

Pedro Miguel Lima Monteiro
Licenciado em Ciências da Engenharia Electrotécnica e de

Computadores

Machine Diagnosis Based on Artificial
Immune Systems

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientador: José António Barata de Oliveira, Professor
Doutor, FCT-UNL

Co-orientador: André Dionísio Bettencourt da Silva
Parreira Rocha, MSc, UNINOVA/CTS

Setembro de 2015

Pedro Miguel Lima Monteiro
Licensed in Electrical and Computer Engineering Sciences

Machine Diagnosis Based on Artificial
Immune Systems

Dissertation for obtaining Master’s Degree in Electrical and
Computer Engineering

Supervisor: José António Barata de Oliveira, Professor
Doutor, FCT-UNL

Co-supervisor: André Dionísio Bettencourt da Silva
Parreira Rocha, MSc, UNINOVA/CTS

September 2015

i

Machine Diagnosis Based on Artificial Immune Systems

Copyright © Pedro Miguel Lima Monteiro, Faculdade de Ciências e Tecnologia, Universidade

Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo

e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos

reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha

a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e

distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado

crédito ao autor e editor.

iii

To Juliana and my Family

v

Acknowledgments

Under this section, I would like to express my sincere gratitude to all those who

contributed for the completion of this dissertation.

Firstly and foremost, I would like to thank my advisor, PhD Professor José Barata, for the

opportunity of working in this subject, which is of major interest to me. This opportunity allowed

me to develop myself as both person and academically speaking.

I would also like to express my deepest regards for my co-advisor, PhD Student André

Rocha. For all the support, interest and dedication showed. A grand part of the achieved success

is due to him.

This section would not be complete without a sincere thank you to Mafalda Parreira,

whose company and assistance where of terrible importance for the conclusion of this document.

Furthermore, I would like to thank Ricardo Peres for his sympathy and friendship, in

integrating myself in the workgroup.

I would also like to thank Hugo Rodrigues for all the friendship throughout the years, a

friend in the true sense of the word.

A heartfelt and grateful thank you to Juliana, for enduring my temper in the hardest times,

for being a consolation when things went sorrow, for all the help and assistance you gave me. To

you, for all you are to me, thank you.

Erro! Utilize o separador Base para aplicar Title ao texto que pretende que apareça aqui.

vi

Finally, I would like to express my deepest gratitude to my family, namely, my parents,

whose sacrifice and utterly dedication throughout these years made it possible for this document

to come to light; also, to my aunt, Dina, for the relentless support and for accompanying my

academic evolution; to my uncles, “Caco” and Armindo, for being a child’s role-model.

To all of you, without whom, I would not be who I am and what I have achieved,

My deepest gratitude and a great Thank You!

vii

Abstract

Nowadays, many of the manufactory and industrial system has a diagnosis system on top

of it, responsible for ensuring the lifetime of the system itself. It achieves this by performing both

diagnosis and error recovery procedures in real production time, on each of the individual parts

of the system.

There are many paradigms currently being used for diagnosis. However, they still fail to

answer all the requirements imposed by the enterprises making it necessary for a different

approach to take place. This happens mostly on the error recovery paradigms since the great

diversity that is nowadays present in the industrial environment makes it highly unlikely for every

single error to be fixed under a real time, no production stop, perspective.

This work proposes a still relatively unknown paradigm to manufactory. The Artificial

Immune Systems (AIS), which relies on bio-inspired algorithms, comes as a valid alternative to

the ones currently being used.

The proposed work is a multi-agent architecture that establishes the Artificial Immune

Systems, based on bio-inspired algorithms. The main goal of this architecture is to solve for a

resolution to the error currently detected by the system.

The proposed architecture was tested using two different simulation environment, each

meant to prove different points of views, using different tests.

Erro! Utilize o separador Base para aplicar Title ao texto que pretende que apareça aqui.

viii

These tests will determine if, as the research suggests, this paradigm is a promising

alternative for the industrial environment. It will also define what should be done to improve the

current architecture and if it should be applied in a decentralised system.

Keywords: Diagnosis, Artificial Immune Systems, Bio-Inspired Algorithms, Multi-

Agent System, Manufacturing Systems.

ix

Sumário

Hoje em dia, muitos dos sistema industriais e/ou de manufactura possuem um sistema de

diagnóstico por ele responsável, no que ao tempo de vida diz respeito, através da realização de

manutenção tanto por diagnóstico como por procedimentos de recuperação de erros em tempo

real, em cada uma das peças que constituem o todo.

Existem diversos paradigmas que são utilizados para diagnóstico. No entanto, estes ainda

falham em alguns dos requerimentos impostos pelas empresas tornando necessária uma diferente

aproximação, nomeadamente, a nivel de recuperação de erros visto que a maior diversidade que

se encontra presente no ambiente industrial torna altamente improvável que todos os erros sejam

reparados numa perspectiva de tempo real.

Este documento propõe um paradigma, ainda desconhecido para a manufactura, baseado

em algoritmos bio-inspirados como uma alternativa válida àqueles usados actualmente, os

Sistemas de Imunidade Artificial.

O trabalho proposto baseia-se numa arquitectura multi-agente que segue este paradigma,

baseado em algoritmos bio-inspirados. O principal objectivo desta arquitectura é procurar uma

resolução para o erro detectado no sistema.

A arquitectura proposta foi testada usando dois ambientes de simulação diferentes, cada

um com um objectivo diferente em mente.

Estes testes irão determinar se este paradigma é realmente tão promissor e adequado para

um ambiente industrial como a pesquisa efectuada sugere. Irão também definir o que pode ser

Erro! Utilize o separador Base para aplicar Title ao texto que pretende que apareça aqui.

x

feito para melhorar a arquitectura desenvolvida e também se esta deve ser aplicada num sistema

descentralizado, como é pretendido, tendo em vista os melhores resultados, da perspectiva do

desempenho.

Palavras-Chave: Diagnóstico, Sistemas Imunes Artificiais, Algoritmos Bio-Inspirados,

Sistemas Multi-Agente, Sistemas de Manufactura.

xi

Table of Contents

Chapter 1. Introduction ... 1

1.1 The Problem .. 1

1.2 Research Questions and Hypothesis .. 2

1.3 Motivation ... 2

1.4 Accomplished Work .. 3

1.5 Algorithms ... 4

1.6 Major Contributions .. 5

Chapter 2. State of the Art ... 7

2.1 Manufacturing Paradigms ... 8

2.1.1 Traditional Production System .. 8

2.1.2 Agile Manufacturing Systems ... 8

2.1.3 Reconfigurable Manufacturing Systems ... 9

2.1.4 Holonic Manufacturing Systems ... 10

2.1.5 Evolvable Production Systems .. 11

2.1.6 Multi-Agent Systems ... 14

2.2 Diagnosis Paradigms ... 15

2.2.1 Usual Paradigms .. 16

2.2.2 Emergent Paradigms ... 18

2.3 General Conclusions ... 21

Chapter 3. Architecture ... 23

Erro! Utilize o separador Base para aplicar Title ao texto que pretende que apareça aqui.

xii

3.1 Overview ... 24

3.2 Generic Agents .. 25

3.2.1 Shop Floor Layer Agents .. 26

3.2.1.1 Diagnosis Agent .. 26

3.2.1.2 Grouped Diagnosis Agent ... 27

3.2.1.3 B Cell Agent .. 29

3.2.2 Cloud Layer Agents .. 29

3.2.2.1 Cure Provider Agent .. 30

3.3 AIS Algorithms ... 31

3.3.1 Fundamentals .. 31

3.3.2 Negative Selection ... 32

3.3.2.1 Detector Set Generation .. 33

3.3.2.2 Monitoring the protected data ... 33

3.3.3 Clonal Selection .. 34

3.3.4 Immune Network Theory .. 36

3.3.5 How to make the algorithms efficient ... 37

Chapter 4. The Algorithms .. 39

4.1 Negative Selection ... 39

4.2 Clonal Selection .. 40

4.3 Network Model ... 42

4.4 Choosing the algorithm ... 44

4.4.1 Collected Data Analysis .. 44

4.4.1.1 Model’s Development ... 45

4.4.1.2 Models’ Implementation ... 45

4.4.1.3 Models’ Validation .. 46

4.4.1.4 Results’ Analysis ... 47

Chapter 5. Implementation .. 49

5.1 Agents ... 49

5.1.1 Diagnosis Agent .. 49

5.1.1.1 Library Setup ... 49

5.1.1.2 Behaviours ... 51

5.1.1.3 Class Diagram ... 57

Erro! Utilize o separador Base para aplicar Title ao texto que pretende que apareça aqui.

xiii

5.1.2 Grouped Diagnosis Agent ... 58

5.1.2.1 Behaviours ... 58

5.1.2.2 Class Diagram ... 64

5.1.3 B Cell Agent .. 65

5.1.3.1 Behaviours ... 65

5.1.3.2 Class Diagram ... 67

5.1.4 Cure Provider Agent .. 68

5.1.4.1 Behaviours ... 68

5.1.4.2 Class Diagram ... 70

5.2 Communications .. 71

Chapter 6. Validation ... 75

6.1 Simulation Environments .. 76

6.1.1 Centralised Simulation Environment .. 76

6.1.2 Decentralised Simulation Environment ... 77

6.2 Payload Tests... 78

6.2.1 Tests’ Schematic ... 78

6.2.2 Results ... 79

6.2.2.1 Centralised Data .. 80

6.2.2.2 Decentralised Data .. 81

6.2.2.3 Centralised Data vs Decentralised Data .. 83

6.3 Overtime Tests .. 85

6.3.1 Tests’ Schematic ... 85

6.3.2 Overtime Efficiency .. 86

6.3.2.1 Diagnosis Agent Analysis ... 86

6.3.2.2 Error Average Overtime .. 88

Chapter 7. Conclusions and Further Work ... 91

7.1 Conclusions ... 91

7.2 Further Work ... 93

Bibliography .. 95

xv

Table of Figures

Figure 3.1 – Evolutionary modelling of the System’s Architecture. ... 25

Figure 3.2 – Diagnosis Agent Behaviour. ... 27

Figure 3.3 – Grouped Diagnosis Agent Behaviour. .. 28

Figure 3.4 – B Cell Agent Behaviour. ... 29

Figure 3.5 – Cure Provider Agent Behaviour.. 30

Figure 3.6 – Cure Provider Agent Cure Receiving Mechanism. ... 31

Figure 3.7 – Negative Selection Algorithm Overview. ... 33

Figure 3.8 – Matching Process. ... 34

Figure 3.9 – Clonal Selection Principle... 36

Figure 3.10 – Conversion of a simple move command to a binary representation. 38

Figure 4.1 – Negative Selection Mechanism... 40

Figure 4.2 – Clonal Selection Mechanism. ... 41

Figure 4.3 – Network Model Mechanism. .. 43

Figure 4.4 – Framework of the responsiveness based FIS (per sample). 45

Figure 4.5 - Framework of the responsiveness based FIS (to the samples’ aggregation per each

algorithm). ... 45

Erro! Utilize o separador Base para aplicar Title ao texto que pretende que apareça aqui.

xvi

Figure 4.6 - Face validity test (a) Responsiveness level FIS (per sample) (b) Responsiveness level

FIS (per algorithm). ... 47

Figure 4.7 – Algorithms comparison chart. ... 47

Figure 5.1 – Library loading by the Diagnosis Agent (DA).. 50

Figure 5.2 – DA Interaction with the Library. .. 50

Figure 5.3 – AskForGroup AchieveREInitiator Behaviour. ... 51

Figure 5.4 – SendAllErrorCurePairs / SendAllOperations Parallel Behaviours. 52

Figure 5.5 – SendErrorCurePair / SendOperation One Shot Behaviours 52

Figure 5.6 – SkillsObserver Ticker Behaviour. ... 53

Figure 5.7 – StateObserver Ticker Behaviour. .. 53

Figure 5.8 – SendStateInformation Ticker Behaviour. ... 54

Figure 5.9 – EvaluateIndividualError One Shot Behaviour. ... 54

Figure 5.10 – PerformCure Ticker Behaviour... 55

Figure 5.11 – EvaluateAllErrors Parallel Behaviour. .. 56

Figure 5.12 – RequestCure AchieveREInitiator Behaviour. ... 56

Figure 5.13 – FixErrorByGroupResponder AchieveREResponder Behaviour. 57

Figure 5.14 – Diagnosis Agent’s Class Diagram. ... 58

Figure 5.15 – ReceiveDiagnosisAgentGroupRequest AchieveREResponder Behaviour. 59

Figure 5.16 – ErrorCurePairListener Ticker Behaviour. ... 60

Figure 5.17 – OperationListener Ticker Behaviour. ... 60

Figure 5.18 – GroupObserver Ticker Behaviour. .. 61

Figure 5.19 – EvaluateStates Parallel Behaviour and EvaluateAgentState Sub-Behaviour. 61

Figure 5.20 – RequestCureResponder AchieveREResponder Behaviour. 62

Figure 5.21 – AnalyseAllErrors Parallel Behaviour and AnalyseIndividualError One Shot

Behaviour. ... 63

Figure 5.22 – FixErrorRequest AchieveREInitiator Behaviour. ... 63

Figure 5.23 – UpdateCuresResponder AchieveREResponder Behaviour. 64

Figure 5.24 – Grouped Diagnosis Agent’s Class Diagram. .. 64

Figure 5.25 – AnalyseError One Shot Behaviour. .. 66

Erro! Utilize o separador Base para aplicar Title ao texto que pretende que apareça aqui.

xvii

Figure 5.26 – CureFoundRequest AchieveREInitiator Behaviour. ... 66

Figure 5.27 – RequestCureCPA ContractNetInitiator Behaviour. .. 67

Figure 5.28 – SuicideResponder AchieveREResponder Behaviour. .. 67

Figure 5.29 – B Cell Agent’s Class Diagram. ... 68

Figure 5.30 – CreateAssociatedDatabase One Shot Behaviour. ... 68

Figure 5.31 – LoadInitialData Simple Behaviour. .. 69

Figure 5.32 – CureResponder ContractNetResponder Behaviour. ... 70

Figure 5.33 – UpdateCureTable One Shot Behaviour. ... 70

Figure 5.34 – Cure Provider Agent’s Class Diagram. ... 71

Figure 5.35 – Grouped Diagnosis Sequence Diagram. ... 72

Figure 5.36 – Ungrouped Diagnosis Sequence Diagram. ... 73

Figure 6.1 – Centralised Simulation Environment. ... 76

Figure 6.2 – Decentralised Simulation Environment. ... 77

Figure 6.3 – Payload Tests Schematic. ... 79

Figure 6.4 – Centralised Diagnosis Agents Data. ... 81

Figure 6.5 – Decentralised Diagnosis Agents Data. .. 82

Figure 6.6 – Centralised VS Decentralised Data Comparison. ... 84

Figure 6.7 – Overtime Tests Schematic. ... 85

Figure 6.8 – Diagnosis Agents Overtime. ... 87

Figure 6.9 – Error Average Overtime. .. 88

xix

Table of Tables

Table 4.1 – Time lapse scale used on the FIS. .. 46

Table 4.2 – B Cells number used on the FIS. .. 46

Table 4.3 – Extreme conditions’ test for both models. ... 47

xxi

Acronyms

ADACOR - Adaptive Holonic Control Architecture

AIS - Artificial Immune Systems

AMS - Agile Manufacturing Systems

ANN - Artificial Neural Networks

AREIB - AchieveREInitiator Behaviour

ARERB - AchieveREResponder Behaviour

BCA - B Cell Agent

CBM - Condition Based Maintenance

CPA - Cure Provider Agent

CS - Clonal Selection

DA - Diagnosis Agent

EAS - Evolvable Assembly Systems

EPS - Evolvable Production Systems

FDI - Fault Detection and Identification

Erro! Utilize o separador Base para aplicar Title ao texto que pretende que apareça aqui.

xxii

FIS - Fuzzy Inference System

FIPA . The Foundation for Intelligent, Physical Agents

FMS - Flexible Manufacturing Systems

GDA - Grouped Diagnosis Agent

HMS - Holonic Manufacturing Systems

I/O - Inputs/Outputs

JADE - Java Agent Development Framework

LC - Limit Checking

MAS - Multi Agent Systems

NM - Network Model

NS . Negative Selection

OSB - One Shot Behaviour

PB - Parallel Behaviour

PLC - Programmable Logic Controller

PM - Predictive Maintenance

PROSA - Product-Resource-Order-Staff Architecture

QM - Quantitative Methods

QLM - Qualitative Methods

RMS - Reconfigurable Manufacturing Systems

SB - Simple Behaviour

SI - Swarm Intelligence

SOA - Service Oriented Architecture

SPS - Standard Production Systems

Erro! Utilize o separador Base para aplicar Title ao texto que pretende que apareça aqui.

xxiii

TB - Ticker Behaviour

1

1
Chapter 1. Introduction

1.1 The Problem

Usually, a simple rule based diagnosis system, on top of the production one, sufficed to

perform diagnosis. However, as the costumers demand grew wider, they started to demand a more

and more diversified and customized product. In order to satisfy the demand, the enterprises

needed to change their production systems as well. This change made it impossible for a rule

based diagnosis system to answer all the possible new errors in this highly customized

environment.

The diagnosis paradigms that existed were rule-based and lacked the concept of

evolution. This resolving methods were no match for the new, unforeseen, unrelated errors.

Furthermore, these type of diagnosis paradigms were centralized, thus resulting in a lesser

effective diagnostic. These paradigms became obsolete.

Several of this paradigms were further developed in order to face the needs of the

industry. However, they still lack the evolutionary concepts required to face the new errors that

may occur in the system. Despite there are already some decentralized implementations of this

kind, they still lack to give the needed importance to this matter.

One of the mentioned paradigms may present itself as a possible solution to this matter.

The Artificial Immune System (AIS), which rely on bio-inspired algorithms as the resolving

method for the errors the system may face. This work proposes a multi-agent architecture that

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

2

offers decentralised diagnosis, along with evolvable procedures that aims at resolving any error

occurred in the system.

1.2 Research Questions and Hypothesis

Given the above problem, and taking into account that diagnosis is a fundamental part of

production systems, some questions arise:

1. Would it be possible to perform distributed diagnosis on a Multi-Agent System

(MAS) using AIS in order to provide a better lifetime for the production systems?

2. Would it be possible for a distributed MAS using AIS as a diagnosing enabler to

evolve and learn with its mistakes?

Having researched, studied and analysed both AIS and MAS, this work’s author propose

two hypothesis to answer the above questions.

