4 research outputs found

    Networked Control System: Overview and Research Trends

    Get PDF
    Abstract-Networked control systems (NCSs) have been one of the main research focuses in academia as well as in industry for many decades and have become a multidisciplinary area. With these growing research trends, it is important to consolidate the latest knowledge and information to keep up with the research needs. In this paper, the NCS and its different forms are introduced and discussed. The beginning of this paper discusses the history and evolution of NCSs. The next part of this paper focuses on different fields and research arenas such as networking technology, network delay, network resource allocation, scheduling, network security in real-time NCSs, integration of components on a network, fault tolerance, etc. A brief literature survey and possible future direction concerning each topic is included

    Machine diagnosis based on artificial immune systems

    Get PDF
    Nowadays, many of the manufactory and industrial system has a diagnosis system on top of it, responsible for ensuring the lifetime of the system itself. It achieves this by performing both diagnosis and error recovery procedures in real production time, on each of the individual parts of the system. There are many paradigms currently being used for diagnosis. However, they still fail to answer all the requirements imposed by the enterprises making it necessary for a different approach to take place. This happens mostly on the error recovery paradigms since the great diversity that is nowadays present in the industrial environment makes it highly unlikely for every single error to be fixed under a real time, no production stop, perspective. This work proposes a still relatively unknown paradigm to manufactory. The Artificial Immune Systems (AIS), which relies on bio-inspired algorithms, comes as a valid alternative to the ones currently being used. The proposed work is a multi-agent architecture that establishes the Artificial Immune Systems, based on bio-inspired algorithms. The main goal of this architecture is to solve for a resolution to the error currently detected by the system. The proposed architecture was tested using two different simulation environment, each meant to prove different points of views, using different tests. These tests will determine if, as the research suggests, this paradigm is a promising alternative for the industrial environment. It will also define what should be done to improve the current architecture and if it should be applied in a decentralised system

    Multi-agent platform for Fault Tolerant Control Systems

    No full text
    This paper proposes a new multi-agent platform for Fault Tolerant Control (FTC) Systems. Several multi-agent platforms exist to deal with different problems but none of them to deal with control systems tolerant to faults using the Matlab/Simulink environment, which is in our days the scientific bench to this kind of research. When dealing with large-scale complex networked control systems (NCS),designing FTC systems is a very difficult task due to the large number of sensors and actuators spatially distributed and network connected. To solve this issue, the FTC platform presented in this paper uses simple and verifiable principles coming mainly from a decentralized design based on causal modelling partitioning of the NCS and distributed computing using multiagent systems paradigm, allowing the use of agents with well established FTC methodologies or new ones developed taking into account the NCS specificities.info:eu-repo/semantics/publishedVersio
    corecore