb and forefinger extended. The three postures, the shapes of 
the corresponding models and the assigned values are shown in Figure 5. The projections of the ellipsoids on a 
plane are quadrics and can be obtained, again, with a simple multiplication between matrices. Then, knowing 
the projection matrix obtained from calibration is sufficient to project the model on the image plane. 

 
Figure 5: the three hand postures identifiable, the corresponding model shape and the assigned value. 
 
The state of the model is reconstructed using the ICondensation algorithm (Liu and Jia, 2004), which is a 
combination of the statistical technique of importance sampling with the Condensation algorithm (Isard and 
Blake, 1998). Basically, it tries to approximate the unknown statistic distribution of the state of a process with a 
discrete set of samples and associated weights. This set evolves iteratively from an initial set of random 
samples, and at each step t their weights are updated. From these weights, it is possible to predict the 
probability distribution over the search space at time t+1. Thus, samples with higher probability are more likely 
to be propagated over time. The process is iterated for a predefined number of steps, and the final state is given 
by the weighted sum of the final samples. In our case, each sample represents a model state and the weighting 
function is defined from the projection of the model on the image plane. Given Is, the result of the exor of 
model projection and silhouette of the hand, the weight of the sample s is given by: 
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 The initial set is created from random samples in the neighborhood of an initial guess of the hand state. This is 
obtained from an analysis of the incoming silhouette, which works as follows. From the segmentation process 
we have the R and ROI regions (Figure 6). The palm of the hand as a high probability to fall into R, while 
finger pixels are mainly in the area (ROI-R). Therefore, R can be used to extract 2D position and orientation of 
the palm.  
The first order moments of R give a reasonable indication of the centre of the palm, while dimension and 
orientation of the ellipse corresponding to the palm can be deduced from the covariance ellipse built on the 
second order moments. From these parameters, we can obtain, given the dimension of the user hand, a rough 
approximation of the distance from the camera and of the orientation of the ellipsoid corresponding to the 3D 
palm. An initial indication of the hand gesture can be obtained analyzing the moments of the ROI region. In 
particular, the third order moments give us an indication of the asymmetry of the image along its principal axes. 
A significant asymmetry along the major axis is a strong indication of the forefinger presence, while a 
significant asymmetry along the minor axis is an indication of the thumb presence. 

 
Figure 6: ROI, external rectangle, and R, inner rectangle 

 



 

 
Figure 7: Marker identification. a) Input data: model (left) and silhouette (right). b) The model is used to mask 
the palm. c) Curvature evaluation of boundary points. d) The marker is located on the point with maximum 
curvature. 
 
The output of Icondensation is then used to identify precisely the 2D position of the marker. If the posture is 0 
(closed hand), the marker is given by the centre of the projection of the 3D palm. Otherwise, we identify the 
fingertip projecting the palm on the image and using it to mask the region corresponding to the forefinger. In 
case the posture is 2, the connected component of interest is the one overlapping the projection of the 3D 
ellipsoid corresponding to the forefinger. Identification of the marker position is based on the analysis of the 
local curvature of the boundary of the obtained region. The farthermost point at maximal curvature away from 
the centre of the projection of the palm, is taken as the 2D position of the fingertip. An example can be seen in 
Figure 7. 

2.2.4 Merging 

The merging process involves two steps: 
• a reconstruction step, where the 3D position of the marker and the hand posture are reconstructed on 

the base of the information evaluated from the left and right images  
• a data filtering step, where a Kalman filter is used to smooth the noise in the extracted data 

Regarding the first step, the hand posture is evaluated by means of the following voting scheme: 
  
Table 1: the voting scheme used to evaluate the hand posture. 

0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

Left Camera Pose

Right 
Camera 

Pose  
 
As a matter of facts, one or more fingers can be hidden in one image, but visible in the other. If the posture 
number indicates the number of extended fingers, our voting scheme will choose the maximal value identified 
for left and right posture. 
When the posture is 0 or when the forefinger is visible in both images, the 3D marker position is evaluated 
intersecting the lines back projection in 3D the marker positions on the image planes from the corresponding 
optical centres. The line equation is evaluated by pseudo inverting the projection matrix. Due to the noise 
introduced by the previous reconstruction processes, the lines unlikely intersect each other. So we choose as 
intersection the point at minimal distance from both lines.  

When a reference point, such as the fingertip in our example, is visible in only one image, the marker 
position can be reconstructed in the following way. First, we assume that the forefinger tip lies on the principal 
plane of symmetry of the hand. Then we extract the orientation of this plane, P, from the model corresponding 
to the image where the forefinger is visible. Finally, we take the plane P’ parallel to P and passing through the 
3D position of the palm centre and we intersect it with the line back projecting the visible forefinger tip.  



 

3. SYSTEM EVALUATION  

The proposed hand tracking device has been implemented and tested on a PC with an Intel DualCore E6600 
CPU, 1GB of RAM. The frame grabber used for image capturing is a cost-effective PCI capture board and 
guarantees an overall 240 color frames per second. The system includes two color cameras, with maximal 
frame rate of 50 fps, and 752x582 color images. According to the literature on the subject and referring to the 
available commercial products, the device can be evaluated according to a set of desirable characteristics. 

3.1 Robustness 

For robustness we mean the quality of being able to cope well with variations in the operating environment 
with minimal loss of functionality. 
 