Firstly and foremost, the author propose an MAS architecture that benefits of this

paradigms’ distributed capabilities, to perform diagnosis in a decentralised way. On the other

hand, the author propose the use of AIS algorithms, such as Network Model (NM) as a diagnosing

and evolution enabler, allowing for the system to diagnose itself and learn with its mistakes.

1.3 Motivation

The existing alternatives don’t allow a system to completely diagnose and recover from

every error that may occur. This happens because our world is too random, which makes it

impossible to predict every hypothetical situation that may or may not occur.

Therefore, for a better diagnose, the system in charge of it needs to adapt, evolve and

learn with the errors themselves. The best approach for such a system is still to be determined.

However, there are several systems, in Nature, that resemble such an approach.

One of those is the Human Immune System, which uses its agents, B Cells, to track down

and eliminate all the organisms that endanger our life. The process through which the B Cells

operate is complex and vast. Theoretically, the process offers valid resolutions for the organisms

that constantly enter and exit our body.

An engineering approach to the B Cells processes applied to manufactory may lead to a

new Era on diagnosis. An Era in which the system does not predict, rather reacts to the changes

made to itself, constantly evolving and learning.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

3

Artificial Immune Systems offer just that: an evolvable, capable of learning, memorizing

and reactionary system that aims at resolving every single error in a manufactory environment.

1.4 Accomplished Work

This work proposes a multi-agent based architecture which aims at diagnosing and

recovering errors for any type of system. To do so, one must, beforehand, provide drivers’ files

with the associated part information concerning its known errors.

The designed architecture consists of two layers, the cloud, and the shop floor layer:

 The first contains the cures databases and the agents that abstract them.

 The latter contains the agents that communicate with the ones that abstract the

hardware. These agents are constantly looking for an unrecognized procedure in

order to trigger a recovery event. They can be grouped into more abstract entities

that englobe several of the low level ones. Both entities are able to trigger the

recovery event, abstracted by another type of agents.

Concerning the cloud layer, it works like a cloud, decentralizing the memorizing

mechanism of the system. This layer only communicates with the diagnosis and recovery layer

through the entities that abstract the recovery event. The cloud is responsible for storing and

providing all the resolutions the system knows.

To what the shop floor layer may concern, it possesses the entities that are constantly

analysing the system. This analysis occurs in a decentralised manner, since each part of the system

is abstracted by its own entity. If a new error is found, and the error is unrecognised, the recovery

event is triggered, and the algorithms start processing.

Whenever a new part is plugged in the system, its drivers are immediately processed by

the agent that will diagnose it. All the errors known by the system will be available for this part

since the agent that abstracts it will be able to contact the evolution layer if an error occurs.

After being designed, the architecture was implemented using the JADE (Java Agent

Development Framework) framework. JADE is a Java-based middleware that eases multi-agent

system development. One of the main system characteristics is the FIPA-Compliant agent-

behaviours. All the agents present in the architecture fulfil the FIPA protocols when

communicating.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

4

1.5 Algorithms

Besides the proposed architecture, this work is based on the study, implementation and

testing of the algorithms used. Currently, there are several bio-inspired algorithms that can be

used under the scope of AIS.

After some research on the matter and using as criteria the usefulness and implementation

time, three algorithms were selected for further research and development: Negative Selection

(NS), Clonal Selection (CS), also known as CLONALG, and NM. Each one of the algorithms

uses a different mechanism to solve the error given as input. Consequently, each one as

advantages and disadvantages towards each other:

 The Negative Selection algorithm is trained with a given amount of strings, which

will be the base of comparison in which it will operate. If somehow a different

string is ever introduced, it will be spotted by bit-comparison. The algorithm then

starts a pseudo random mutation mechanism of the strings used for training to try

to find a resolution.

 The Clonal Selection algorithm is also trained with a given amount of strings.

When a string that is not equal to any of them enters the system, the algorithm

calculates the affinity of the initial population towards the error. The highest

affinity ones suffer cloning and mutation. The algorithm then calculates the

mutated strings affinity towards the error. The highest affinity ones suffer more

cloning. This process is repeated until a resolution is found.

 The Network Model algorithm, like the others, is trained with a given amount of

strings. This strings will provide the algorithm with its initial population. If an

error occurs, these entities will test their affinity towards the error and their

neighbours. The highest affinity ones are cloned and mutated. The process keeps

repeating itself until a resolution is found.

The algorithms were tested using a dedicated machine in order to output better

performance results. The tests had as outputting variables: the time lapse between the introduction

of the error in the system and the founding of the resolution; and the number of entities launched.

The results obtained were analysed using a Fuzzy Inference System (FIS) in order to, if you may,

rank the algorithms according to its capability of getting a resolution for the error based on the

above mentioned parameters.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

5

There is no limitation as to where this algorithms might be used for, since its versatility

allows them to be used in literally every type of system. Hence, the results hereby presented

should only be considered under a JADE framework supported scope.

1.6 Major Contributions

The accomplished work offers an architecture that allows for the system to recover from

any error that does not require replacement of any of the physical parts, which, for obvious

reasons, cannot be dealt with using only software.

The ability of dynamically search for a resolution for any given error transforms the

diagnosis mechanism, from a predictive, pre-emptive system, to a reactionary and evolutionary

one. This system is able to learn with its mistakes, since the recovery event only occurs once for

every unrecognised error. This learning capability is done by storing, in a database, all the errors

that occurred in its lifetime.

Moreover, due to its distributed architecture, especially in the evolution layer, where the

databases lie, it is now possible to perform diagnostic in a distributed way. This happens because,

whenever the need arises, the diagnostic and recovery layer will communicate with all the

elements in the cloud. Adding to this, each abstracting entity of each part of the system is capable

of performing diagnosis by itself, with no need for a centralized super computer with all the data.

7

2
Chapter 2. State of the Art

Originally, manufactory and industrial systems were thought and built bearing in mind a

mass production goal. This means they were thought to output a small variety of products, in as

little time as possible. They were not thought to output several, different products.

Since the products were not that much distinguishable between themselves, a simple rule

based system was enough for the enterprises to produce them. Same goes for diagnosis, which

was relatively easy to perform since a bunch of rules would suffice to recover pretty much every

error the system could have.

As the market demands altered, it began to demand highly customizable and equal variety

of products. Therefore, a new approach to the shop floor was in order for the enterprises for a

better response to the customers’ needs. This change in the production paradigm led to, at the

time, yet unveiled research fields such as evolution, distributed processing, agile systems, etc.

As the production paradigms change, so must the diagnostics since these must operate on

top of the first. Nowadays, the research is focused on both evolvable and distributed systems,

along with plug-and-produce capabilities. Hence, to answer the demands of such a system, along

with the enterprises requirements, the diagnostic paradigms must, as well, operate on a distributed

and evolvable environment.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

8

2.1 Manufacturing Paradigms

2.1.1 Traditional Production System

Since this has become a now relatively obsolete technology, it will not be approached in

as much detail as the remaining paradigms. Suffice to say these systems (Groover, 2007)

paradigm was the first of its kind to appear, thus leading to the first developments when it comes

to industry robotics.

The first ones started out as simple, centralized systems, with very few diagnostic

capabilities and almost none error recovery which did not comply with the, already, growing

needs of the worldwide enterprises.

(Buzacott & Shanthikumar, 1993) covers a wide range of the so called traditional

production and manufacturing systems such as flow lines, job shops, etc. and gives an overview

on such systems, explaining, detailing and modelling.

(Koren, 1983) offers a review on computer controlled manufacturing systems, exploring

this paradigm and offering solutions based on it. This was one of the early stages production

paradigms, since it was when computers began to be introduced in the industrial environment.

2.1.2 Agile Manufacturing Systems

Agile Manufacturing Systems (AMS) got their name for their ability to manufacture a

variety of components, with a low cost and in a short period of time. Therefore it should have as

main characteristics: simple, flexible, reconfigurable and responsive to market changes (Da

Silveira, Borenstein, & Fogliatto, 2001).

However, an AMS is not all about being flexible and responsive to the current customers’

demands. It also requires a strong adaptive capability to be able to respond to future changes the

industry may endure (Gunasekaran, 2001), due to market changes.

That being said, one may infer that the main concern that lead to this paradigm was

change. In response to the market changes that kept occurring, manufacturing was forced to walk

down the path of change and adjustment that, despite gradual, became a decisive factor for this

industry (Gunasekaran, 2001).

Given the exponential growth of the amount of research this technology suffered in its

early years, (Gunasekaran, 2001) proposed a framework for more consensus on both research and

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

9

development, where a classification of the previous research is based on the following criteria:

strategies, technologies, systems and people.

In (Sanchez & Nagi, 2001), a classification scheme for the most common

implementations is established. The authors of said paper describe the AMS as “new, post-mass-

production system for the creation and distribution of goods and services”. A number of different

research topics is admitted, in order to provide a broader concept of the AMS whilst proving their

usability in all the subjects regarding manufacturing.

In (Elkins, Huang, & Alden, 2004), an interesting perspective on AMS is given in the

automotive industry context. The authors sustain that AMS applies “to the automotive industry’s

goals of operating profitably, and sensing and responding effectively to changing demand trends”.

2.1.3 Reconfigurable Manufacturing Systems

For a better answer to the high-frequency market changes driven by global competition

that manufacturing companies faced, a need for a more versatile paradigm than the AMS emerged.

Without losing its agility, the new paradigm should be able to be easily reconfigurable, dealing

with cost-effectiveness and quick reaction to market changes – Reconfigurable Manufacturing

Systems (RMS). However, some authors (Zhang, Liu, Gong, & Huang, 2006) consider this

paradigm to be a sub-paradigm of AMS, thus disregarding this as an actual paradigm.

In (Sirca, 2008), a definition for these type of systems is given, where they are described

as systems “designed at the outset for rapid change in its structure, as well as its hardware and

software, in order to quickly adjust its production capacity and functionality”.

Consequently, a new manufacturing approach that could be able to combine both high

throughput and high flexibility was in order for the enterprises to apply this new paradigm

(Mostafa G. Mehrabi, Ulsoy, & Koren, 2000). According to the same authors, this was achieved

by designing a system and respective machines in an adjustable structure. This structure would

allow the system to scale. It was also achieved by designing a different manufacturing system for

each product family part, with customized flexibility for producing all parts of that given product

family.

For the establishment of this paradigm, some sort of design consensus was in order.

(Koren & Shpitalni, 2010) offers just that, by establishing a method to evaluate and classify the

configuration of the system, presenting some data on integrated RMS practical configurations.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

10

In (Landers, Min, & Koren, 2001), a set of three different Reconfigurable Machine Tools

(RMT) is reviewed: part change, feature change, cycle time change. The same authors establish

both control and mechanical requirements for the RMT, such as kinematic viability and structural

stiffness. The same authors propose an example of this type of systems design.

In (ElMaraghy, 2006), an overview on the different types of both flexible and

reconfigurable manufacturing systems is given, whilst offering various descriptions, ranging from

manufacturing system configuration to flexibility and configurability.

As in any other paradigm, some implementations result in more effective production than

others. (M. G. Mehrabi, Ulsoy, Koren, & Heytler, 2002) enacted a survey specially designed for

obtaining “a current assessment of flexible machining systems ... identify the potential benefits

of, and key enabling technologies needed for reconfigurable machining systems”. The same

authors define five enabling technologies for RMS: high-speed machining, modular machine

tools, open architecture, training of operators and education of engineers.

In (Bi, Lang, Shen, & Wang, 2008), a state of the art for RMS is given. The authors defend

some requirements different from those seen above such as short lead-time, low and fluctuating

volumes. The same authors propose strategies to deal with each of the requirements they

enumerate along with both configuration and system design for RMS.

2.1.4 Holonic Manufacturing Systems

The next step towards a better, more productive manufacturing system involved the

cooperation of autonomous, completely functional entities, each one of them having their own

goals, which could even raise conflict with each other – Holonic Manufacturing Systems (HMS).

In (Leitão & Restivo, 2006), a Holonic architecture is developed, this one aiming for agile

and adaptive manufacturing control – ADACOR (ADAptive Holonic Control aRchitecture). This

architecture is based on both autonomous and cooperative holons. By holon, one may interpret “a

manufacturing component that can be either a physical resource (…) or a logic entity (…). This

architecture defines four manufacturing holon classes, product, task, operational and supervisor

holons”.

(Van Brussel, Wyns, Valckenaers, Bongaerts, & Peeters, 1998) proposes a reference

architecture for Holonic manufacturing systems – PROSA (Product-Resource-Order-Staff

Architecture). This architecture encompasses the creation of three distinct holons: Order Holon,

Product Holon, Resource Holon, each with a different set of capabilities and responsibilities.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

11

(Leitão & Restivo, 2008) proposes a Holonic approach to dynamic manufacturing

scheduling, proposing an architecture with different holons, each with a set of duties and rights

towards the global system. These holons possess decision-making capabilities, which makes them

able to perform both control and scheduling functions. These holons are ADACOR based.

In (Valckenaers & Van Brussel, 2005), a “sub-paradigm”, if you may, of HMS is

proposed – Holonic Manufacturing Execution Systems. According to the authors, this paradigm

is designed as an instance of the PROSA architecture, previously referenced in this document,

and “augmented with coordination and control mechanisms inspired by natural systems”.

2.1.5 Evolvable Production Systems

Despite the community commonly understands Evolvable Production Systems (EPS) as

just another method of RMS, a “sub-paradigm”, if you may, this is hardly the case.

(Mauro Onori, Barata, & Frei, 2006) offer a clarification on the difference between EPS

and RMS. RMS works on further development of flexibility, from the starting point. However,

its focus was still too limited in time, concerning both current products and company aspects. For

a better understanding of the differences between each other, the authors focused these three

aspects:

 “Main focus” – RMS focus on the re-configurability of the geometric setup,

making this process not necessarily automatic, whereas EPS adapts the system

components by capturing the emergent properties.

 “Development trigger issue” – RMS uses current product features for further

development whilst EPS focuses on re-engineering the assembly system.

 “Modularity level” – RMS conventional subdivision results “in coarse

granularity”. EPS applies lower level modularity based on process-level

characteristics.

The same authors also explain both the System and the Control concept behind EPS.

Despite the manufacturing technologies current path towards distributed systems makes

it harder for a consensus on frameworks, an attempt was still made in this case (Lohse, Ratchev,

& Barata, 2006). The authors analyse different modular assembly systems within the current

paradigm, specifying requirements for modular assembly systems through the use of suitable

ontological models. The paper also proposes a design framework, describing it as an “intensive

process” as it was for the EUPASS project (Rütten et al., 2003) .Moreover, the paper defines an

Ontology, onto MAS, to support the design decision making.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

12

(M. Onori, Alsterman, & Barata, 2005) proposes an architecture development approach

for EPS, where it specifies obligatory points to be covered when developing effective assembly

systems. As it deals with a distributed system, both the individual and the community architecture

must be defined. In the first, a number of functionalities are explained in order to be easily

implemented in any individual module. In the latter, the main concern is communication and the

way it is organized since it is through it every single individual interact. Moreover, a step by step

approach is given on the suggested architecture.

In (J. Barata, Camarinha-Matos, & Onori, 2005), a control approach through Multi Agent

to EPS is proposed. The authors attribute major importance to the emergence concept in EPS and

highlight the importance and need of two different architectures, one individual and another for

the community. It proposes the COBASA (Jose Barata & Camarinha-Matos, 2003), (Kordic,

2006) architecture referring the needed concepts “contracts, skills, credits, among others” are

supported by ontologies. Moreover, it introduces the concept of “simple skill” and “complex

skill”, where a complex one represents a group of simple in a much simplified explanation.

Given the wide range of everyday new systems, implementations and frameworks for this

type of systems, it became necessary to validate them. (Lohse, Hirani, Ratchev, & Turitto, 2005)

proposes an ontology for both definition and validation of EPS, which is used to “describe and

guide the assembly process specification for both new assembly system configuration as well as

reconfigurations of existing assembly systems”.

Since the Agent concept involves human integration, the manufacturing research began

to concern on the human interaction with the manufactory environment. (Frei, Ribeiro, Barata, &

Semere, 2007) elaborates on the possible EPS scenario of a human-robot interaction inspired by

the concept of intelligent houses. The authors also refer the importance of both diagnosis and self-

organization roles on EPS.

Still concerning the self-organization role on EPS, and considering the modular aspects

of these paradigm, (Frei, Di Marzo Serugendo, & Barata, 2008) propose a designing for self-

organization on EPS. They explanation comes as follows: “given a specified product order

provided in input, the system’s modules spontaneously select each other (…) and their position

in the assembly system layout”. The authors also identify two principal characteristics for an EPS

to be considered as self-organizing: “modules self-organize to produce an appropriate layout for

the assembly and (…) the assembly system as whole self-adapts to production conditions”.

In (Frei, Ferreira, Di Marzo Serugendo, & Barata, 2009), an architecture for self-

managing EPS is proposed, where a set of pre-determined classes of agents is established, along

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

13

with communication protocols, which use XML for serializing. A case study is also presented, in

order to better test and conclude on this architecture. Some rules are also enumerated for failure

events and grouped under the following main characteristics: self-re-configuration, self-repair and

self-adaptation.

Given the already immense research done on this subject, this document’s author believes

a review on what already exists is important for a better understanding of this manufactory

paradigm.

In this context, (Semere, Barata, & Onori, 2007) elaborates on two main principles in

which EPS are based. Then, it describes both the EPS concept and the EPS Control concept,

followed by a reference architecture to EPS, based on the EUPASS project, already referenced in

this document.

A study on the implications of EPS is necessary for a better understanding of this

paradigm. (Frei, Barata, & Onori, 2007) elaborate on the context in which the EPS emerged,

giving particular attention to the following perspectives:

 Manufacturing engineering, where a procedural evolution of the manufacturing

paradigms is correlated;

 Control systems and multi-agent systems, where an emphasis is given to both

decentralized and centralized solutions concerning system controllers and

software and an advantages/disadvantages analysis is elaborated.

The authors have also given emphasis towards the evolution concept in EPS, not

forgetting to mention intelligent modules and the way they socialize with each other.

In (Mauro, 2009), an EPS concept is given: “although there are similarities in the

exploitation and implementation phases, the paradigms (EPS and HMS) differ (…) in perspective

and (…) only EPS achieves fine granularity”. The authors also establish EPS formalized

ontologies and definitions, using practical developments to elaborate on those.

Another good example of the EPS’ virtuosities is the IDEAS project (L. Ribeiro et al.,

2011) where a description of the mechatronic multi-agent architecture of IDEAS is elaborated.

