2 research outputs found

    Performance evaluation and optimization of swarms of robots in a specific task

    Get PDF
    Objectives and methodology: Nowadays the swarms of robots represent an alternative to solve a wide range of tasks as search, aggregation, predatorprey, foraging, etc. However, determining how well the task is resolved is an important current problem, assign evaluation metrics to tasks performed by swarms of robots is very useful in order to measure the performance of a particular swarm in the task resolution. Find the control parameters of a swarm of robots that resolves a task with the best possible performance represents many benefits as saving of energetic resources and time. The general objective in this thesis is to evaluate and improve the performance of a swarm of robots in the resolution of a particular task, for that reason the following specific objectives are proposed: 1) To describe a flocking task with target zone search and to determine evaluation metrics that measure the task resolution; 2) To implement behavior policies for a simulated swarm of quadrotors; 3) To implement multi-objective optimization techniques in order to find the best sets of control parameters of the swarm that resolve the proposed task with the best possible performance; 4) To compare the performance of the implemented multi-objective optimization algorithms in order to determine which algorithm represents the best option to optimize this type of tasks. Different methods to control swarms of robots have been proposed, in this thesis a bio-inspired model based in repulsion (∆r), orientation (∆o) and attraction (∆a) tendencies between biological species as bird flocks and schools of fish is applied in the simulated swarm of quadrotors. Different experiments are proposed, the flocking task with target zone search is optimized for swarms of quadrotors of 5, 10 and 20 members and with two different conditions in the environment, one case without obstacles and another case with obstacles in the arena. The task is evaluated by four proposed objective functions formulated as minimization problems which are oriented to reach four main objectives in the task, as these objectives functions are minimized the desired behavior of the swarm of quadrotors is reached. The Multi-Objective Particle Swarm Optimization (MOPSO), the Nondominated Sorting Genetic Algorithm II using Differential Evolution (NSGA-II-DE) and the Multiobjective Evolutionary Algorithm based on Decomposition using Differential Evolution (MOEA/D-DE) are used to optimize the control parameters ∆r, ∆o and ∆a for the proposed task in each experiment. The Hypervolume measure (HV ), a modified C-metric (Q) and the time per cycle (T P C) are the selected metrics to evaluate the performance of the multi-objective optimization algorithms. Contributions and conclusions: The obtained results show that the selected behavior policies produces collaborative interactions between members of the swarm that benefit the resolution of the task. Use multi-objective optimization techniques directly on the quadrotor swarm simulator produces small number of optimized solutions because the optimization process is only suitable with small populations and with a reduced number of cycles due to the..

    Improving Robot Team's performance by Passing Objects between Robots

    Get PDF
    Department of Computer Science and EngineeringA transport robot system is a robotic system in which robots move objects from one place to another place. Most existing transport robot systems perform three tasks: loading an item, moving to another location, and unloading the item. Traditional mobile robots, which carry objects one at a time, is not suitable for repeatedly transporting objects over a long distance. Therefore, in the factory or warehouse environment, they still use conveyor belts to transport a large number of objects. However, the existing conveyor belts are physically fixed in their environments, and it is difficult to reconfigure the layout of a conveyor network. In this thesis, I presente three new robotic systems that have the ability to pass objects at a distance between mobile robots. These three robotic systems are mobile conveyor belts, dynamic robot chains, and mobile workstations. First, conveyor belts are commonly used to transport many objects rapidly and effectively. I present a novel conveyor system called a mobile conveyor line that can autonomously organize itself to transport objects to a given location. In this thesis, I analyze the reachability of multiple mobile conveyor belts and present an algorithm to verify the reachability of a specified destination, as well as a way to gen- erate a configuration for connecting conveyor belts to reach the destination. The key results include a complete set of equations describing the reachable set of a mobile conveyor belt on a flat surface, which leads to an effective probabilistic strategy for autonomous configuration. The results of the experiment demonstrated the overlap effect, which states that reachable sets frequently overlap. This system can be suitable for locations where it is difficult to install a conveyor line, such as disaster zones. Second, I present to use mobile conveyor belts in foraging tasks in environments with obstacles. Foraging robots can form a dynamic robot chain network that can quickly send resources received from other foraging robots to a collecting zone called a depot area. A robot chain is essentially a sequence of mobile robots with the ability to quickly pass resources at a long distance. A dynamic robot chain network is a network of robot chains that allow the branches of the robot chains to connect multiple resource clusters. By allowing branching, the traffic near the end of the robot chain network can be dis- tributed to several branches, and congestion can be avoided. The dynamic robot chain network leverages mobility to relocate, reduce collection time for other robots, and quickly send resources received from other foraging robots to the depot area. The key result is the formation of robot chains capable of over- coming the two major limitations of existing dynamic depot foraging systems: the long travel distance for delivery and congestion near the central collection zone. In the experiments, given the same num- ber of robots, a dynamic robot chain network outperformed existing dynamic depots in multiple-place foraging problems. Third, I consider the idea of mobile workstations, which integrate mobile platforms with production machinery to improve efficiency by overlapping production time and delivery time. I describe a task planning algorithm for multiple mobile workstations and offer a model of mobile workstations and their jobs. This planning problem for mobile workstations includes the features of both traveling salesman problems (TSP) and job shop scheduling problems (JSP). For planning, I presente two algorithms: a) a complete search algorithm that offers a minimum makespan plan and b) a local search in the space of task graphs to offer suboptimal plans quickly. According to the experiments, the second algorithm can generate near-optimal temporal plans when the number of jobs is small. In addition, the second algorithm can generate noticeably shorter plans than a version of the job shop scheduling algorithm and SGPlan 5 when the number of jobs is large. This research shows that transport robot systems could work together with other robots or machines in various environments to overcome the limitations of existing systems for the environments. A mobile conveyor line can pass quickly objects at a long distance and can apply to many different environments by overcoming the existing problem of conveyor belts. By using mobile conveyor belts, the robots have the ability to pass objects at a distance between mobile robots to improve the performance of foraging tasks by overcoming the long travel distance for delivery and congestion near the central collection zone. In addition, a mobile workstation can handle the tasks that transport the production of goods to users. By paralleling the production time and the movement, a mobile workstation can substantially shorten the time it takes to deliver products to customers.ope
    corecore