Initialization and re-initialization 
Since the hand is continuously entering and exiting the active area, the system must guarantee a robust 
identification of the hand presence. In a single image stream, when the hand is tracked, the CAMShift 
algorithm provides useful information on the object identified in order to understand when it exits the image. 
At the same time, Mean shift can recover very efficiently the object as soon as it enters again the image. 
Distributing casually the search window over the image allows easily to “hook” the object and then to identify 
its position. Therefore, we can state that the system provides robust initialization and re-initialization of the 
tracking components at thread level, which is reflected into the robustness of the two integrated streams. 
 
Cluttered backgrounds 
The system is not sensible to non uniform backgrounds or moving objects, unless their chromatic distribution is 
not similar to the one of the tracked object. Examples can be seen in Figure 3 and Figure 4, where a complex 
background is present. Some small groups of pixels not belonging to the hand can be present in the probability 
image, but they are discarded during segmentation. For skin-like objects entering the image, such as leather 
tissues, we stress that the CAMShift algorithm is very robust against distracters. Once CAMShift is locked onto 
the mode of a colour distribution, it will tend to ignore other nearby but non-connected distributions.  
It is true, however, that some problems can be caused when the disturbing object and the hand form a 
connected component or when a disturbing object, whose area is bigger then the identification threshold, is 
detected in the image when no hand is present. This produces false hand identification.  
 
Independence from illumination 
The system is guaranteed to work for a wide range of variations of illumination intensity since the segmentation 
process is theoretically independent from the illumination conditions. However, if the global illumination falls 
below a certain threshold, the segmentation algorithm does not give good results anymore. The same problem 
happens when the global level of illumination is too high, for instance for direct sunlight hitting the working 
area, since the camera saturates. 

3.2 Computational manageability 

The machine used during the test can be considered as a medium cost processing unit (the complete system, 
including capture board and camera has a cost lower than 1.500€). Processing the image streams at a frame rate 
of 25 frames/sec, the mean latency is 20ms, and each single CPU is used at 30% of its capacity. The maximal 
mean update rate of 50 updates/sec. A faster computational unit guarantees to run the system reliably at 50 
Hertz, which is adequate to the frequencies of normal gestures in human-computer interaction. 



 

Figure 8: a) The test application. b) selecting and moving 
3D objects 
 
We developed, for test purpose, a simple VR application shown in Figure 8. The user can move the pointer 
(represented by a sphere), select and drag objects around the virtual world and change the user’s view (see 
Figure 1 for a schematic representation).  When the VR application is running another 25% of a single core is 
used. This demonstrates that there are resources available for other tasks, and that the system can be effectively 
used as an input device for other applications. 

3.3 Performances of the HT system 

Ground truth data was used to derive a quantitative measure of tracker’s accuracy. Taken a grid of points whose 
3D position is known, the accuracy can be evaluated through the difference between the 3D positions 
reconstructed from the 2D projections of the reference points and the ground truth data. Since the accuracy is 
not constant, the reference points must be located throughout the active area, in order to evaluate a mean 
accuracy value. As a result, we obtain an accuracy of 1.40 mm RMS. 
The resolution is the minimal difference between two 3D positions detectable as different from the tracker, that 
is when their projections on the image planes are different, the minimal distance being one pixel. Therefore the 
resolution is given by the ray of the sphere enclosing all the 3D points obtained by back projecting 2D image 
points at one pixel distance point with the reference projection. Also the resolution is not uniform in the active 
area and the punctual resolution is computed and averaged over the set of reference points. The obtained mean 
resolution is 0.79 mm RMS.  
Jitter and drift can be computed by placing the forefinger in a fixed position and computing the standard 
deviation of the reference position. The resulting jitter is 0.46 mm RMS, and the drift is null. The last result 
comes from the fact that none of the algorithms used introduce any drift in its output. It should be also outlined 
the fact that the jitter is lower then the tracker resolution, producing a stable output. 
The characteristics of the tracker are summarized in Table 2. These results show that the tracker provides a 
sufficient precision for many applications. 
 
 Table 2: Summary of tracker characteristics 

spatial position (3) Jitter 0.4 mm RMS
hand posture (1) Drift none

Accuracy 1.4 mm RMS Latency 20 ms
Resolution 0.8 mm RMS Update Rate >25 Hz

Tracker          
data

 

4. CONCLUSIONS 

In this paper we have proposed a novel hand tracking system that can be used as object manipulation interface 
to use the bare hand for navigation, selection and manipulation tasks in virtual environments. The system is non 
intrusive, and reconstructs the position of a 3D marker and simple hand postures using two separate image 
streams. Each stream is processed separately with a monoscopic algorithm, which is very robust against noise 
and cluttered backgrounds. This allows reducing computing times parallelizing the processing of the two 
streams on multi-core or multi-cpu machines. Information from the two image planes are then combined in 
order to reconstruct the required 3D data.   
The system has been implemented, and the tests demonstrates that it can run in real time (up to 50 samples per 
second) on today’s desktop computer using off-the-shelf hardware components. Moreover, the device uses only 



 

the 30% of the computing resources, allowing the execution on the same machine of other applications. As for 
precision, the results are satisfactory, showing an accuracy of 1.4mm, a resolution of 0.8mm and a jitter of 0.4 
mm. 
At present, the system requires that only one hand is present in the active area. As future work, we are planning 
to expand the system in order to use both hands for interaction. 
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