These project had to ensure the following aspects: functionality representation, offered by the

agents in the system as skills; yellow pages service interaction, which allowed for the clients to

request operations to the agents, messaging, through the use of FIPA compliant protocols. The

test case took place in FESTO’s MINIPROD. The results obtained “stand as proof-of-concept of

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

14

very important characteristics not easily quantifiable and of high added value from an application

point of view”.

In (Neves & Barata, 2009), a more environment concern perspective in EPS is elaborated.

Nowadays, many enterprises sustain ecological and economical concerns that must be attended

by the industry in order to fulfil the sustainability concept. As such, the authors developed a way

of classifying the EPS, attending two different variables, control and adaptability of the studied

system: “With this approach, EPS strengthens the link between product and system design phases

(…) which leads to several advantages”. The advantages include: lower investment costs, shorter

deployment times, among others.

(André Dionísio Rocha, Barata, Orio, Santos, & Barata, 2015) offers yet another example

of a modular, distributed, multi-agent based architecture, for the PRIME project, that aims to

create new solutions for deployment by SMEs of highly adaptive, reconfigurable self-aware plug

and produce assembly systems

Given the wide spread of this sort of paradigms in the industry, when concerning

production and control, it was only natural that, eventually, an approach of such paradigms on

diagnosis would take place. This could, as in the topics aforementioned, improve response times

and, ultimately, greatly diminish the failure diagnosis and error recovery costs the enterprises

sustained.

2.1.6 Multi-Agent Systems

Following the development of AMS, the market demands required yet more agility, in

the sense that new technologies are continuously emerging, and competitors are multiplying

globally.

To be able to follow this trend, a new technology, if you may, emerges. One that could

introduce intelligence to the system, so it could learn new methodologies, learn whenever a new

part is introduced into the system, one that would be able to adapt easily to market trends – Multi-

Agent Systems (MAS).

These technology relies on an entity that is yet to reach a consensus among the community

towards its definition (Balaji & Srinivasan, 2010). It so happens due to the universality of the

word “Agent” since it cannot be owned by a determined entity and is capable of independent

action on behalf of its user or owner, figuring out, on its own, what needs to be done to satisfy the

current objectives of the system. Consequently, MAS is considered to be more of a technology,

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

15

rather than a paradigm, that allows for the aforementioned paradigms to be implemented, giving

them more autonomy, along with decentralisation.

In this context, (Shen & Norrie, 1999) enumerate several agent-based approaches for

intelligent manufacturing which shows the scope extent of the Agent concept. Some of these are:

representation of manufacturing resources such as works, cells, machines, tools, etc., (Shen,

2002), (Van Dyke Parunak, Baker, & Clark, 2001).

In (Bellifemine, Poggi, & Rimassa, 2001), an introduction to FIPA compliant framework

is made. According to the same authors, The Foundation for Intelligent Physical Agents “is an

international non-profit association of companies and organizations sharing the effort to produce

specifications for generic agent technologies”. FIPA is not a technology, neither does it promotes

a set of technologies, rather emerged as a process of standardization, where an agent is the

fundamental actor.

In (Parker, Manson, Janssen, Hoffmann, & Deadman, 2003), several types of models are

proposed in order to facilitate manufacturing when it comes to simulation of Land-Use and Land-

Cover change, and where each of this models’ characteristics are enumerated.

In (Shen, Lang, & Wang, 2005), an architecture and implementation of an intelligent shop

floor is proposed, which ensures both collaborative and adaptive capabilities, using for the effect,

an efficient type of communication in the form of message services that uses XML as serializing

language.

In (Olfati-Saber, Fax, & Murray, 2007), a consensus on networked multi-agent systems

is proposed. It provides a mathematical analysis in order to establish the relationship between all

the agents in any given network.

2.2 Diagnosis Paradigms

Given the current mind set of researchers, it has become appropriate to differentiate the

diagnosis paradigms according to its current use in the industry. As one may have already inferred

from what was aforementioned, this split occurs on the following terms:

 Those of the paradigms used nowadays in industry, which contemplate

centralized, rule based, predictive and mass production focused diagnosis

paradigms will henceforth be acknowledged as Usual Diagnosis Paradigms.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

16

 On the other hand, those which contemplate decentralized, evolutional and

learning diagnosis systems and which are still being developed and researched,

will be referred to as Emergent Diagnosis Paradigms.

2.2.1 Usual Diagnosis Paradigms

In (J. Barata, Ribeiro, & Onori, 2007) a brief review of diagnosis methods, systems and

techniques is elaborated, being mentioned: case based reasoning, fault tracking, among others. As

one may have inferred by now, the same concepts (two architectures: individual and community;

etc.) applied to production and control should be used in diagnosis.

A chronologically ordered presentation (Luis Ribeiro & Barata, 2011) of the early stages

of diagnosis’ paradigms will be given, with a brief explanation concerning each of them.

The paradigm that can be traced back to the very beginnings of machine instrumentation

and, therefore, being considered as the most primitive form of monitoring is that of Limit

Checking (LC).

This primitive form of monitoring is mathematically explained and developed in

(Isermann, 2006), exemplified with several uses of such in the overall industry.

LC, despite being one of the easiest of implementing, carries out serious drawbacks such

as false alarms in the event of noise and the change of the operating point (Chen & Patton, 2012).

The next one on the list is Quantitative Methods (QM) which were the first to exploit the

potential of the 70s microcontrollers (Luis Ribeiro & Barata, 2011). The majority of these

methods are recognized as Fault Detection and Identification (FDI) and mark the beginning of

Condition Based Maintenance (CBM) and Predictive Maintenance (PM).

As to what CBM relates, (Ellis, 2008) offers a review on the requirements for this

paradigm such as management support, data analysis to “determine cost-effective monitoring

points” and sustains that CBM provides diagnosis from a cost-effective point of view.

(Grall, Bérenguer, & Dieulle, 2002) provide an analytical modelling of a CBM for a

stochastically and continuously deteriorating single-unit system considering both replacement

threshold and the inspection schedule as decision variables.

Still concerning CBM (Jardine, Lin, & Banjevic, 2006) elaborated a review defining data

acquisition and analysis practices in order for a proper diagnosis to take place, along with

methodologies used in maintenance decision-making.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

17

Concerning PM, (Mobley, 2002) provides an introduction to this paradigm sustaining “all

preventive maintenance management programs are time-driven, elaborating on some concepts

such as mean-time-to-failure which represents how long a product can reasonably be expected to

perform.

(Grall, Dieulle, Berenguer, & Roussignol, 2002) propose a decision model that enables

optimal inspection and replacement decision, in a PM point of view, considering two different

maintenance decision variables.

(Zhou, Xi, & Lee, 2007) propose a junction of the two aforementioned paradigms, PM

and CBM, resulting in a condition based predictive maintenance, for continuously monitoring a

system which is subject to degradation.

This quantitative methods were not the solution for all the problems in industry making

it necessary for a new type of methods to appear, Qualitative Methods (QLM). These can be

classified according to the nature of the inference performed (Luis Ribeiro & Barata, 2011).

The qualitative reasoning began with simple fault trees, with component to function

relationship but quickly evolved to stable diagnostic engines being the first one the General

Diagnostic Engine that enabled symbolic abductive reasoning over composite devices.

The Livingstone (Williams & Nayak, 1996) engine is one of the kernels that attracted

more attention due to its applications in space-travelling. Livingstone uses component-based

declarative models and was designed to achieve a compromising relation between the

conventional first-order logic approaches (used in other engines) and the reactive concurrent

approaches.

In a more recent mind-set, the ACORDA (Lopes & Pereira, 2006) engine which supports

prospective logic programming, that is based in abductive reasoning, was used in the diagnosis

of intelligent shop floor components.

As to what History Based Methods concerns (Luis Ribeiro & Barata, 2011), these have

been widely applied in industry, from its very beginnings, given that its popularity comes from

the fact that industrial installations, as they were before, are not subject to major changes. Under

this topic, Artificial Neural Networks (ANN) is the paradigm being approached as it is the one

with more common characteristics to those of this document’s topic.

That being said, ANN started to be recurrently used in industry as of the 90s. (Sorsa &

Koivo, 1993) elaborate on the applications of this paradigm in pattern recognition and fault

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

18

diagnosis problems using a “realistic heat exchanger-continuous stirred tank reactor system” as a

study case.

 In (Aminian, Aminian, & Collins, 2002), ANN are used for successfully fault diagnosing

actual circuits by pre-processing the collected data by wavelet decomposition, normalization and

principal component analysis to generate optimal features for the training of the neural network.

Lastly, and approaching the late 90s, some Hybrid Methods came to light as the web

spread worldwide and telecommunications became an integrant part of every day to day life (Luis

Ribeiro & Barata, 2011). This paved the way for a completely different mind-set on what

diagnosis concerns, allowing for a multidisciplinary research to take place.

2.2.2 Emergent Diagnosis Paradigms

Given the current evolution direction of the industrial systems, it made no sense that

diagnosis kept being a centralized, non-communicative, unintelligent system on top of a, sort of,

conscious, decentralized one. To enable this characteristics in diagnosis, several theories were

elaborated but only some actually came to life.

(J. Barata, Ribeiro, & Colombo, 2007) proposed a Service Oriented Architecture (SOA)

for diagnosis in which an extreme importance is attributed to intelligent devices, thus offering a

distributed intelligence. This concept opens new doors as to what diagnosis concerns, since,

having distributed devices, all capable of deploying diagnosis features, collaborative diagnosis is,

henceforth, a possibility to be explored.

In (Feldmann & Göhringer, 2001), propose an Internet based diagnosis system. The

authors argue that this approach could bring multiple benefits to all entities involved in the

diagnosis mechanism, further comparing theirs to other existing ones.

In (Wu, Chen, Li, & Li, 2005), yet another remote, web-based monitoring and fault

diagnosis system is proposed. The authors set to develop an architecture that answers the

following five challenges: hugeness, distribution, high speed, automation and complexity. The

proposed architecture uses VSN-NetMDS system that allows for both factory-based experts and

office-based experts to communicate among each other. For a better understanding of the whole

system, the authors chose the UML language to model the system.

(Fries, 2007) develop a soft computing approach to Multi-Agent fault diagnosis where it

proposes a hybrid diagnostic approach, which merge symptom recognition and functional

reasoning. For the multi-agent part of the diagnosis, an algorithm is elaborated and explained.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

19

In (Mendes, Santos, & Costa, 2009), another multi-agent platform for fault tolerant

control systems is proposed. The authors propose a multi-agent based architecture with

organizational relationship. The work was tested in both simulated and real environments.

(Desforges & Archimède, 2006) propose yet another multi-agent network for diagnosis systems

in both sensors and actuators. The authors start by extending the sensor/actuator concept into an

agent so it could be inserted into the network. The authors also propose a framework, which makes

it easier for others to use their work. The agents, as in any other system, possess several different

right and duties.

In (J. Barata, Ribeiro, & Onori, 2007), the authors propose an architecture for diagnosis

in EPS, giving particular emphasis towards self-capabilities, stating there are still challenges and

open issues that should be addressed. Some architectural principles are also elaborated taking into

account the premises in which the current system is limited to.

In (Luis Ribeiro & Barata, 2012), a validation of a co-evolving diagnosis algorithm for

EPS is given. To do so, an architecture which implements distributed diagnosis was also proposed

in this paper. The architecture encompassed two main phases: the initial configuration phase,

where “the system designer has to establish the initial interactions between the existing modules”

and the runtime phase, in which “the system may undergo structural changes” by a variety of

reasons.

(McArthur et al., 2007a) and (McArthur et al., 2007b) offer several concepts, approaches

and technical challenges on multi-agent systems for power engineering applications. The concepts

include: agency, intelligent agent, among others. The authors sustain there are several benefits

towards the use the MAS technology in power engineering technologies and elaborates on several

approaches that back up this claim.

Along with all these aforementioned approaches to diagnosis, some community members

sustain that researchers should thrive for a better answer to this problem in bio-inspired

paradigms, as it has already been done for self-organizing systems, with the ant’s path-finder

algorithms.

In this context, the main topic of this document emerges: Artificial Immune System (AIS),

which is a bio-inspired algorithms based diagnostic paradigm. It was developed as an image of

the actual human immune system. As such, it includes concepts such as B Cells and self and non-

self-cells which will be approached later on. It is a learning and adaptive mechanism that grows

with the system. This is a relatively new paradigm and there is still plenty of work to be done on

this subject.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

20

(Jon Timmis, Andrews, & Hart, 2010) sustain that AIS has direct parallels with Swarm

Intelligence (SI), arguing that this two paradigms are complementary rather than competitors and

should be used together to solve complex engineering problems.

Given the different diagnostic paradigms, an urge for a sort of consortium towards how

to classify AIS against all the other paradigms emerged. In this context, (Garrett, 2005) suggest

five different questions that, being answered, may be “of value as an introduction and critique of

AIS, and its relationship to other paradigms”. The questions are based on the usefulness of the

AIS and how and why it was developed.

(J. Timmis, Andrews, Owens, & Clark, 2008) gives an interdisciplinary perspective on

AIS arguing it has multiple applications on a variety of research fields. However, if one is to use

AIS for any branch of development a framework must be first developed for a better integration

to take place, which is what this paper elaborates on.

In the same context, (Smith, Timmis, Stepney, & Neal, 2005) elaborates on a conceptual

framework for AIS and its algorithms and offers a perspective on how it should be adapted for

the engineering AIS.

There are currently several implementations of this type of systems, in the most varied

areas of expertise. Examples of these implementations are:

 Prognostic Methodology for Health Management of Electrical Equipment of

Propulsion System in a Type of Vessel Based on Artificial Immune Algorithm,

which utilize AIS algorithms to determine whether is there any problem with any

of the electrical equipment of a certain installation, in this case, of a vessel (Hu

& Qin, 2012);

 Mobile Agent Based Artificial Immune System for Machine Condition

Monitoring (Hua, Gondal, & Yaqub, 2013), which takes advantage of the

interoperability of this type of systems to monitor an agent based machine;

 A Fast Anomaly Detection System Using Probabilistic Artificial Immune

Algorithm Capable Of Learning New Attacks (Mohammadi, Akbari, Raahemi,

Nassersharif, & Asgharian, 2014), that can detect anomalies on any giving system

using an algorithm capable of learning new attacks.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

21

2.3 General Conclusions

As it is perceivable for those who take a closer look at what is said above, both

manufacturing and diagnostic paradigms have evolved from unintelligent, centralized, rule-based

systems to distributed, intelligent, autonomous ones.

This change was far from being fast, or even obvious. Only when the hardware evolved

was it possible to make more intelligent systems. It so happens because, before the introduction

of real software on the shop floor, it was not possible to introduce programmable logic on

hardware more complex than that already offered by Programmable Logic Controllers (PLC).

Despite the current trends of the diagnosis paradigms point towards a more distributed,

intelligent systems, it is still afar from what enterprises look for in a diagnostic system. The

current systems are still operating from a predictive perspective, which leads to the system being

incapable of detecting unforeseen threats.

AIS emerges as a non-predictive, rather adaptive paradigm, which uses bio-inspired

algorithms to act like the human immune system therefore, literally, learning with its mistakes,

making it, theoretically, able to detect every single error in any system.

23

3
Chapter 3. Architecture

As sustained in the previous chapter of this document, the diagnosis paradigms currently

being used do not offer real problem solving capabilities. To say the least, they are incapable of

diagnosing a huge range of possible errors the system might sustain, as to what the current

production systems demand. This happens because of the high level of customization that makes

the diagnosis harder to perform. As such, this Artificial Immune System (AIS) based architecture

presents itself as an alternative to the aforementioned paradigms in an attempt for a more

diversified and capable error recovery and diagnostic system.

That being said, the proposed architecture is based in a Multi Agent System (MAS) that

allows for each entity in the system to act accordingly to its needs without having a constant

information about the overall state of the world that surrounds it. It uses bio-inspired algorithms

in order to provide new possible fixes for every new error and has the capability of learning with

its errors, which leads to a better overall performance of the system.

One of the system’s most important entities is the B Cell Agent (BCA), which is launched

by the bio-inspired algorithms. It is responsible for analysing and determining if it has the

necessary components to solve for the fix to the current error in the system, thus acting like a

“real” Human Immune System’s B cell.

The proposed approach covers an environment composed of four distinct entities, where

two of them are constantly diagnosing and analysing the production system in which they are

inserted and the remaining two act as error recovery entities which are in charge of searching and

resolving the errors the underlying production system may output.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

24

3.1 Overview

The proposed architecture mainly consists of four different types of generic agents from

which two are more concerned with diagnosing and the remaining two with the error recovery

subject. Along with this concern, one of the four entities is responsible for the learning part, one

might say, of the system, i.e., stores the fixes found by the system as a learning mechanism so the

system no longer needs to search for a fix, if the same error is to occur once again.

Despite this has been already done in other works, the main difference that may lead for

the use of this type of systems rather than the older ones is that this one is decentralized. This

allows for a better performance of the overall system, since it may work on several machines

instead of only one.

For a more insight perspective, the aforementioned architecture can be divided in two

layers: Shop Floor Layer and Cloud Layer; as it is observable in Figure 3.1. The first encompasses

both the diagnosis and recovery mechanisms of the system, and is where the low-level system is

supervised by constantly searching for anomalies in the outputs – the Shop Floor Layer.

The second one refers to the cloud module of the system, responsible for acknowledging

new error recoveries, thus providing the system with more responses in fault cases – the Cloud

Layer.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

25

Figure 3.1 – Evolutionary modelling of the System’s Architecture.

3.2 Generic Agents

As it was said before in this document, there is yet no consensus towards a definition of

Agent. However, the community agrees on the following characteristics: autonomous, evolvable

entity, capable of executing tasks. (Monostori, Váncza, & Kumara, 2006).

In the presented architecture, and as it was already said previously in this document, four

different types of generic agents were used: Diagnosis Agent (DA), Grouped Diagnosis Agent

(GDA), BCA and Cure Provider Agent (CPA). Each one of this agents has its own role in the

system, which will be further explained.

Given the different tasks each of the agents will perform in the system, they were

separated accordingly to different designations: the Shop Floor Agents and the Cloud Agents.

The Shop Floor Agents contain those directly involved in diagnosing and recovering a

determined resource. Hence, this group contains the DA, the GDA and the BCA entities, since

the first two abstract two different levels of the shop floor entities, thus being capable of

diagnosing them, and the latter works as an error recovery operator.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

26

3.2.1 Shop Floor Layer Agents

Composed of the DA, the GDA, in charge of diagnosing the system, and the BCA,

launched by DAs and GDAs in order to search for a cure. The DA abstracts physical resources of

the manufactory system and supervise them, by constantly verifying if its current output is under

predetermined parameters.

The BCA is the one responsible for finding new cures for the system and is only launched

if an error that has not occurred already is to occur.

