14,581 research outputs found

    Multiplex PI-Control for Consensus in Networks of Heterogeneous Linear Agents

    Get PDF
    In this paper, we propose a multiplex proportional-integral approach, for solving consensus problems in networks of heterogeneous nodes dynamics affected by constant disturbances. The proportional and integral actions are deployed on two different layers across the network, each with its own topology. Sufficient conditions for convergence are derived that depend upon the structure of the network, the parameters characterizing the control layers and the node dynamics. The effectiveness of the theoretical results is illustrated using a power network model as a representative example.Comment: 13 pages, 6 Figures, Preprint submitted to Automatic

    Second-Order Agents on Ring Digraphs

    Full text link
    The paper addresses the problem of consensus seeking among second-order linear agents interconnected in a specific ring topology. Unlike the existing results in the field dealing with one-directional digraphs arising in various cyclic pursuit algorithms or two-directional graphs, we focus on the case where some arcs in a two-directional ring graph are dropped in a regular fashion. The derived condition for achieving consensus turns out to be independent of the number of agents in a network.Comment: 6 pages, 10 figure

    An Evolutionary Framework for Determining Heterogeneous Strategies in Multi-Agent Marketplaces

    Get PDF
    We propose an evolutionary approach for studying the dynamics of interaction of strategic agents that interact in a marketplace. The goal is to learn which agent strategies are most suited by observing the distribution of the agents that survive in the market over extended periods of time. We present experimental results from a simulated market, where multiple service providers compete for customers using different deployment and pricing schemes. The results show that heterogeneous strategies evolve and co-exist in the same market.marketing;simulation;multi-agent systems;complexity economics;trading agents

    Distributed allocation of mobile sensing swarms in gyre flows

    Get PDF
    We address the synthesis of distributed control policies to enable a swarm of homogeneous mobile sensors to maintain a desired spatial distribution in a geophysical flow environment, or workspace. In this article, we assume the mobile sensors (or robots) have a "map" of the environment denoting the locations of the Lagrangian coherent structures or LCS boundaries. Based on this information, we design agent-level hybrid control policies that leverage the surrounding fluid dynamics and inherent environmental noise to enable the team to maintain a desired distribution in the workspace. We establish the stability properties of the ensemble dynamics of the distributed control policies. Since realistic quasi-geostrophic ocean models predict double-gyre flow solutions, we use a wind-driven multi-gyre flow model to verify the feasibility of the proposed distributed control strategy and compare the proposed control strategy with a baseline deterministic allocation strategy. Lastly, we validate the control strategy using actual flow data obtained by our coherent structure experimental testbed.Comment: 10 pages, 14 Figures, added reference
    corecore