8 research outputs found

    Partial Stability Concept in Extremum Seeking Problems

    No full text
    The paper deals with the extremum seeking problem for a class of cost functions depending only on a part of state variables of a control system. This problem is related to the concept of partial asymptotic stability and analyzed by Lyapunov's direct method and averaging schemes. Sufficient conditions for the practical partial stability of a system with oscillating inputs are derived with the use of Lie bracket approximation techniques. These conditions are exploited to describe a broad class of extremum-seeking controllers ensuring the partial stability of the set of minima of a cost function. The obtained theoretical results are illustrated by the Brockett integrator and rotating rigid body.Comment: This is the author's version of the manuscript accepted for publication in the Proceedings of the Joint 8th IFAC Symposium on Mechatronic Systems and 11th IFAC Symposium on Nonlinear Control Systems (MECHATRONICS & NOLCOS 2019

    A Tutorial on Distributed Optimization for Cooperative Robotics: from Setups and Algorithms to Toolboxes and Research Directions

    Full text link
    Several interesting problems in multi-robot systems can be cast in the framework of distributed optimization. Examples include multi-robot task allocation, vehicle routing, target protection and surveillance. While the theoretical analysis of distributed optimization algorithms has received significant attention, its application to cooperative robotics has not been investigated in detail. In this paper, we show how notable scenarios in cooperative robotics can be addressed by suitable distributed optimization setups. Specifically, after a brief introduction on the widely investigated consensus optimization (most suited for data analytics) and on the partition-based setup (matching the graph structure in the optimization), we focus on two distributed settings modeling several scenarios in cooperative robotics, i.e., the so-called constraint-coupled and aggregative optimization frameworks. For each one, we consider use-case applications, and we discuss tailored distributed algorithms with their convergence properties. Then, we revise state-of-the-art toolboxes allowing for the implementation of distributed schemes on real networks of robots without central coordinators. For each use case, we discuss their implementation in these toolboxes and provide simulations and real experiments on networks of heterogeneous robots

    Multi-agent source seeking via discrete-time extremum seeking control

    No full text
    Recent developments in extremum seeking theory have established a general framework for the methodology, although the specific implementations, particularly in the context of multi-agent systems, have not been demonstrated. In this work, a group of sensor-enabled vehicles is used in the context of the extremum seeking problem using both local and global optimisation algorithms to locate the extremum of an unknown scalar field distribution. For the former, the extremum seeker exploits estimates of gradients of the field from local dithering sensor measurements collected by the mobile agents. It is assumed that a distributed coordination which ensures uniform asymptotic stability with respect to a prescribed formation of the agents is employed. An inherent advantage of the frameworks is that a broad range of nonlinear programming algorithms can be combined with a wide class of cooperative control laws to perform extreme source seeking. Semi-global practical asymptotically stable convergence to local extrema is established in the presence of field sampling noise. Subsequently, global extremum seeking with multiple agents is investigated and shown to give rise to robust practical convergence whose speed can be improved via computational parallelism. Nonconvex field distributions with local extrema can be accommodated within this global framework

    Hessian Estimation Based Adaptive and Cooperative Extremum Localization

    Get PDF
    The thesis is on Hessian estimation based adaptive and cooperative extremum localization via a single mobile sensory agent as well as a network of multiple such agents. First, we develop a continuous time adaptive extremum localization of an arbitrary quadratic function F(·) based on Hessian estimation, using the measured signal intensity via a single mobile sensory agent. A gradient based adaptive Hessian parameter estimation and extremum localization scheme is developed considering a linear parametric model of field variations. Next, we extend the proposed single agent based Hessian estimation and extremum localization scheme to consensus based cooperative distributed scheme to be implemented by a network of such sensory agents.For the networked multi-agent case, a consensus term is added to the base adaptive laws to obtain enhanced estimation cooperatively. Stability and convergence analysis of the proposed scheme is studied, establishing asymptotic convergence of the Hessian parameters and location estimates to their true values robustly, provided that the motion of agent(s) satisfies certain persistence of excitation(PE) conditions. Furthermore, we show that for a network of connected agents, the PE requirements can be distributed to the agents so that the requirement on each agent is more relaxed and feasible. Later, we design an adaptive motion control scheme for steering a mobile sensory agent in 2D toward the source of a signal field F(·) using the signal intensity the agent continuously measures at its current location. The proposed adaptive control design is based on the Hessian estimation based adaptive extremum localization. Results are displayed to verify that the proposed scheme is stable, provides asymptotic convergence of the Hessian parameter and extremum location estimates to their true values and the agent location to the source location, robustly to signal measurement noises

    COOPERATIVE AND CONSENSUS-BASED CONTROL FOR A TEAM OF MULTI-AGENT SYSTEMS

    Get PDF
    Cooperative control has attracted a noticeable interest in control systems community due to its numerous applications in areas such as formation flying of unmanned aerial vehicles, cooperative attitude control of spacecraft, rendezvous of mobile robots, unmanned underwater vehicles, traffic control, data network congestion control and routing. Generally, in any cooperative control of multi-agent systems one can find a set of locally sensed information, a communication network with limited bandwidth, a decision making algorithm, and a distributed computational capability. The ultimate goal of cooperative systems is to achieve consensus or synchronization throughout the team members while meeting all communication and computational constraints. The consensus problem involves convergence of outputs or states of all agents to a common value and it is more challenging when the agents are subjected to disturbances, measurement noise, model uncertainties or they are faulty. This dissertation deals with the above mentioned challenges and has developed methods to design distributed cooperative control and fault recovery strategies in multi-agent systems. Towards this end, we first proposed a transformation for Linear Time Invariant (LTI) multi-agent systems that facilitates a systematic control design procedure and make it possible to use powerful Lyapunov stability analysis tool to guarantee its consensus achievement. Moreover, Lyapunov stability analysis techniques for switched systems are investigated and a novel method is introduced which is well suited for designing consensus algorithms for switching topology multi-agent systems. This method also makes it possible to deal with disturbances with limited root mean square (RMS) intensities. In order to decrease controller design complexity, a iii method is presented which uses algebraic connectivity of the communication network to decouple augmented dynamics of the team into lower dimensional parts, which allows one to design the consensus algorithm based on the solution to an algebraic Riccati equation with the same order as that of agent. Although our proposed decoupling method is a powerful approach to reduce the complexity of the controller design, it is possible to apply classical pole placement methods to the transformed dynamics of the team to develop and obtain controller gains. The effects of actuator faults in consensus achievement of multi-agent systems is investigated. We proposed a framework to quantitatively study actuator loss-of-effectiveness effects in multi-agent systems. A fault index is defined based on information on fault severities of agents and communication network topology, and sufficient conditions for consensus achievement of the team are derived. It is shown that the stability of the cooperative controller is linked to the fault index. An optimization problem is formulated to minimize the team fault index that leads to improvements in the performance of the team. A numerical optimization algorithm is used to obtain the solutions to the optimal problem and based on the solutions a fault recovery strategy is proposed for both actuator saturation and loss-of-effectiveness fault types. Finally, to make our proposed methodology more suitable for real life scenarios, the consensus achievement of a multi-agent team in presence of measurement noise and model uncertainties is investigated. Towards this end, first a team of LTI agents with measurement noise is considered and an observer based consensus algorithm is proposed and shown that the team can achieve H∞ output consensus in presence of both bounded RMS disturbance input and measurement noise. In the next step a multi-agent team with both linear and Lipschitz nonlinearity uncertainties is studied and a cooperative control algorithm is developed. An observer based approach is also developed to tackle consensus achievement problem in presence of both measurement noise and model uncertainties
    corecore