3.2.1.1 Diagnosis Agent

The DA is the lowest level entity of the entire system. It is responsible for diagnosing a

physical resource, such as a robot, conveyor belt, or any other component in a manufactory

environment.

During execution time, the DA constantly verifies the methods of a specific resource, the

one it is, sort of speak, in charge of, trying to find errors and/or failures. To do so, it constantly

reads the outputs of the resource it is supervising and, shall the output value step out of

predetermined values, it is considered a malfunction.

Once a malfunction is detected, the DA verifies if there are any available cures for the

detected error that are of its knowledge; if so, the DA performs the cure immediately; if not, the

DA performs one of the two following possibilities:

 In the event the DA is already grouped under a GDA, then the DA propagates the

error top wards to its group for a broader search of the cure to take place.

 If, otherwise, the DA is not under a Grouped Diagnosis Agent, it runs the AIS

algorithm to define what kind of B Cell Agent should be launched.

A simple, yet illustrative, description of this behaviour can be observed in Figure 3.2.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

27

Figure 3.2 – Diagnosis Agent Behaviour.

The DA is constantly verifying the current process of the resource it is monitoring for

errors. If one is to occur, the DA verifies whether or not it has a higher level entity. If so, it requests

the cure from that high level entity. If not, it launches an instance of the AIS algorithm that will,

hopefully, find the cure needed. If it so happens, the DA goes back into monitoring the resource

it is in charge of.

3.2.1.2 Grouped Diagnosis Agent

The GDA is constituted by a group of physical devices that work together, consequently

influencing the execution of each other by processing all the data from the different devices

associated to it.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

28

These entities are capable of collecting the malfunctions of the resources and

understanding if the errors are correlated or not. By correlated, one should suppose the GDA is

capable of looking for the cure for a given error in a specified DA in the other DAs’ cures.

It is this entity’s responsibility to search for a resolution for its subjects’ errors, since it is

a higher level entity. Therefore, when the GDA agent does not have a cure for a specific problem,

itself proceeds to launch B Cell Agents according to the AIS algorithm defined.

A simple, deductive, illustration of this agent’s behaviour is presented in Figure 3.3

Figure 3.3 – Grouped Diagnosis Agent Behaviour.

The GDA is constantly waiting for any incoming message of the DAs registered in it. If

a message arrives, the GDA verifies whether or not it has a cure for the requested error in the

group. If so, it sends the cure to the requesting DA. If not, it launches an instance of the AIS

algorithm that will, hopefully, find the cure needed. If it so happens, the GDA informs the DA of

the new cure and goes back into monitoring all the DAs it is in charge of.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

29

3.2.1.3 B Cell Agent

The BCA emulates a real B cell of the Human Immune System, thus being called upon

service when an antigen (error that cannot be fixed by the system’s known cures) is outputted by

the low-level system.

Hence, when a malfunction is detected and neither the GDA nor the DA have cures for

the error, in order to find new cures, these entities launch an AIS algorithm. This algorithm will

create several BCAs that will select, clone and mutate themselves in order to find a cure for the

current error.

A description of this agent’s behaviour is depicted in Figure 3.4

Figure 3.4 – B Cell Agent Behaviour.

The BCA is launched by the AIS algorithm with the error’s genome and its own genome

as parameters. It then compares both of them and determines whether or not its own genome is

the cure for the error. If so, the corresponding DA and GDA, that launched the algorithm, will be

notified and the cures in the cloud will be updated. If not, the BCA contacts the CPA in order to

try and obtain a cure from it.

3.2.2 Cloud Layer Agents

In this topic, only one type of agent stands. The agent that will be responsible for holding

all the cures in the system, and to inform and collect data from several systems that may connect

to it, in order to provide more and better information on cures already present in their systems, so

it can supply others with those same cures, should it be needed.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

30

3.2.2.1 Cure Provider Agent

The CPAs constitute a cloud that covers the totality of the system, meaning this cloud is

available to provide cures to all the lower level entities, if one ever contacts it requesting a cure.

Each of these entities has an associated database where all the known possible cures that

are available for consult if any request for cure ever arrives to this entity are stored. This database

is updated whenever a new cure is found in the system.

Hence, when a lower level agent asks for a possible cure to solve a given problem, the

CPA queries the database for possible cures to the problem in hands. Shall a cure be found and

the CPA returns the cure to the BCA that requested it. If no cure was found, it simply answers

with a denial.

A short, illustrative description follows in Figure 3.5.

Figure 3.5 – Cure Provider Agent Behaviour.

This agent is also reached by the BCA when it discovers a new cure for further

introduction into the database and availability for other BCAs, in case of need.

This behaviour is illustrated in Figure 3.6, in which one can infer about how the BCA and

CPA interaction takes place.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

31

Figure 3.6 – Cure Provider Agent Cure Receiving Mechanism.

If a CPA is contacted by a BCA informing a new cure, the CPA will search its database

for the cure that is coming in. If the CPA already knows that cure, than it is refused and the BCA

is notified. If not, the cure is accepted, the BCA notified and the new cure is added to the database.

3.3 AIS Algorithms

Despite its obvious importance to the overall performance of the system, the main

components of the architecture are not its entities, but the processes they launch to perform its

tasks.

That being said and since this refers to a learning, decentralised diagnosis system’s

architecture, not only are to be referenced the agents by which it is supported but also the

algorithms that allow it to develop new cures from the existing ones, being this the central

component of this system, without which there were no learning mechanism.

The provided architecture is suited for all the algorithms framed in the AIS. However,

and as it will be seen further down the road, three of the algorithms are more fit for the accounted

architecture and were the ones studied and researched for the purpose of this document.

3.3.1 Fundamentals

There are several algorithms used for learning capabilities. Many of these are based on

living being behaviours or, for that matter, on the cells behaviour in each of the living systems

they populate.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

32

The AIS Algorithms are bio-inspired algorithms that are based on the behaviour of the

Human Immune System B Cells, hence the name, Artificial Immune Systems. These algorithms

are supposed to reproduce the behaviour of the aforementioned cells in a decentralised system, as

it is the Human’s, in order to perform maintenance and error recovery on the named system, much

alike the actual B cells do in our Human System (J. Timmis et al., 2008).

The real B Cells are launched by our System in a given area of our body, when that same

location emits a distress signal that notifies the main system something went wrong, and that the

task being currently held there is not under the allowed parameters. That “something that went

wrong” is called an Antigen.

The B cells are then launched to the designated location and start to analyse the error.

This analysis is done by inferring the B cell genome’s affinity towards the antigen’s genome.

Those with higher affinity values are selected, cloned, mutated, etc. with the ultimate goal of

finding a cure for the antigen. The first operation, selection, selects the higher affinity genome to

fight the antigen; the second operation clones the higher affinity B cells; the latter mutates the B

cells’ genome.

Even though this is a very simple, didactic even, explanation for what really occurs at a

cellular level in our system when a disease is detected, it serves as an introduction to how the B

cells work and upon which the algorithms will be built.

That being said, one may conclude that the AIS algorithms are based in this three basic

principles: selecting, cloning and mutating. Therefore, there will be three different algorithms:

Negative Selection, Clonal Selection and Network Model.

For a better insight of the algorithms to take place, a description of what the algorithm

will be monitoring, therefore scanning for differences, is in order. Instead of using the standard

alphabets, such as the Latin, Cyrillic, etc., which would imply more complex searches, the author

opted by using the binary alphabet, composed only by “0” and “1”, thus increasing the

performance of said algorithm exponentially. Hence, this algorithm will consider as an error every

bit change in any given byte sized word. Taking this explanation into consideration, the author

believe the reader is now ready for the explanation of the algorithms themselves.

3.3.2 Negative Selection

Its purpose is that of allowing some degree of tolerance for the “self"-cells (those

normally present in the organism) by dealing with the Immune System’s ability of detecting

unknown antigens (harmful cells) without prejudicing its own cells. The Immune System’s

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

33

generated B Cells, that fight these antigens, are formed by a pseudorandom genetic rearrange.

Those of which that react against the antigens are used to destroy it and replicated in the organism

as matured cells (Kim & Bentley, 2001). This algorithm works in two different stages: detector

set generation and monitoring the protected data.

3.3.2.1 Detector Set Generation

Each detector is a string that does not match any of the protected data. This phase is

illustrated in Figure 3.7.

Figure 3.7 – Negative Selection Algorithm Overview.

The first step the algorithm takes is to calculate the probability that two random strings

have of matching (Ayara, Timmis, de Lemos, de Castro, & Duncan, 2002). This value will be

used to calculate the number of maximum strings that the detector set may contain (one must be

attentive so that this number does not exceed the maximum number of possibilities enabled by

the size of the word considered).

After getting the maximum size of the detectors array, the algorithm initiates the

pseudorandom generation of strings, with size equal to the byte word given as a parameter. This

step may be named as the training of the detector set. This concludes the training, and most

complicated, phase of the algorithm.

3.3.2.2 Monitoring the protected data

Once a detector is triggered, an unscheduled change occurred. This stage is represented

in Figure 3.8.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

34

Figure 3.8 – Matching Process.

Lastly, one must launch some type of thread that continuously checks the inputs for

changes, by comparing them with the strings in the detector set (Garrett, 2005).

Despite not looking like a promising approach, since the algorithm goes through all the

possible strings, except for the ones in the original set, in a finite alphabet, it is a surprisingly

feasible one, mathematically speaking, since that, by using a rather small set of detector strings

there is a very high probability of noticing a random change to the original data. Plus, the number

of detectors can remain constant whilst the size of the protected data grows. If the alphabet to be

monitored was immense, one could, for efficiency sake, use several instances of the algorithm

instead of a single one, in order for a more efficient detection of the algorithm, since each instance

of the algorithm would have a rather different set of detectors (Forrest, Perelson, Allen, &

Cherukuri, 1994).

The algorithm receives as inputs:

a) The probability of not detecting a change: since the algorithm is logarithmic,

this value cannot be 0 – if one desires (almost) none probability of failure, simply

instantiate it to a nanoscale value.

b) The Self-String: String that contains the inputs that will train the detectors. This

string is to be divided into segments with the size of the byte word one may want

to use. This segments will make for the inputs of the algorithm.

c) The word size: Number of bytes each input will have.

3.3.3 Clonal Selection

The main idea behind this algorithm is that only the B Cells that recognize the antigen

will thrive and replicate. This principle describes the basic characteristic of an immunologic

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

35

response to an antigen caused stimulus. This algorithm’s main characteristics may be enumerated

as follows:

 New cells are copies of those they derive from, and are then subjected to a high

rate mutation mechanism (somatic hyper mutation).

 Procedural elimination of the new cells that, after mutation, endanger the survival

of the non-prejudicial cells for the organism (self).

 Further cloning and mutation of the cloned cells that respond positively to the

antigen. This mechanism allows for a faster response to the antigen (White &

Garrett, 2003).

According to this theory (and, as sustained by most experts, the one which represents the

biological system more accurately), every molecule that can be recognized by the Immune System

is known as an Ag. Whenever an animal is exposed to an Ag, some of its B cells respond by

producing molecules whose priority is to recognize and bind to the Ags. Since each B cell secretes

only one type of molecules, the more different B cells in the system, the easier it will be for it to

detect the anomaly, in the form of an Ag. In order for this different B cells to emerge, a mutation

of some kind must take place. Once a B cell identifies its molecule as the one which is capable of

neutralizing the menace, it will proliferate exponentially and differentiate, for a better expansion

throughout the system. This process can be observed in Figure 3.9.

Hence, the main features of the clonal selection theory (de Castro & Von Zuben, 2002)

are:

1. Proliferation and differentiation on stimulation of B cells.

2. Generation of new random genetic changes, by a form of accelerated somatic

mutation.

3. Estimation of newly differentiated lymphocytes carrying low affinity antigenic

receptors.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

36

Figure 3.9 – Clonal Selection Principle.

This algorithm starts by determining the affinities between the antibodies given as inputs

and the antigen found in the system. This is achieved by comparing each bit of the byte word, and

incrementing the affinity whenever the bit value differs.

This affinity array will then be ordered and the high affinity array will be defined. For

each high affinity antibody, affinity number of clones will be generated.

This clones will then be mutated to form new genomes for each one of them. A new

evaluation on its affinities towards the antigen will take place.

If one of the cloned antibodies has a 100% affinity with the antigen, i.e., for every ‘1’ in

the antibody genome there is a ‘0’ in the same position of the antigen genome and vice versa, then

it is safe to assume that a cure was found and the system is notified. If there was not a 100%

affinity in any of the clones, the process will go back to define the high affinity of the new clones

and so forth until a cure is found.

3.3.4 Immune Network Theory

This theory sustains that the Immune System maintains a regulated network of

interconnected B Cells which purpose is to ease the antigen detection. This cells stimulate and

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

37

supress each other with the ultimate purpose of providing stability. The connection between two

B Cells is proportional to their affinity to each other (Farmer, Packard, & Perelson, 1986).

This network is formed by B cells that have the ability to recognise others in the system.

The network self-organizes and stabilizes for a greater survival chance, since this is achieved by

mutual reinforcement between every B cell in the network via a feedback mechanism. The more

neighbours, the more stimulation a B cell will receive from the network. The maintenance and

survivability of a given B cell depends of its affinities to both the antigen and to its neighbours.

The new B cells only have new genomes that, in the case they provide a better match for the

antigen, will proliferate and survive longer. The more mutations and selections in the network, it

will learn to produce better matches for the antigen currently present in the system.

To reproduce this behaviour, the algorithm starts by creating the initial population (a

group of B cells) whose genome will be abstracted from the Self string that is provided to it as an

input. Immediately after its launch, the B cells will evaluate whether they do or do not possess

the cure for the current antigen. In the event they do, the system is notified and the antigen

nullified.

However, if the cure is not present, the B cell begins to calculate its affinities towards

both their neighbours and the antigen currently present in the system.

After all the affinities are assembled, the B cell starts to mutate its genome affinity times

for each neighbour and antigen. The mutated genomes will then be used to create new B cells that

will provide further expansion to the network. This process will keep generating B cells until one

of them provides a cure for the antigen in the system (Jon Timmis, Neal, & Hunt, 2000).

3.3.5 How to make the algorithms efficient

As one may have assumed by now, most, if not all, the processes in this algorithms

involve some type of comparison between objects. For a better and more efficient comparison to

be made by the algorithms, in order to provide the fastest output possible, given that time is one

of the greatest concerns in manufactory, this document’s author sustain that a string, for each of

the genomes, the cure’s and the error’s, is the most simple method for an efficient comparison.

Taking into account that all of the algorithms previously mentioned use some form of

pseudorandom mutation or generation, if it were to be considered that operations could be defined

by some kind of codename constituted by any of the existing alphabets’ (Latin, Cyrillic, etc.)

letters the complexity of mutating or even generating random strings of such codenames would

rise exponentially.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

38

Therefore, to diminish the complexity of said pseudorandom operations, it is the author’s

belief that binary strings of data, representing the cures and diseases of the system, would satisfy

the needs of any system, even those of the more complex ones, since the algorithms are prepared

to accept any string length, albeit the bigger, the less efficient the algorithm would become.

With this binary method, the author hope to make the algorithms more efficient, thus

reducing the time the production line is affected by the “disease”, since it will be easier for the

cure to be detected. If this explanation revealed itself somehow difficult to understand, a graphical

explanation follows in Figure 3.10.

Figure 3.10 – Conversion of a simple move command to a binary representation.

In this figure, it is easy to understand that basic commands of a robot part or the whole

robot itself are translated into a binary representation. This commands, operations if you may, are

stored within its DA. If, somehow, the binary representation, the “genome”, of the current

operation is not equal to any of those previously defined than it is considered an error, a “disease”

that must be dealt with.

Now that we have seen the fundamentals behind the AIS algorithms we can proceed to

their actual implementation.

39

4
Chapter 4. The Algorithms

As it was already said in this document, three Artificial Immune System (AIS) algorithms

were studied, implemented and tested. In this section, the implementation of each of the three

algorithms will be presented and discussed, along with the explanation and reasoning used for the

choice of one algorithm over the others. The algorithms were implemented using the Java

programming language under a behaviour oriented platform, the JADE (Java Agent Development

Environment) framework (Bellifemine, Poggi, & Rimassa, 1999).

4.1 Negative Selection

This algorithm receives four different inputs:

 The training set, which is composed of the genomes of the known cures, and will

be used to train the new genomes;

 The error genome; the probability of failure, which, according to the type of

system, should be as low as possible, even though it cannot be absolute zero since

the algorithm uses logarithmic functions;

 The word size, in bits.

This algorithm’s agent mechanism, with its associated behaviours, can be observed in

Figure 4.1. The agent starts by launching an NSInstance, implemented using the One Shot

Behaviour (OSB) from the JADE framework that will set up the initial genome inputs, calculate

the probability of failure, with the method calculatePm, and calculate the amount of detector

strings, using the method setInputs.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

40

Figure 4.1 – Negative Selection Mechanism.

The algorithm then proceeds to compute the new genomes, by the means of the

ComputeDetectors, implemented using the Simple Behaviour (SB) from the JADE framework

that receives as input the genomes that will train the new genomes, the error’s genome and the

maximum size of the new genomes array. It will then start processing new candidates and, after

evaluation, these candidates will become the new B Cell Agents’ (BCA) genome. This procedures

conclude the previously mentioned Detection Set Generation phase of the algorithm.

Once the above behaviour calculates a new genome, it immediately launches a BCA,

which main responsibility is to infer if its genome is a valid cure for the current error. This BCA

will then inform the launching Diagnosis Agent (DA) or Grouped Diagnosis Agent (GDA) of

either success or failure by the means of an AchieveREInitiator Behaviour (AREIB) from the

JADE framework.

4.2 Clonal Selection

This algorithm receives three different inputs: the training set, which is composed of the

genomes of the known cures, and will be used to train the new genomes; the error genome; and,

finally, the word size, in bits. The behaviours used to reproduce this algorithm are represented in

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

41

Figure 4.2. This algorithm’s agent starts by launching the CSInstance, implemented using the

OSB from the JADE framework that will determine the antibodies repertoire, an array of known

cures that will be used for training the new genomes. It then proceeds to launch the

DetermineAffinities Simple behaviour.

Figure 4.2 – Clonal Selection Mechanism.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

42

The DetermineAffinities, implemented using the SB from the JADE framework, will

calculate the affinity of each antibody’s genome towards the error’s genome. The affinity is

increased whenever, for the same bit position, the value is not equal. After calculated, the affinity

is then added to a list inside the error’s class. After all the antibodies are processed, the

DetermineHighAffinitiesAbs, implemented using the SB from the JADE framework, simply sets

the HighAffinity array of the error as the upper half of its Affinity array and, therefore, it will not

be graphically represented in this document.

After setting all the high affinity antibodies, this behaviour launches the GenerateClones,

also implemented using the SB from the JADE framework. This behaviour creates a clone for

each affinity times as there is in the correspondent genome’s antibody. It is now time to mutate

all the clones in order to find a cure for the current antigen.

To do so, the above behaviour launches the MutateClones, implemented using the SB

from the JADE framework, which will mutate the previously obtained cloned genomes. This is

done by altering the binary value of the bits position that are not valid as a cure for the current

error. This operation is done by going through all the clones created earlier and mutating them in

an attempt for better affinity values, which will, ultimately, lead to a future cure to the current

error.

After mutation takes place, an evaluation of its results must happen in order to evaluate

if a cure has been found, being this process very similar to those of calculating affinities. This

behaviour, DefineClonesAffinity, implemented using the SB from the JADE framework, does

precisely that. If, however, a cure is not found, the whole process will repeat itself, the old

antibodies being replaced by the new, cloned, mutated ones that have a larger affinity towards the

error’s genome. The process will then resume from the DefineHighAffinityAbs behaviour and

the cycle will only stop once a cure has been met.

4.3 Network Model

This algorithm, just like the previous one, receives three different inputs: the training set,

which is composed by the genomes of the known cures, and will be used to train the new genomes;

the error genome; and, finally, the word size, in bits. This algorithm’s mechanism is represented

in Figure 4.3.

This algorithm’s agent start by launching the NetworkInstance, implemented using the

OSB from the JADE framework that will determine the initial neighbours, an array of known

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

43

cures that will be used for training the new genomes. It then proceeds to launch the initial

population of cells, based on this initial neighbours array.

To do so, the LaunchInitialPop, implemented using the SB from the JADE framework,

will add neighbours to each of the B cells that initially constitute the network. It then proceeds to

launch one LaunchNewBCell, implemented using the OSB from the JADE framework, for each

of the initial B cells in the network.

The BCA receives three different inputs: the error genome, the candidate genome, and its

neighbours. It then proceeds to launch two separate behaviours:

1. EvaluateCure – implemented using the OSB from the JADE framework that

simply verifies if the candidate genome, which is the cells’, is the cure for the

given error.

2. GetAffinities – Parallel Behaviour that is responsible for the action of two sub-

behaviours, GetPairAffinity and GetNeighborsAffinity.

Figure 4.3 – Network Model Mechanism.

The first one simply gets the affinity between the error’s genome and the B cell’s genome

by making a bit by bit comparison of each of the genomes and adds that affinity to the cell’s

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

44

overall affinity towards the error. There are already several examples of this behaviour in this

document, rendering it unnecessary to create another graphical representation for this behaviour.

The latter, implemented using the SB from the JADE framework calculates, for each of

the cell’s neighbour, its affinity towards the error. Once the GetAffinities Behaviour terminates,

the GetMutations, implemented using the SB from the JADE framework, is launched. This

behaviour will mutate the B cell’s genome affinity times. This new mutations will constitute the

population of the next step in the network and the whole process will repeat itself until a cure is

found, much alike the Clonal Selection Algorithm.

4.4 Choosing the algorithm

For the testing of all three algorithms to take place in a secure, external intervention free

environment, all the tests and data collection took place in a connectionless computer which main

purpose is exactly that, of testing.

As it was already mentioned before, all three algorithms were launched on top of a Multi

Agent system, supported by the JADE framework, in order to validate the data in a modular and

distributed scenario. The algorithm started to process its inputs, which were passed to it through

a user-friendly interface. After the training phase was completed, the algorithms started to look

for an error endlessly.

This error was introduced by the previously named user interface. On success, meaning

the cure for that error was found, there were two parameters measured:

 The time lapse between the error introduction in the system and the cure being

found.

 The number of B Cells launched by the algorithm.

Each of the algorithms was tested with four initial inputs that constituted the initial

population. To test them, 30 tests for six different byte size, totalising 180 tests for each of the

three algorithms were made. The collected data was procedurally analysed as follows.

4.4.1 Collected Data Analysis

Since there is no developed work on AIS for an analysis towards its implementation to

be made, it was necessary to develop a methodology capable of doing it. Therefore, in order to

analyse the collected data two models were developed. For it, two simplistic models were

designed.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

45

4.4.1.1 Model’s Development

The models’ development was based on fuzzy logic. The first model’s framework is

described by Figure 4.4.

B Cells Number

Time Lapse

Responsiveness

based FIS

(to each sample)

Responsiveness

Level per Sample

Figure 4.4 – Framework of the responsiveness based FIS (per sample).

The first model (Figure 4.4) uses the two performance indicators, the B-Cell Number and

the Time Lapse, to define the system’s Responsiveness Level. The Responsiveness Level

𝐹(𝑥(𝑖, 𝑗)), is defined by the FIS of each combined sample, i.e., for sample 𝑥𝑖𝑗, where 𝑖 represents

the B Cells Number input and 𝑗 the represents the Time Lapse input. This FIS is applied to all

samples of all word sizes of the three algorithms. With the first model’s outputs, the

Responsiveness Level (per sample), the data are aggregated through the use of (1).

�̅�𝑘 =
∑ 𝐹(𝑥(𝑖,𝑗))𝑘

𝑛
𝑘=1

𝑛
and√𝑆𝑘

2 =
∑ (𝐹(𝑥(𝑖,𝑗))𝑘−�̅�𝑘)2𝑛

𝑘=1

𝑛−1

Where k is the sample number for the Responsiveness Level result for each sample 𝑥𝑖𝑗.

The results from (1) were used on the second model (Figure 4.5).

Reponsive

Level Average

Responsive Level

Standard Deviation

Responsiveness

based FIS
(to the samples'

aggregation)

Responsivess Level

per Algorithm

Figure 4.5 - Framework of the responsiveness based FIS (to the samples’ aggregation per each algorithm).

The model’s (Figure 4.5) result is the Responsiveness Level per algorithm. As higher the

value is, the better is the algorithm result, i.e., the algorithm with the highest Responsiveness Level

is the best algorithm.

4.4.1.2 Models’ Implementation

The performance indicators data was analysed based on two different scales. The time

lapse indicator was analysed based on Table 4.1.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

46

These scales were defined according to information provided by automotive industry

experts. The values were chosen taking into account that the average industrial PLC cycle,

according to those same experts’ opinion, takes approximately 100ms to perform.

Table 4.1 – Time lapse scale used on the FIS.

Scale Description

Very Fast ≤ 5 ms

Fast Between 5 and 10 ms

Moderate Between 10 and 50 ms

Slow Between 50 and 100 ms

Very Slow ≥ 100 ms

That being said, for values under 10ms, the attributed classification was “Fast” and “Very

Fast” (for those under 5ms). From a range of 10 to 50ms, a “Moderate” classification was

assigned. For values between 50ms and 100ms, “Slow” classification was attributed. For over

100ms, meaning it exceeds the average industrial PLC cycle, a “Very Slow” classification was

used.

Table 4.2 – B Cells number used on the FIS.

Scale Description

Very High ˃ 60 B Cells

High Between 45 and 60 B Cells

Moderate Between 30 and 45 B Cells

Low Between 15 and 30 B Cells

Very Low ≤ 15 B Cells

The B cells number indicator was analysed based on Table 4.2. The number of BCAs per

sample, the BCAs average and the BCAs per algorithm are also based on the following scale:

very high, high, moderate, low and very low – this means that the higher the number of BCAs,

the higher will the scale level be.

The standard deviation is defined by the following scale: low, moderate and high. All the

defined scales were defined by experts.

Lastly, the FIS rules were defined. For the first model, eight rules were defined, as for the

second, four sufficed. Yet again, all the rules were defined according to the experts’ knowledge.

4.4.1.3 Models’ Validation

As validation, the models were submitted to two different tests. Firstly, the extreme

conditions’ test (Table 4.3); secondly, the face validity test (Figure 4.6).

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

47

Table 4.3 – Extreme conditions’ test for both models.

Time B Cells Responsiveness Level

0 0 0.917

1 1 0.069

Average Standard Deviation Responsiveness Level

1 0 0.931

0 0.3 0.069

The extreme conditions’ test presented the appropriate response. Consequently, there

were no changes to be made for both models. The face validity test, also presented the expected

response, which results in a validation of both models.

(a)

(b)

Figure 4.6 - Face validity test (a) Responsiveness level FIS (per sample) (b) Responsiveness level FIS (per

algorithm).

4.4.1.4 Results’ Analysis

For a better analysis of the results given as output of the aforementioned model, a

graphical representation, as the one presented in Figure 4.7, was in order.

Figure 4.7 – Algorithms comparison chart.

This graphical representation allows for a better retrospective of the outputted results. These

results are hereby explained and clarified as follows:

92,3%

66,6%

29,7%
25,1%

0,0% 0,0%

91,6%

86,3%

64,4% 65,4% 64,2%

57,1%

91,4%
87,4%

73,3%

86,7%

74,5%
70,4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,5 1 1,5 2 2,5 3

R
es

p
o
n
si

v
en

es
s

L
ev

el

Word Size

Algorithms Comparison Chart

NS

CS

NM

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

48

 Cure finding speed: All three algorithms revealed themselves capable of finding a

cure for the error being treated in an irrelevant time lapse when compared to those of

the PLC’s cycle time, which is between seven and one hundred milliseconds

(7~100ms) – this scale was based on the automotive industry case).

 Algorithms Capability: Considering an operating station as a station that needs, at

least, one byte to read and write all inputs and outputs, respectively, it is safe to say

that, from the three presented algorithms, two of them, Clonal Selection and Network

Model, present fair, even good, results when tested on words larger than one byte,

offering above 50% performance for words with a three byte size.

 Size coverage: This study also offers a view on which algorithm should be used,

according to the word size being used, since, for words smaller or equal than four bits,

the Negative Selection Algorithm should be used. On the other hand, for words larger

than four bits, both Clonal Selection and Network Model could be used, despite the

latter presenting far better results than the first.

 Expected decaying: Even though the test results were rather satisfactory, an expected

decaying on the responsiveness level occurred, as the word size grew bigger.

 One to rule them all: Despite not being, as the results suggest, the best algorithm for

words smaller than four bits, the Network Model algorithm is the one that presents

better results for all the remaining case scenarios. Moreover, the first case scenario,

for words four bits sized, should be deemed irrelevant for the present analysis since

all the algorithms present extremely good results for that specific case scenario.

49

5
Chapter 5. Implementation

In this chapter, an approach to the implementation done in this work will be made. Since

this is a decentralized, learning system, the Artificial Immune System (AIS) architecture

previously defined was implemented using the Java programming language under a behaviour

oriented platform, the JADE (Java Agent Development Environment) framework (Bellifemine et

al., 1999).

5.1 Agents

For a better explanation to take place, a detailed overview on all the agents used will be

given, along with its role in the whole system.

5.1.1 Diagnosis Agent

Agent responsible for directly communicating with the robot/part of hardware that is

going to be supervised by it. It constantly reads the current process data of the hardware and, shall

it be outside the ruled parameters, a distress signal is emitted and the algorithms are launched.

5.1.1.1 Library Setup

On its launch, this agent starts by setting up the operations the device it is going to

supervise is capable of executing and by storing its binary representation in memory. To do so, a

library, driver if you may, file is uploaded to the agent so it can load the initial parameters under

which the life cycle of the device should run, if no error were to be found.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

50

Since this is supposed to be a generic system, to diagnose every type of robot/hardware,

an interface, that is to be implemented by those who want to use this system, is provided to make

it possible for the system to accept a variety of different driver files.

This library loading mechanism is illustrated in Figure 5.1.

Figure 5.1 – Library loading by the Diagnosis Agent (DA).

This figure shows how an operator should proceed when using this architecture,

indicating that, upon launch, the operator should supply a library, using a user-friendly interface.

If such library is provided than the DA can start the diagnosing procedures.

An illustrative representation of how the DA interfaces with the library is given in Figure

5.2.

Figure 5.2 – DA Interaction with the Library.

This figure indicates the methods one should implement in order for the architecture to

interface properly with the resource it is diagnosing. That being said, the DA can send information

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

51

to the resource, telling it what to do in order to solve a cure. On the other hand, it can also read

information from the resource it is diagnosing such as reading the current operation.

5.1.1.2 Behaviours

Once the library is processed by the agent and all the parameters are correctly set up, the

agent is ready to be set up.

Before anything, the DA must have a mechanism that allows it to request a group,

whenever one is available. The AskForGroup behaviour, implemented using the

AchieveREInitiator Behaviour (AREIB) from the JADE framework, enables just that by

requesting a group to the Grouped Diagnosis Agents (GDAs) in the system, if the DA is not yet

grouped. An overview on this behaviours mechanism is given in Figure 5.3.

Figure 5.3 – AskForGroup AchieveREInitiator Behaviour.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

52

If any GDA accepts the DA, then it starts sending all the errors and operations it knows

from the library that was passed to it. To do so, it uses the SendAllErrorCurePairs /

SendAllOperations behaviours, implemented using the Parallel Behaviour (PB) from the JADE

framework. They send both the error/cure pairs and the operations of any given DA. To do so, it

uses two different sub-OSB that will be approached next. This behaviours diagram is exactly the

same and is represented in Figure 5.4.

Figure 5.4 – SendAllErrorCurePairs / SendAllOperations Parallel Behaviours.

The aforementioned behaviours in charge of sending a single operation or error/cure pair

are called SendOperation / SendErrorCurePair and were implemented using the OSB from the

JADE framework. They are very similar among them since the only difference that tells them

apart is the content of the message sent, which, according to the objective, it sends either the

operation or the error/cure pair. An overview on this behaviours mechanism is given in Figure

5.5.

Figure 5.5 – SendErrorCurePair / SendOperation One Shot Behaviours

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

53

These behaviours conclude the setup, if you may, procedure of any DA in this

architecture. Once this is complete, the DA is ready to initiate its procedures of actually

diagnosing its resource.

To do so, it uses two separate behaviours, one that constantly observes the current

operation being done in the resource and the other that reads the state information of the DA. That

being said, the OperationsObserver, implemented using the Ticker Behaviour (TB) from the

JADE framework. It is constantly verifying if the current skill being executed by the device being

supervised is within the allowed parameters. If not, the state of the agent is modified. An overview

on this behaviours mechanism is given in Figure 5.6.

Figure 5.6 – SkillsObserver Ticker Behaviour.

The other one that was mentioned, the StateObserver, implemented using the TB from

the JADE framework. This behaviour is constantly verifying if the state of the agent is unaltered,

i.e., if there was no error found. If there was, the error detecting mechanisms are launched. This

behaviours’ mechanism can be observed in more detail in Figure 5.7.

Figure 5.7 – StateObserver Ticker Behaviour.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

54

If the DA is grouped, the information obtained from the two above behaviours is reported

top wards, to the GDA. This is done by the SendStateInformation behaviour, implemented using

the TB from the JADE framework. It is constantly informing the GDA in which the DA is

registered of its current state. This behaviours mechanism can be observed in Figure 5.8.

Figure 5.8 – SendStateInformation Ticker Behaviour.

If an error is found, the DA launches the EvaluateAllErrors behaviour, which was

implemented using the PB from the JADE framework. This behaviour’s sub-behaviours are

EvaluateIndividualError which were implemented using the OSB from the JADE framework.

The EvaluateIndividualError, will evaluate whether the agent contains, in its library,

the resolution for the current error and can be observed in Figure 5.9.

Figure 5.9 – EvaluateIndividualError One Shot Behaviour.

If a cure is found, the PerformCure, which was implemented using the TB from the

JADE framework is launched. This behaviour will “tick” as many times as there are seconds for

the found cure to take effect. Once this number is reached, the agent resets its “ok_state” and

“diagnosing” states to its defaults, true and false, respectively.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

55

If the PerformCure behaviour was set by a GDA command, then an “inform_to_send”

FIPA-Inform message is sent to the GDA. A detailed overview of this behaviour can be viewed

in Figure 5.10.

Figure 5.10 – PerformCure Ticker Behaviour.

When all the sub-behaviours terminate their execution, the aforementioned parallel

behaviour (the EvaluateAllErrors) will assess if any of the sub-behaviours found a cure. If so,

the cure will be immediately applied; if not, the error will be spread upwards to the agent’s GDA,

if it exists, so it can try to find a cure. Otherwise, it will launch the algorithm for finding a cure.

This behaviours mechanism can be duly noted in Figure 5.11.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

56

Figure 5.11 – EvaluateAllErrors Parallel Behaviour.

If the DA is grouped and it cannot find a cure in its library, it launches the RequestCure

behaviour, implemented using the AREIB from the JADE framework. This behaviour requests a

cure to the GDA into which it is registered into. If the GDA has a cure it will immediately return

it; otherwise, it informs the DA that a cure finding algorithm has been launched. This behaviour

is illustrated in Figure 5.12.

Figure 5.12 – RequestCure AchieveREInitiator Behaviour.

Since a request can be made to the group in order to find the cure, the DA must also be

able to receive a cure from the GDA, if one is ever to be found. This is done by the

FixErrorByGroupResponder behaviour, implemented using the AchieveREResponder

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

57

(ARERB) Behaviour from the JADE framework. It waits for a communication from the GDA if

a cure ever arrives from it. If so, this behaviour launches the appropriate mechanisms to apply the

received cure. This behaviour is illustrated in Figure 5.13.

Figure 5.13 – FixErrorByGroupResponder AchieveREResponder Behaviour.

5.1.1.3 Class Diagram

The class diagram for the DAs used in this architecture is detailed, in Figure 5.14, where

it is possible to observe its own structure. Since they were already mentioned and explained, there

will not be any reference to the behaviours of this agent in the figure.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

58

Figure 5.14 – Diagnosis Agent’s Class Diagram.

By taking a closer look to the above figure, it is possible to understand that all the errors,

cures and skills known to any given DA were stored in a Library, unique to each DA and that

accounts for all the known errors and skills of its agent.

5.1.2 Grouped Diagnosis Agent

Agent responsible for handling all the information in and out of the DAs by which it is

composed of. If the DA encounters an error for which it has no cure, it is the GDA’s responsibility

to deal with this problem by launching an AIS algorithm or by looking for a cure in its library,

provided by another DA.

This agent’s library of known errors is composed of the known errors of each of the DAs

that are associated with it.

5.1.2.1 Behaviours

This agent launches only two behaviours on its launch, which are no more than two FIPA

Protocol compliant behaviours that allow the GDA to communicate with the DAs that are grouped

under its responsibility. These behaviours are the ones in charge of the setup procedure, if you

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

59

may, of the GDAs. They are the ones responsible for acknowledging the new DAs that may want

to register itself and any of the error/cure pairs and operations known to them.

That being said, the ReceiveDiagnosisAgentGroupRequest behaviour (that was

implemented using the ARERB from the JADE framework) waits for a group request from a DA,

and grants it, or not, access to the group, thus allowing it to have access to more cures from the

others DA in the group, without actually knowing them. This behaviour is demonstrated in Figure

5.15.

Figure 5.15 – ReceiveDiagnosisAgentGroupRequest AchieveREResponder Behaviour.

As it is observable in the above figure, the ErrorCurePairListener behaviour was

implemented using the TB from the JADE framework. It is launched in order to receive messages

sent by the DAs, upon their registration, which content is an error/cure pair that is to be stored in

the GDA in which the DA is registered. This behaviour is depicted in Figure 5.16.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

60

Figure 5.16 – ErrorCurePairListener Ticker Behaviour.

The same goes for the OperationListener behaviour, implemented using the TB from

the JADE framework. This behaviour receives messages sent by the DAs, upon their registration,

which content is an operation that is to be stored in the GDA in which the DA is registered. This

behaviour is depicted in Figure 5.17.

Figure 5.17 – OperationListener Ticker Behaviour.

Once the loading of every operation and known error/cure pair is done, the GDA can start

its operations. For the GDA to keep track of the state of the DAs, the GroupObserver behaviour,

implemented using the TB from the JADE framework is launched. It constantly launches the

Parallel Behaviour EvaluateStates, responsible for an assessment of the state of each of the DAs

registered in a given GDA. This behaviour can be observed in Figure 5.18.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

61

Figure 5.18 – GroupObserver Ticker Behaviour.

The aforementioned EvaluateStates behaviour was implemented using the PB from the

JADE framework. It is responsible for launching the sub-behaviour EvaluateAgentState that will

report the given DA’s agent state to the GDA. If any of the DAs is having faulty behaviour, then

the state of the GDA changes and error recovery mechanisms are launched. This behaviours can

be observed in Figure 5.19.

Figure 5.19 – EvaluateStates Parallel Behaviour and EvaluateAgentState Sub-Behaviour.

For the GDA to be able to answer the cure requests from the DAs to it assigned, the

RequestCureResponder behaviour, implemented using the ARERB from the JADE framework

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

62

was used. It waits for a cure request from a DA so it knows that same DA has encountered an

error and needs the GDA’s help to solve it. The error will then be solved with either the other

known errors in the GDA or with an AIS algorithm. This behaviour is hereby represented in

Figure 5.20.

Figure 5.20 – RequestCureResponder AchieveREResponder Behaviour.

Therefore, and once a request arrives to the GDA, it launches the AnalyseAllErrors

behaviour, implemented using the PB from the JADE framework. It will verify if the current error

sent by any given DA and compares its genome to the known errors’.

To do so, it uses the AnalyseIndividualError behaviour, implemented using the OSB

from the JADE framework. This behaviour simply compares a given genome to the errors and

evaluate if it is the cure or not.

If a cure is found, it notifies the DA and requests to perform cure. If not, it launches the

AIS algorithm. A graphical illustration of these behaviours follows in Figure 5.21.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

63

Figure 5.21 – AnalyseAllErrors Parallel Behaviour and AnalyseIndividualError One Shot Behaviour.

If a cure is found inside the GDA, the FixErrorRequest behaviour, which was

implemented using the AREIB from the JADE framework is launched. It sends, to the DA, the

cure that was found by the algorithm launched by the GDA. An illustration for this behaviour

comes in Figure 5.22.

Figure 5.22 – FixErrorRequest AchieveREInitiator Behaviour.

Since the GDA needs to be notified once the cure is applied in the DA, it launches the

UpdateCuresResponder behaviour, implemented using the ARERB from the JADE framework.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

64

This behaviour waits for a B Cell Agent (BCA) to contact it for storing the cure. If the cure

presented by the BCA is a valid one, than the cure is accepted, stored and sent to the DA. This

behaviour is demonstrated in Figure 5.23.

Figure 5.23 – UpdateCuresResponder AchieveREResponder Behaviour.

5.1.2.2 Class Diagram

The class diagram for the GDAs used in this architecture is similar to that of the DAs and

is detailed, in Figure 5.24, where it is possible to observe its own structure. Once again, there will

not be any reference to the behaviours of this agent in the figure.

Figure 5.24 – Grouped Diagnosis Agent’s Class Diagram.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

65

As in the DA’s class diagram, it is possible to observe that the GDA also possesses a

Library that is used to account for all the errors, cures and skills that its GDA knows.

5.1.3 B Cell Agent

Agent responsible for evaluating its own genome towards the errors. This is done by

calculating the BCA genome’s affinity towards the errors. This is done by incrementing a counter

whenever one of the binary genomes has ‘1’ and the other has ‘0’.

This agent was adapted to fit better with the chosen algorithm, i.e., as a member of a B

Cell network it much behave as such. To do so, if no cure is found with its genome, it must be

able to expand the network. Moreover, it must also be able to, once commanded to do so, commit

suicide, since it will no longer be needed once the cure was found by another element in the

network.

5.1.3.1 Behaviours

For this agent to behave as it is supposed to, several behaviours are required.

The AnalyseError behaviour that was implemented using the OSB from the JADE

framework. It compares the error’s genome to its agent’s genome, by comparing its differences

in the binary code that represents their genome.

This is achieved by comparing each position of both genomes and checking if they have

different binary values. If this statement occurs for every single position in the genome, then a

cure has been found and the BCA notifies the DA that it found a new cure, through the

CureFoundRequest behaviour.

Otherwise, the BCA will contact the Cure Provider Agents (CPA) in the system in order

to check if a cure is available in the database. This is done by launching the RequestCureCPA

behaviour. It will also keep expanding the network by launching the GetAffinities behaviour

from the Network Model Algorithm. An illustrative example of this behaviour can be viewed in

Figure 5.25.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

66

Figure 5.25 – AnalyseError One Shot Behaviour.

The CureFoundRequest behaviour was implemented using the AREIB from the JADE

framework. It sends a message to the DA/GDA that ordered its launch, informing it has found a

cure and making it available to this agents. This behaviour can be observed in Figure 5.26.

Figure 5.26 – CureFoundRequest AchieveREInitiator Behaviour.

The RequestCureCPA behaviour was implemented using the ContractNetInitiator

Behaviour (CNIB) from the JADE framework. It sends a message to all the CPAs in the cloud

asking for a cure to the current error, given that it was not capable of solving it by itself. This

behaviour can be observed in Figure 5.27.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

67

Figure 5.27 – RequestCureCPA ContractNetInitiator Behaviour.

The SuicideResponder behaviour was implemented using the ARERB from the JADE

framework. It waits for a message from the DA/GDA for him responsible, according to which its

services are no longer needed and may be terminated. This behaviour can be observed in Figure

5.28.

Figure 5.28 – SuicideResponder AchieveREResponder Behaviour.

5.1.3.2 Class Diagram

The class diagram for the BCAs used in this architecture is as simple as it gets and is

represented in Figure 5.29, where it is possible to observe its own structure.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

68

Figure 5.29 – B Cell Agent’s Class Diagram.

5.1.4 Cure Provider Agent

Agent responsible for providing a cure to the BCAs when they cannot find a cure for the

current error. This agent has an associated database with which it communicates in order to get

and store new cures for the error requested by the BCA that is contacting it.

5.1.4.1 Behaviours

The associated database is generated on the agent’s launch and the agent must be able to

answer any incoming requests from the BCAs. Also, the agent needs to be able to update the

database whenever new information is obtained.

Hence, and as in the DA and the GDA, this agent has what can be called as a setup stage

where the database is created and filled with the initial data. To do so, the

CreateAssociatedDatabase behaviour was implemented using the OSB from the JADE

framework. This behaviour creates a database with three tables: cure, error and pairs, containing

the cures, the errors and the pairs they make, respectively (if it does not exists already). This

behaviour is presented in Figure 5.30.

Figure 5.30 – CreateAssociatedDatabase One Shot Behaviour.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

69

Once the database is created, and in the event there was not any to start off, the Load

Initial Data behaviour (implemented using the SB from the JADE framework) is launched. It is

responsible for loading all the data of a given CPA errors, cures and pairs.

This behaviour fills the database according to the data file that instantiates a CPA. If no

file is provided, the database is initialized with no data. The aforementioned behaviour is

displayed in Figure 5.31.

Figure 5.31 – LoadInitialData Simple Behaviour.

This completes the setup procedures for this agent. It must now be able to answer any

incoming cure requests of any BCA that contacts it.

To do so, it uses the CureResponder behaviour, implemented using the

ContractNetResponder Behaviour (CNRB) from the JADE framework, that waits for a BCA

request for a cure.

It then proceeds to consult the database in order to infer if it has a cure for the requested

error. If so, the cure is sent back to the BCA, if not, an error message informing it has no cure for

that error is sent. This behaviour can be observed in Figure 5.32.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

70

Figure 5.32 – CureResponder ContractNetResponder Behaviour.

Either for the setup procedures as for the cure providing procedures, the agent uses the

UpdateCureTable, UpdateErrorTable, UpdatePairsTable behaviours, implemented using the

OSB from the JADE framework. This behaviours are used to update its CPA’s database tables,

by either adding new information, or removing outdated information. Figure 5.33 graphically

demonstrates this behaviour.

Figure 5.33 – UpdateCureTable One Shot Behaviour.

5.1.4.2 Class Diagram

Once again, and given its simplicity, the class diagram presented in Figure 5.34, refers to

the CPAs database’s hierarchical organization and not to the agent itself. That being said, suffices

to say the database is organised in errors, cures and pairs.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

71

Figure 5.34 – Cure Provider Agent’s Class Diagram.

As it is possible to observe from the above figure, the CPA communicates with a database

that is constituted by three different tables, one for the cures, one for the errors and the last one

for the pairs.

5.2 Communications

Considering this is a decentralised system, the agents need to be capable of performing

tasks without being physically present in the same place. To do so, a communication of some sort

needed to be implemented so the agents could communicate among themselves in order to

perform tasks that require the intervention of more agents than only themselves.

As such, for this system to work properly, several FIPA Protocol compliant

communication mechanisms were implemented: FIPA Contract Net and FIPA Request

protocols. The first one is an auction based interaction protocol that accepts the better offer. The

latter refers to a request-response mechanism protocol.

There are two main functioning methods for this system, when it comes to

communications, and those depend on whether the DA where the error was found is grouped or

not. If it is grouped, a message to it must be sent and the group will deal with the all cure finding

mechanism. If not, the DA itself must handle the cure finding mechanism. First, a view on the

grouped diagnosis situation will be given in Figure 5.35.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

72

Figure 5.35 – Grouped Diagnosis Sequence Diagram.

If one takes a closer look at the above image, it becomes rather easy to understand how

this system works, as the points below are marked in the image:

1. Once a malfunction is detected, the DA that detected it will try to solve it by

itself. If this cannot be achieved, a request for a cure for the given error is made

to the GDA.

2. The GDA analysis the requested error and, if it knows the cure, simply sends it

back to the DA. If it does not know the cure, it will launch several BCAs,

according to the AIS algorithm under which it is running.

3. The BCA will analyse the error once again and compare it to its own genome.

Shall it be the cure, and the BCA immediately notifies the GDA. If not, the BCA

will contact the CPA in order to obtain a database stored cure for the current error.

If, otherwise, the DA is ungrouped, it must, as said before, by itself, solve the error, in a

very similar process to that of when a GDA is present. An overview of this mechanism is

presented in Figure 5.36.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

73

Figure 5.36 – Ungrouped Diagnosis Sequence Diagram.

75

6
Chapter 6. Validation

In this chapter, the validation mechanism will be approached in order to prove the

algorithms are valid from an industrial perspective. To do so, an optimal way of testing would be

in a real system. However, given the impossibility of such, a simulation environment, built upon

the aforementioned architecture, was elaborated and developed in order to approach this chapter’s

objectives.

Hence, this chapter starts with an introduction to the simulation environments used for

the type of tests performed in order to infer the usefulness of the chosen algorithm, in an industrial

environment, thus decentralised and capable of a not so great processing mechanism.

Furthermore, two type of tests were executed for this validation to occur, one concerning

the total payload the system was able to withstand and the other concerning the overtime

capability of the system to improve its error solving capabilities by learning with the previous

ones:

1. Payload tests – Type of tests in which the entirety of the system would be tested

for errors in order to evaluate its responsiveness to such a scenario.

2. Overtime tests – Type of tests in which the components of the system would

receive an error from time to time in an effort to evaluate the system’s capability

to improve its error recovery mechanism with the previously learned cures.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

76

6.1 Simulation Environments

In this section, a view on the approached simulation environments will be given, with

concerns towards the entities in the system, as to why there were no more or less entities in it, and

towards its organisation.

Thus, for a proof to be extrapolated as to the benefits of using a decentralised system,

there were, in fact, two simulation environments conceived. Despite each of the scenarios has its

own differences, there are some points in which they are equal:

1. Six low level entities - After some tests, it was concluded that, for both simulation

environments, either de or centralised, a total of six low level entities was

appropriate to populate the system with.

2. One high level entity responsible for three low level entities – In order to simulate

a scenario as real as possible, it was thought that one Grouped Diagnosis Agent

(GDA) for three Diagnosis Agents (DAs) would represent the ideal entity-level

organization of this system in an industrial environment.

6.1.1 Centralised Simulation Environment

In this scenario, the six DAs gathered in two GDAs were tested in a single machine in

order to understand if it was or not faster than the decentralised one. An architectural perspective

on this environment follows in Figure 6.1.

Figure 6.1 – Centralised Simulation Environment.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

77

As it is of easy observation in the above figure, the centralised simulation environment is

constituted by six low level entities, known as DAs, gathered three ways into two GDAs, the high

level entities of the system.

With this type of environment, the author is set to test, firstly, if it is achievable to perform

Artificial Immune System (AIS) diagnosis in a centralised system; secondly, how fast can the

system perform in an event of overall shutdown due to unknown errors, and further cure

discovery.

6.1.2 Decentralised Simulation Environment

In this scenario, differently from the above, and as the name may suggest, the six low

level entities, as the two high level ones, for that matter, are distributed in two separate machines,

hence the decentralised capability.

The author hopes that, in this way, the overall performance of the system improves

greatly, since the absurd amount of B Cell Agents (BCAs) being launched is now divided between

two separated, capable of high processing, machines. The aforementioned simulation

environment is hereby depicted in Figure 6.2.

Figure 6.2 – Decentralised Simulation Environment.

In this type of environment, the six low level entities are split three ways between the two

separate machines, which means, consequently, the high level will be too. Thus, in each of the

machines there will be three DAs grouped under the responsibility of one GDA.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

78

By observing the above figure, it is possible to distinguish two separate AIS, each

operating in a separate machine, which hosts three DAs and one GDA, and where the BCAs will

be launched in an event of error. Now that all the environments used are acknowledged, it is

possible to present some results obtained from the tests performed in them.

6.2 Payload Tests

As it was said before, and as an introduction to this section, these tests were used to

determine the overall responsiveness of the system when its entirety was under an error scenario.

To do so, the system was launched and was to wait until an order from a remote system

was given in order to launch errors in the entirety of the system. This was to be done in as much

of the same time as it was possible, with the current hardware. The purpose of these tests was to

infer if the system was able to recover from a full inactive situation and restore its previous state,

in the lesser time possible.

6.2.1 Tests’ Schematic

These type of tests were performed in both the simulated scenarios since these allowed to

determine whether the decentralised environment would fit better in an industrial like scenario,

thus leading to a comparison between the two tested environments as a way to establish some

terms of comparison between the two of them.

A graphical description of the way this tests were performed follows in Figure 6.3.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

79

Figure 6.3 – Payload Tests Schematic.

Please, take note that the represented AIS does not represent, in any way, the simulation

environment, serving only, in this instance, as a demonstrator.

As it is of easy perception, once the remote system emits the error launching message,

the whole system is uploaded with errors, in a, as far as possible, instantaneous attempt to perform

an overall shutdown, if you may, of the system.

6.2.2 Results

As to what results concern, three subjects will be approached: whether the increasing

word size results, or not, in an increasing cure finding time; in which scenario does the presented

architecture outputs better results, centralised or decentralised; lastly, if this architecture has, in

fact, any learning capabilities, by analysing the cure finding time of consecutive errors.

For a logical and organised data presentation, the first graphics presented will refer to the

obtained data for the centralised system tested, following the ones for the decentralised one.

For what this document’s objectives concerns, from the analysis of the following graphics

one must be able to conclude that the cure finding time grows bigger along with the word size.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

80

Given the huge amount of data collected from the three hundred performed tests, only the

average values will be presented in this document. This average values were calculated by

summing all the thirty tests for each of the DAs and word sizes and dividing by thirty.

That being said, there will be presented a total of twelve different graphics, divided into

two section of six graphics, each of the sections corresponding to the results obtained for each of

the tested word sizes in both the centralised environment and the decentralised.

6.2.2.1 Centralised Data

Has it was said before, hereby follows the six obtained graphics for the centralised data.

These graphics are presented in Figure 6.4.

y = 101,19x + 41,513

R² = 0,9876
0

50

100

150

200

250

300

350

400

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 1 Data

Diagnostic Agent 1

Linear (Diagnostic Agent 1)

y = 1042,6x - 595,57

R² = 0,9505
0

500

1000

1500

2000

2500

3000

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 4 Data

Diagnostic Agent 4

Linear (Diagnostic Agent 4)

y = 73,893x + 84,493

R² = 0,8626
0

50

100

150

200

250

300

350

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 2 Data

Diagnosis Agent 2

Linear (Diagnosis Agent 2)

y = 990,06x - 505,07

R² = 0,9204
0

500

1000

1500

2000

2500

3000

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 5 Data

Diagnostic Agent 5

Linear (Diagnostic Agent 5)

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

81

Figure 6.4 – Centralised Diagnosis Agents Data.

By carefully analysing the above graphics, it is possible to note a trend in each of them,

common to all. The trend is signalled by a trend line in each of the graphics, in which their

equation is depicted as well.

This trend line correlates the scattered points that represent the average values outputted

by the DAs for each word size. It offers some knowledge on how the system would behave if one

was to test larger word sizes, i.e., if it is possible to conclude that the time lapse for the cure

finding mechanism would grow bigger following a linear tendency.

This tendency was somewhat expected as in it takes longer for the system to calculate the

affinities between the errors and the possible cures, because the higher the word size, the bigger

the genome of the error, hence the time solving increase.

Therefore, and as it may concern a centralised system, it is verifiable that, a larger word

size forcibly results in a slower cure finding time, by the reasons stated above.

Now that all the centralised data has been presented and explained, the data for the

decentralised environment shall be presented.

6.2.2.2 Decentralised Data

In this section, the six graphics corresponding to the obtained decentralised data will be

presented and further discussed. The three graphics on the left refer to one of the independent

systems and the ones on the right to the other independent system.

The graphics follow in Figure 6.5.

y = 499,03x - 146,45

R² = 0,9471
0

200

400

600

800

1000

1200

1400

1600

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 3 Data

Diagnostic Agent 3

Linear (Diagnostic Agent 3)

y = 1297,6x - 783,17

R² = 0,9549
0

500

1000

1500

2000

2500

3000

3500

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 6 Data

Diagnostic Agent 6

Linear (Diagnostic Agent 6)

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

82

Figure 6.5 – Decentralised Diagnosis Agents Data.

y = 73,12x + 134,08

R² = 0,6734
0

100

200

300

400

500

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 1 -

System 1 Data

Diagnostic Agent 1 - System 1

Linear (Diagnostic Agent 1 - System 1)

y = 128,1x + 156,63

R² = 0,7645
0

100

200

300

400

500

600

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 1 -

System 2 Data

Diagnosis Agent 1 - System 2

Linear (Diagnosis Agent 1 - System 2)

y = 130,89x + 14,987

R² = 0,8951
0

100

200

300

400

500

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 2 -

System 1 Data

Diagnosis Agent 2 - System 1

Linear (Diagnosis Agent 2 - System 1)

y = 93,387x + 217,74

R² = 0,7757
0

100

200

300

400

500

600

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 2 -

System 2 Data

Diagnosis Agent 2 - System 2

Linear (Diagnosis Agent 2 - System 2)

y = 301,91x + 434,55

R² = 0,8866
0

500

1000

1500

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 3 -

System 1 Data

Diagnosis Agent 3 - System 1

Linear (Diagnosis Agent 3 - System 1)

y = 331,93x + 37,98

R² = 0,9659
0

200

400

600

800

1000

1200

1 1,5 2 2,5 3

T
im

e
L

ap
se

Word Size

Diagnosis Agent 3 -

System 2 Data

Diagnosis Agent 3 - System 2

Linear (Diagnosis Agent 3 - System 2)

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

83

As in the centralised environment, approached above, it is also possible, by observing the

above graphics, relative to the decentralised environment, to notice a trend in each of them,

common to all; once again, this trend is signalled by a trend line in each of the graphics, along

with their equation.

The trend lines, which represent what was already aforementioned, yet again make it

possible to conclude that, as the word size gets larger, the slower will be the cure finding time.

Once again, this trend was also expected for the reasons stated above.

Moreover, some conclusions can also be drawn from comparing the both systems

outputted data. Both follow approximately the same trend despite the system signalled as System

2 outputted values somewhat slower than System 1, which can be explained by the JADE

framework and the consequent queued messages in the platform.

That being said, it can be concluded that, for a decentralised system, as in a centralised

one, the bigger the word size the more time it will take the system to find a cure.

6.2.2.3 Centralised Data vs Decentralised Data

Now that both the centralised and the decentralised data have been presented, analysed

and explained, it is now possible to compare both of them in order to draw a conclusion on which

scenario presents better results for the developed architecture, centralised or decentralised.

This comparison can be observed in Figure 6.6, where the average values for each of the

word sizes is presented, considering all the thirty tests performed for each of them. The

decentralised system is represented in a blue and the centralised system is represented in a red

colour.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

84

Figure 6.6 – Centralised VS Decentralised Data Comparison.

As it was expected, for the reasons already mentioned, the decentralised environment

presents far better results than the centralised one, representing a decrease of, as the word size

grows bigger, more than half of the cure finding time.

Another conclusion that can be withdrawn from Figure 6.6 is that, as the word size grows

bigger, so does the gap between both environments, as to what time lapse concerns. This was

expected and is logical, since the bigger the word size, the harder it will be, theoretically, to find

a cure for it (this is sustained by the increasing time lapses in both environments).

That being said, and considering that, in a centralised system, our processing capability

is rather diminished, it is only normal that the rate at which the time lapses grow in a centralised

system are immensely superior to those of a decentralised one.

Last, but not least, it is possible to conclude that this architecture is far more scalable in

a decentralised environment rather than in a centralised one. This happens because the time lapses

are smaller in the first scenario, which leads to the ultimate conclusion that, theoretically, it is

possible to sustain bigger systems in a decentralised fashion rather than in a centralised one.

Hence, it is hereby proven that a decentralised environment is, indeed, and for all it

matters, better for these architecture. Therefore, for the following tests to be presented it will be

assumed that the environment being tested is no other but the decentralised one.

y = 667,39x - 317,37

R² = 0,9485

y = 176,56x + 165,99

R² = 0,9673
0

200

400

600

800

1000

1200

1400

1600

1800

1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

T
im

e
L

ap
se

Word Size

Centralised VS Decentralised

Centralised Decentralised Linear (Centralised) Linear (Decentralised)

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

85

6.3 Overtime Tests

Once again, this tests were used with the sole purpose of evaluating the learning capability

of the system by evaluating the cure finding times it was outputting in an attempt to evaluate if

they were getting smaller, as they should.

In order to achieve this purpose, the system behaves very similarly to the aforementioned

one in the beginning, as in it awaits for a communication from a remote machine so it can start its

procedures, and this is where it all changes.

6.3.1 Tests’ Schematic

Instead of launching errors throughout the entirety of the system, this test launched a

hardware class in each of the low level entities in the system. This class is meant to simulate an

actual hardware output situation, such as those from the Programmable Logic Controllers (PLCs).

It would, occasionally, send an error to the entity responsible for it.

This way, it was possible to simulate an actual, industrial like, situation, where new,

unexpected errors may occur every now and then. The above described behaviour is depicted in

Figure 6.7

Figure 6.7 – Overtime Tests Schematic.

These type of tests were only performed in the decentralised simulation environment,

since this is the type of environment this study aims at and it only makes sense to test for a

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

86

durability test in these environment. Moreover, it has already been proven that the decentralised

environment outputs better results.

6.3.2 Overtime Efficiency

Now that it has been proven that the decentralised environment is, in fact, better than the

centralised one, it is time to test if the cure finding time actually diminishes with the amount of

errors that have previously been found and cured.

This is expected to occur due to the fact that as a new cure is learnt, it will constitute,

along with the previous ones, the initial population for the cure finding algorithm in a new error

event. Given that this algorithm is based in the affinity between the known cure’s genomes and

the error’s, it is only natural that, the more cures that constitute the initial population, the bigger

the chances will be of finding a quicker cure.

That being said, two different analysis are to be made when it comes to this subject.

Firstly, an analysis of each of the DAs behaviour over time for a better understanding of what is

actually happening. Lastly, an analysis of the average time the system takes to find the cure for

each error in order to understand if it does, in fact, gets faster.

6.3.2.1 Diagnosis Agent Analysis

With this analysis, the author hopes to better understand the behaviour of each of the

individual DAs and to shed some light on the whys it is behaving as such.

To do so, six different graphics will follow, each with one DA data presented. The

aforementioned graphics are presented in Figure 6.8.

y = -34,91ln(x) + 241,86

R² = 0,40650

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

T
im

e
L

ap
se

Error

Diagnosis Agent 1 Data

Diagnosis Agent 1

Logarítmica (Diagnosis Agent 1)

y = -8,159ln(x) + 193,11

R² = 0,04760

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

T
im

e
L

ap
se

Error

Diagnosis Agent 4 Data

Diagnosis Agent 4

Logarítmica (Diagnosis Agent 4)

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

87

Figure 6.8 – Diagnosis Agents Overtime.

By analysing the above graphics, it is possible to observe the behaviour of six different

DAs, divided three ways between the two separate machines. That being said, the first to third

DA are hosted in machine one and the fourth to sixth DA in machine two.

It is easy to perceive that the first two DAs, i.e., first and fourth DA, for both systems

present time lapses rather inferior when compared to the last one. Despite this may sound odd, it

is actually quite natural if we take into account the framework used. It so happens because, no

matter the amount of DAs or how big the network is, the last DA in it will always be slower than

any of the others. This happens because it is at that time that the system will have more queued

messages thus leading to a delay in sending the latest cure to the last DA.

y = -38,85ln(x) + 226,07

R² = 0,469
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

T
im

e
L

ap
se

Error

Diagnosis Agent 2 Data

Diagnosis Agent 2

Logarítmica (Diagnosis Agent 2)

y = -17,15ln(x) + 176,61

R² = 0,37040

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

T
im

el
ap

se

Error

Diagnosis Agent 5 Data

Diagnosis Agent 5

Logarítmica (Diagnosis Agent 5)

y = -197,6ln(x) + 933,09

R² = 0,8826
0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

T
im

e
L

ap
se

Error

Diagnosis Agent 3 Data

Diagnosis Agent 3

Logarítmica (Diagnosis Agent 3)

y = -46,98ln(x) + 603,13

R² = 0,47750

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

T
im

el
ap

se

Error

Diagnosis Agent 6 Data

Diagnosis Agent 6

Logarítmica (Diagnosis Agent 6)

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

88

One can also extrapolate, from the above graphics, that the time lapse for each of the error

tend to diminish as more and more errors are found, despite this behaviour will be more

perceivable in the upcoming topic.

6.3.2.2 Error Average Overtime

Now that the DAs behaviour is explained, it is time to finally evaluate whether the system

is capable of diminishing the cure finding time as new errors are cured. This may lead to the

ultimate conclusion that the system is, in fact, capable of learning and of improving with those

same learning mechanics.

To do so, an analysis on the average time each error took to be resolved is in order. Such

an analysis will be based on the underlying Figure 6.9.

Figure 6.9 – Error Average Overtime.

The above figure depicts a graphic that represents the average time lapse obtained from

all the DAs for each consecutive error. If one is to take a closer look, it becomes easily observable

that the time lapses do slightly diminish as new cures enter the system once the error is resolved.

The sole exception to this trend is the last error, where the average time goes up. It so

happens because, once again, the last DA means the return of the system to its prior state, where

no BCAs are present in the system, thus meaning a lot of queued messages to be processed which

ends up delaying the cure finding time of the last DA.

y = -39,9ln(x) + 392,53

R² = 0,5151

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

T
im

e
la

p
se

Error

Error Average Overtime

Error Average Logarítmica (Error Average)

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

89

Despite the last value does not follow the overall tendency, this faulty behaviour, if you

may, may be caused due to the accumulated messages in the JADE scheduler or due to the JAVA

garbage collector.

That being said, and with all the presented data, it is fair to conclude that this system

possesses a learning mechanism, corroborated by the above data, and which results in a faster

cure finding from the system, as long as there has been previous errors detected.

91

7
Chapter 7. Conclusions and Further

Work

In this last chapter, some conclusions towards the developed work will be drawn, along

with some coverage of the topics that should be approached in a near future in order to continue

and further develop the work hereby presented in this document.

7.1 Conclusions

The main purpose of this document’s presented research and development was to offer

an alternative to the current diagnosis paradigms through the means of the Artificial Immune

Systems (AIS). This was quite a challenge since this is still a much undeveloped topic and there

was not that much of research material to work with.

That being said, there are three principal conclusions that can be drawn from the work

presented in this document.

Firstly, the work developed around the AIS algorithms allowed for some sort of ranking

between them to be established which, as much as this document’s author concerns, was yet to be

drafted. With this ranking, it was possible to conclude on which of the algorithms, Negative

Selection (NS), Clonal Selection (CS) or Network Model (NM), would fit better in an industrial

environment, with all the processing (dis)abilities to it associated. The NM proved to be the most

efficient of the algorithms for the tested word sizes, accounting for an improvement of around

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

92

forty pp in the biggest word sizes. However, the AIS is based on the launching of several B cell

like entities which are, if you may, a “performance killer”.

Secondly, this document also shows that AIS is a viable, promising alternative to the

current diagnosis paradigms. The developed architecture does not aim to be the best, but it

presents itself as a valid alternative to the, if you may, classic diagnosis architectures.

It proves that, with no more than four distinct entities, it is possible to somewhat mimic

the Human Immune System. Once an error, which is the representative of an infection, is detected,

the system triggers a cure finding mechanism that launches countless B cells alike entities (much

like our own Immune System does). These cells’ genome will be compared to the error’s, (being

both represented by a binary string) in as much of a resemblance as possible with the Human

Immune System.

Not only that, it has proven to be a somewhat rather efficient methodology when it comes

to error recovery since it does not take that much to actually find a cure, as the tests have shown.

The average is around the five hundred milliseconds, which represents five times the average PLC

cycle.

Moreover, it may serve as an argument in favour of those who sustain that the Human

System is possible to be mimicked and represented by mathematical equations, making it possible

to adapt natural behaviours to unnatural proceedings, as it is the industrial mechanism.

Lastly, but not least, the work hereby developed also constitutes proof that, in yet another

paradigm, a distributed, decentralised system presents better results than a centralised one. This

comes to show that, in a cloud like system, it is possible to withstand a ridiculous amount of

processing in order to achieve better and/or faster results for the case of study.

With only two separate machines, which means the tested network was divided into two

separate, independent machines, it was possible to halve the time it took for the system to find a

cure. These comes to show that some further work should be made in this area, in order to further

sustain these claims and, perhaps, even enhance them.

To wrap things up, the AIS paradigm shows great potential, given that the basis in which

it was built upon have proven its usefulness – The Human Immune System; and it should

definitely go under a more thoroughly investigation by the manufactory paradigms investigators.

For the time this work has been under development, two conference articles have been

written. The first one was presented in the Flexible Automation and Intelligent Manufacturing

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

93

(FAIM) conference (Andre Dionisio Rocha, Monteiro, & Barata, 2015) and the second one in the

IECON conference (Andre Dionisio Rocha, Monteiro, Parreira, & Barata, 2015).

Also under this work procedures, an article is being developed for posterior submission

in an international scientific journal.

7.2 Further Work

From a further work perspective, there are some points that particularly need to be pointed

out, since they are the ones that should receive the larger percentage of focus under this

perspective. These points shall be mentioned by their order of importance, according to this

document’s author point of view.

Firstly, it is this document author’s belief that the B Cell Agent (BCA) launching

mechanism should be revised and improved in order to allow for better performance results. As

it is, and considering the existing hardware, especially in an industrial like environment, it

becomes impossible to have a reasonable sized network in only one machine given that the BCAs

outburst on an error event is so great it terminates the Java Virtual Machine. This leads to the

conclusion that better results are dependent on hardware improvements.

Secondly, a revision on whether the used framework, JADE, is the most assertive, hence

the most adequate for this type of the system should be made. This is justifiable due to the huge

amount of messages this framework uses according to its FIPA compliant Protocols. This

protocols largely increase the processing capability killing power of this system. Therefore, this

document’s author sustains a new framework for these type of systems should be

searched/developed since the author believes this would be a turning point for this and other alike

systems that largely depend on communication.

Thirdly, the proposed architecture should be revised. There are some points in which it

could be improved, such as adding another entity to regulate each of the algorithm’s instances

launched upon error events. Another point under which it could be revised is that of the Cure

Provider Agent (CPA) cloud being accessible from both the Diagnostic Agents (DAs) and from

the Grouped Diagnosis Agents (GDAs). In the author’s point of view, it would improve the

system’s performance and sustainability in a distributed and decentralised environment.

That being said, this document’s author still sustains that this paradigm should be further

developed, maybe under another framework in a continuous, ever-lasting search for better results

on the overall performance of the system, given that it presents itself, with the work hereby

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

94

developed, as a strong and promising alternative to the current diagnosis paradigms in the

industrial environment.

95

7
Bibliography

Aminian, F., Aminian, M., & Collins, J. . H. W. (2002). Analog fault diagnosis of actual circuits

using neural networks. IEEE Transactions on Instrumentation and Measurement, 51(3),

544–550. http://doi.org/10.1109/TIM.2002.1017726

Ayara, M., Timmis, J., de Lemos, R., de Castro, L. N., & Duncan, R. (2002). Negative selection:

How to generate detectors. In Proceedings of the 1st International Conference on

Artificial Immune Systems (ICARIS) (Vol. 1, pp. 89–98). Canterbury, UK:[sn]. Retrieved

from http://neuro.bstu.by/our/Anomaly-Detection/ayara-etal.pdf

Balaji, P. G., & Srinivasan, D. (2010). An Introduction to Multi-Agent Systems. In D. Srinivasan

& L. C. Jain (Eds.), Innovations in Multi-Agent Systems and Applications - 1 (pp. 1–27).

Springer Berlin Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-14435-6_1

Barata, J., & Camarinha-Matos, L. M. (2003). Coalitions of manufacturing components for shop

floor agility - the CoBASA architecture. International Journal of Networking and Virtual

Organisations, 2(1), 50–77. http://doi.org/10.1504/IJNVO.2003.003518

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

96

Barata, J., Camarinha-Matos, L., & Onori, M. (2005). A multiagent based control approach for

evolvable assembly systems. In 2005 3rd IEEE International Conference on Industrial

Informatics, 2005. INDIN ’05 (pp. 478–483).

http://doi.org/10.1109/INDIN.2005.1560423

Barata, J., Ribeiro, L., & Colombo, A. (2007). Diagnosis using Service Oriented Architectures

(SOA). In 2007 5th IEEE International Conference on Industrial Informatics (Vol. 2, pp.

1203–1208). http://doi.org/10.1109/INDIN.2007.4384902

Barata, J., Ribeiro, L., & Onori, M. (2007). Diagnosis on Evolvable Production Systems. In IEEE

International Symposium on Industrial Electronics, 2007. ISIE 2007 (pp. 3221–3226).

http://doi.org/10.1109/ISIE.2007.4375131

Bellifemine, F., Poggi, A., & Rimassa, G. (1999). JADE–A FIPA-compliant agent framework. In

Proceedings of PAAM (Vol. 99, p. 33). London. Retrieved from

http://www.dia.fi.upm.es/~phernan/AgentesInteligentes/referencias/bellifemine99.pdf

Bellifemine, F., Poggi, A., & Rimassa, G. (2001). Developing multi-agent systems with a FIPA-

compliant agent framework. Software-Practice and Experience, 31(2), 103–128.

Bi, Z. M., Lang, S. Y. T., Shen, W., & Wang, L. (2008). Reconfigurable manufacturing systems:

the state of the art. International Journal of Production Research, 46(4), 967–992.

http://doi.org/10.1080/00207540600905646

Buzacott, J. A., & Shanthikumar, J. G. (1993). Stochastic Models of Manufacturing Systems.

Prentice Hall.

Chen, J., & Patton, R. J. (2012). Robust Model-Based Fault Diagnosis for Dynamic Systems.

Springer Science & Business Media.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

97

Da Silveira, G., Borenstein, D., & Fogliatto, F. S. (2001). Mass customization: Literature review

and research directions. International Journal of Production Economics, 72(1), 1–13.

http://doi.org/10.1016/S0925-5273(00)00079-7

de Castro, L. N., & Von Zuben, F. J. (2002). Learning and optimization using the clonal selection

principle. IEEE Transactions on Evolutionary Computation, 6(3), 239–251.

http://doi.org/10.1109/TEVC.2002.1011539

Desforges, X., & Archimède, B. (2006). Multi-agent framework based on smart sensors/actuators

for machine tools control and monitoring. Engineering Applications of Artificial

Intelligence, 19(6), 641–655. http://doi.org/10.1016/j.engappai.2006.03.006

Elkins, D. A., Huang, N., & Alden, J. M. (2004). Agile manufacturing systems in the automotive

industry. International Journal of Production Economics, 91(3), 201–214.

http://doi.org/10.1016/j.ijpe.2003.07.006

Ellis, B. A. (2008). Condition based maintenance. The Jethro Project, 1–5.

ElMaraghy, H. A. (2006). Flexible and reconfigurable manufacturing systems paradigms.

International Journal of Flexible Manufacturing Systems, 17(4), 261–276.

http://doi.org/10.1007/s10696-006-9028-7

Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). The immune system, adaptation, and

machine learning. Physica D: Nonlinear Phenomena, 22(1–3), 187–204.

http://doi.org/10.1016/0167-2789(86)90240-X

Feldmann, K., & Göhringer, J. (2001). Internet based Diagnosis of Assembly Systems. CIRP

Annals - Manufacturing Technology, 50(1), 5–8. http://doi.org/10.1016/S0007-

8506(07)62058-7

Forrest, S., Perelson, A. S., Allen, L., & Cherukuri, R. (1994). Self-nonself discrimination in a

computer. In 2012 IEEE Symposium on Security and Privacy (pp. 202–202). IEEE

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

98

Computer Society. Retrieved from

http://www.computer.org/csdl/proceedings/sp/1994/5675/00/56750202.pdf

Frei, R., Barata, J., & Onori, M. (2007). Evolvable Production Systems Context and Implications.

In IEEE International Symposium on Industrial Electronics, 2007. ISIE 2007 (pp. 3233–

3238). http://doi.org/10.1109/ISIE.2007.4375132

Frei, R., Di Marzo Serugendo, G., & Barata, J. (2008). Designing Self-Organization for Evolvable

Assembly Systems. In Second IEEE International Conference on Self-Adaptive and Self-

Organizing Systems, 2008. SASO ’08 (pp. 97–106).

http://doi.org/10.1109/SASO.2008.20

Frei, R., Ferreira, B., Di Marzo Serugendo, G., & Barata, J. (2009). An architecture for self-

managing evolvable assembly systems. In IEEE International Conference on Systems,

Man and Cybernetics, 2009. SMC 2009 (pp. 2707–2712).

http://doi.org/10.1109/ICSMC.2009.5346137

Frei, R., Ribeiro, L., Barata, J., & Semere, D. (2007). Evolvable Assembly Systems: Towards

User Friendly Manufacturing. In IEEE International Symposium on Assembly and

Manufacturing, 2007. ISAM ’07 (pp. 288–293).

http://doi.org/10.1109/ISAM.2007.4288487

Fries, T. P. (2007). Multi-Agent Fault Diagnosis in Manufacturing Systems Using Soft

Computing. In International Conference on Integration of Knowledge Intensive Multi-

Agent Systems, 2007. KIMAS 2007 (pp. 168–173).

http://doi.org/10.1109/KIMAS.2007.369804

Garrett, S. M. (2005). How do we evaluate artificial immune systems? Evolutionary Computation,

13(2), 145–177.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

99

Grall, A., Bérenguer, C., & Dieulle, L. (2002). A condition-based maintenance policy for

stochastically deteriorating systems. Reliability Engineering & System Safety, 76(2),

167–180. http://doi.org/10.1016/S0951-8320(01)00148-X

Grall, A., Dieulle, L., Berenguer, C., & Roussignol, M. (2002). Continuous-time predictive-

maintenance scheduling for a deteriorating system. IEEE Transactions on Reliability,

51(2), 141–150. http://doi.org/10.1109/TR.2002.1011518

Groover, M. P. (2007). Automation, Production Systems, and Computer-Integrated

Manufacturing (3rd ed.). Upper Saddle River, NJ, USA: Prentice Hall Press.

Gunasekaran, A. (2001). Agile Manufacturing: The 21st Century Competitive Strategy: The 21st

Century Competitive Strategy. Elsevier.

Hua, X.-L., Gondal, I., & Yaqub, F. (2013). Mobile agent based artificial immune system for

machine condition monitoring. In 2013 8th IEEE Conference on Industrial Electronics

and Applications (ICIEA) (pp. 108–113). http://doi.org/10.1109/ICIEA.2013.6566349

Hu, B., & Qin, S. (2012). Prognostic methodology for health management of electrical

equipments of propulsion system in a type of vessel based on artificial immune algorithm.

In 2012 IEEE Conference on Prognostics and System Health Management (PHM) (pp.

1–8). http://doi.org/10.1109/PHM.2012.6228812

Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault

Tolerance. Springer Science & Business Media.

Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and

prognostics implementing condition-based maintenance. Mechanical Systems and Signal

Processing, 20(7), 1483–1510. http://doi.org/10.1016/j.ymssp.2005.09.012

Kim, J., & Bentley, P. J. (2001). Towards an artificial immune system for network intrusion

detection: an investigation of clonal selection with a negative selection operator. In

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

100

Proceedings of the 2001 Congress on Evolutionary Computation, 2001 (Vol. 2, pp. 1244–

1252 vol. 2). http://doi.org/10.1109/CEC.2001.934333

Kordic, V. (2006). Manufacturing the future: concepts, technologies & visions. Mammendorf:

Pro-Literatur-Verl.

Koren, Y. (1983). Computer Control of Manufacturing Systems / Y. Koren.

Koren, Y., & Shpitalni, M. (2010). Design of reconfigurable manufacturing systems. Journal of

Manufacturing Systems, 29(4), 130–141. http://doi.org/10.1016/j.jmsy.2011.01.001

Landers, R. G., Min, B.-K., & Koren, Y. (2001). Reconfigurable Machine Tools. CIRP Annals -

Manufacturing Technology, 50(1), 269–274. http://doi.org/10.1016/S0007-

8506(07)62120-9

Leitão, P., & Restivo, F. (2006). ADACOR: A holonic architecture for agile and adaptive

manufacturing control. Computers in Industry, 57(2), 121–130.

http://doi.org/10.1016/j.compind.2005.05.005

Leitão, P., & Restivo, F. (2008). A holonic approach to dynamic manufacturing scheduling.

Robotics and Computer-Integrated Manufacturing, 24(5), 625–634.

http://doi.org/10.1016/j.rcim.2007.09.005

Lohse, N., Hirani, H., Ratchev, S., & Turitto, M. (2005). An ontology for the definition and

validation of assembly processes for evolvable assembly systems. In The 6th IEEE

International Symposium on Assembly and Task Planning: From Nano to Macro

Assembly and Manufacturing, 2005. (ISATP 2005) (pp. 242–247).

http://doi.org/10.1109/ISATP.2005.1511480

Lohse, N., Ratchev, S., & Barata, J. (2006). Evolvable Assembly Systems - On the role of design

frameworks and supporting ontologies. In 2006 IEEE International Symposium on

Industrial Electronics (Vol. 4, pp. 3375–3380). http://doi.org/10.1109/ISIE.2006.296008

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

101

Lopes, G., & Pereira, L. M. (2006). Prospective logic programming with ACORDA. Procs. of the

FLoC, 6. Retrieved from http://ceur-ws.org/Vol-192/paper10.pdf

Mauro, O. (2009). Evolvable production systems : Mechatronic production equipment with

process-based distributed control. In H. Hideki (Ed.), (pp. 80–85).

http://doi.org/10.3182/20090909-4-JP-2010.00016

McArthur, S. D. J., Davidson, E. M., Catterson, V. M., Dimeas, A. L., Hatziargyriou, N. D., Ponci,

F., & Funabashi, T. (2007a). Multi-Agent Systems for Power Engineering Applications

#x2014;Part I: Concepts, Approaches, and Technical Challenges. IEEE Transactions on

Power Systems, 22(4), 1743–1752. http://doi.org/10.1109/TPWRS.2007.908471

McArthur, S. D. J., Davidson, E. M., Catterson, V. M., Dimeas, A. L., Hatziargyriou, N. D., Ponci,

F., & Funabashi, T. (2007b). Multi-Agent Systems for Power Engineering Applications

#x2014;Part II: Technologies, Standards, and Tools for Building Multi-agent Systems.

IEEE Transactions on Power Systems, 22(4), 1753–1759.

http://doi.org/10.1109/TPWRS.2007.908472

Mehrabi, M. G., Ulsoy, A. G., & Koren, Y. (2000). Reconfigurable manufacturing systems and

their enabling technologies. International Journal of Manufacturing Technology and

Management, 1(1), 114–131. http://doi.org/10.1504/IJMTM.2000.001330

Mehrabi, M. G., Ulsoy, A. G., Koren, Y., & Heytler, P. (2002). Trends and perspectives in flexible

and reconfigurable manufacturing systems. Journal of Intelligent Manufacturing, 13(2),

135–146. http://doi.org/10.1023/A:1014536330551

Mendes, M. J. G. C., Santos, B. M. S., & Costa, J. S. da. (2009). Multi-agent Platform and Toolbox

for Fault Tolerant Networked Control Systems. Journal of Computers, 4(4), 303–310.

http://doi.org/10.4304/jcp.4.4.303-310

Mobley, R. K. (2002). An Introduction to Predictive Maintenance. Butterworth-Heinemann.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

102

Mohammadi, M., Akbari, A., Raahemi, B., Nassersharif, B., & Asgharian, H. (2014). A fast

anomaly detection system using probabilistic artificial immune algorithm capable of

learning new attacks. Evolutionary Intelligence, 6(3), 135–156.

http://doi.org/10.1007/s12065-013-0101-3

Monostori, L., Váncza, J., & Kumara, S. R. T. (2006). Agent-Based Systems for Manufacturing.

CIRP Annals - Manufacturing Technology, 55(2), 697–720.

http://doi.org/10.1016/j.cirp.2006.10.004

Neves, P., & Barata, J. (2009). Evolvable production systems. In IEEE International Symposium

on Assembly and Manufacturing, 2009. ISAM 2009 (pp. 189–195).

http://doi.org/10.1109/ISAM.2009.5376907

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and Cooperation in Networked

Multi-Agent Systems. Proceedings of the IEEE, 95(1), 215–233.

http://doi.org/10.1109/JPROC.2006.887293

Onori, M., Alsterman, H., & Barata, J. (2005). An architecture development approach for

evolvable assembly systems. In The 6th IEEE International Symposium on Assembly and

Task Planning: From Nano to Macro Assembly and Manufacturing, 2005. (ISATP 2005)

(pp. 19–24). http://doi.org/10.1109/ISATP.2005.1511444

Onori, M., Barata, J., & Frei, R. (2006). Evolvable Assembly Systems Basic Principles. In

Information Technology For Balanced Manufacturing Systems (pp. 317–328). Springer

US. Retrieved from http://link.springer.com/chapter/10.1007/978-0-387-36594-7_34

Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-

Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review.

Annals of the Association of American Geographers, 93(2), 314–337.

http://doi.org/10.1111/1467-8306.9302004

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

103

Ribeiro, L., & Barata, J. (2011). Re-thinking diagnosis for future automation systems: An analysis

of current diagnostic practices and their applicability in emerging IT based production

paradigms. Computers in Industry, 62(7), 639–659.

http://doi.org/10.1016/j.compind.2011.03.001

Ribeiro, L., & Barata, J. (2012). IMS 10—Validation of a co-evolving diagnostic algorithm for

evolvable production systems. Engineering Applications of Artificial Intelligence, 25(6),

1142–1160. http://doi.org/10.1016/j.engappai.2012.02.008

Ribeiro, L., Barata, J., Onori, M., Hanisch, C., Hoos, J., & Rosa, R. (2011). Self-organization in

automation - the IDEAS pre-demonstrator. In IECON 2011 - 37th Annual Conference on

IEEE Industrial Electronics Society (pp. 2752–2757).

http://doi.org/10.1109/IECON.2011.6119747

Rocha, A. D., Barata, D., Orio, G. D., Santos, T., & Barata, J. (2015). PRIME as a Generic Agent

Based Framework to Support Pluggability and Reconfigurability Using Different

Technologies. In L. M. Camarinha-Matos, T. A. Baldissera, G. D. Orio, & F. Marques

(Eds.), Technological Innovation for Cloud-Based Engineering Systems (pp. 101–110).

Springer International Publishing. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-319-16766-4_11

Rocha, A. D., Monteiro, P. L., & Barata, J. (2015). An Artificial Immune Systems Based

Architecture to Support Diagnoses in Evolvable Production Systems Using Genetic

Algorithms as an Evolution Enabler. Presented at the Flexible Automation and Intelligent

Manufacturing.

Rocha, A. D., Monteiro, P. L., Parreira, M., & Barata, J. (2015). Artificial Immune Systems

Algorithms as a Solution to Perform Diagnosis on Distributed Manufacturing Systems:

A Performance Test. Presented at the IECON.

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

104

Rütten, A., Vuillemin, A., Ooijendijk, W., Schena, F., Sjöström, M., Stahl, T., … Ziemainz, H.

(2003). Physical activity monitoring in Europe. The European Physical Activity

Surveillance System (EUPASS) approach and indicator testing. Public Health Nutrition,

6(04), 377–384. http://doi.org/10.1079/PHN2002449

Sanchez, L. M., & Nagi, R. (2001). A review of agile manufacturing systems. International

Journal of Production Research, 39(16), 3561–3600.

http://doi.org/10.1080/00207540110068790

Semere, D., Barata, J., & Onori, M. (2007). Evolvable Assembly Systems: Developments and

Advances. In IEEE International Symposium on Assembly and Manufacturing, 2007.

ISAM ’07 (pp. 282–287). http://doi.org/10.1109/ISAM.2007.4288486

Shen, W. (2002). Distributed manufacturing scheduling using intelligent agents. IEEE Intelligent

Systems, 17(1), 88–94. http://doi.org/10.1109/5254.988492

Shen, W., Lang, S. Y. T., & Wang, L. (2005). iShopFloor: an Internet-enabled agent-based

intelligent shop floor. IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, 35(3), 371–381. http://doi.org/10.1109/TSMCC.2004.843224

Shen, W., & Norrie, D. H. (1999). Agent-Based Systems for Intelligent Manufacturing: A State-

of-the-Art Survey. Knowledge and Information Systems, 1(2), 129–156.

http://doi.org/10.1007/BF03325096

Sirca, A. D. (2008). Reconfigurable Manufacturing Systems. Retrieved from

http://www.imtuoradea.ro/conf_stud/ss_2008_files/Oradea_Sirca_Anca_Reconfigurable

_Manufacturing_Systems.pdf

Smith, R. E., Timmis, J., Stepney, S., & Neal, M. (2005). Conceptual frameworks for artificial

immune systems. Retrieved from http://cadair.aber.ac.uk/dspace/handle/2160/1739

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

105

Sorsa, T., & Koivo, H. N. (1993). Application of artificial neural networks in process fault

diagnosis. Automatica, 29(4), 843–849. http://doi.org/10.1016/0005-1098(93)90090-G

Timmis, J., Andrews, P., & Hart, E. (2010). On artificial immune systems and. Swarm

Intelligence, 4(4), 247–273. http://doi.org/10.1007/s11721-010-0045-5

Timmis, J., Andrews, P., Owens, N., & Clark, E. (2008). An interdisciplinary perspective on

artificial immune systems. Evolutionary Intelligence, 1(1), 5–26.

http://doi.org/10.1007/s12065-007-0004-2

Timmis, J., Neal, M., & Hunt, J. (2000). An artificial immune system for data analysis.

Biosystems, 55(1–3), 143–150. http://doi.org/10.1016/S0303-2647(99)00092-1

Valckenaers, P., & Van Brussel, H. (2005). Holonic Manufacturing Execution Systems. CIRP

Annals - Manufacturing Technology, 54(1), 427–432. http://doi.org/10.1016/S0007-

8506(07)60137-1

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., & Peeters, P. (1998). Reference

architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37(3),

255–274. http://doi.org/10.1016/S0166-3615(98)00102-X

Van Dyke Parunak, H., Baker, A. D., & Clark, S. J. (2001). The AARIA agent architecture: From

manufacturing requirements to agent-based system design. Integrated Computer-Aided

Engineering, 8(1), 45–58.

White, J. A., & Garrett, S. M. (2003). Improved Pattern Recognition with Artificial Clonal

Selection? In J. Timmis, P. J. Bentley, & E. Hart (Eds.), Artificial Immune Systems (pp.

181–193). Springer Berlin Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-540-45192-1_18

Williams, B. C., & Nayak, P. P. (1996). A model-based approach to reactive self-configuring

systems. In Proceedings of the National Conference on Artificial Intelligence (pp. 971–

Erro! Utilize o separador Base para aplicar Heading 1 ao texto que pretende que apareça

aqui. Erro! Utilize o separador Base para aplicar

Heading 1 ao texto que pretende que apareça aqui.

106

978). Retrieved from http://www.aaai.org/Papers/Workshops/1996/WS-96-01/WS96-

01-033.pdf

Wu, X., Chen, J., Li, R., & Li, F. (2005). Web-based remote monitoring and fault diagnosis

system. The International Journal of Advanced Manufacturing Technology, 28(1-2),

162–175. http://doi.org/10.1007/s00170-004-2324-z

Zhang, G., Liu, R., Gong, L., & Huang, Q. (2006). An Analytical Comparison on Cost and

Performance among DMS, AMS, FMS and RMS. In P. A. I. Dashchenko (Ed.),

Reconfigurable Manufacturing Systems and Transformable Factories (pp. 659–673).

Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/3-

540-29397-3_33

Zhou, X., Xi, L., & Lee, J. (2007). Reliability-centered predictive maintenance scheduling for a

continuously monitored system subject to degradation. Reliability Engineering & System

Safety, 92(4), 530–534. http://doi.org/10.1016/j.ress.2006.01.006

