
1536-1268/07/$25.00 © 2007 IEEE ■ Published by the IEEE Computer Society PERVASIVEcomputing 85

Realizing Teamwork
in the Field:
An Agent-Based Approach

T
he recent managerial trend of em-
powering workforces requires mo-
bile workers to rely on a high degree
of teamwork in a changing envi-
ronment.1 However, today’s mobile

workforce managers can’t simply pick up an off-
the-shelf solution to realize the teamwork concept
for their teams. Current commercial, mobile so-

lutions highlight their main
features in terms of data col-
lection, data delivery, and data
synchronization between a mo-
bile device and back-end sys-
tems.2 There isn’t much mention
of effective cooperation among

mobile workers, so presumably this isn’t regarded
as a must-have feature.

This omission might seem odd considering the
rapid advances in computer-supported coopera-
tive work in mobile computing during the last
decade (see the related sidebar). However, most
CSCW research focuses on in-office workers rather
than on mobile workers, who work in completely
different (behavioral and technical) environments.

To address this, researchers at British Telcom-
munication’s Intelligent Systems Research Centre
developed mPower,3 a component-based frame-
work for developing agent-based cooperation sup-
port systems for mobile workforces. In mPower,
we designed an intelligent agent that supports coop-
eration between mobile workers by considering the
specific characteristics of mobile workplaces.

A personal assistant agent
If we observe an average mobile worker, Bob, for

a few days, we see that his nomadic workstyle pre-
vents him from constantly monitoring a device
screen for information updates (such as his job
schedule). Furthermore, Bob uses his device mainly
for peripheral activities, such as changing task sta-
tus or entering job completion data, while he car-
ries out primary tasks such as fixing wires and
inspecting network equipment without using the
device. This dramatically decreases Bob’s degree of
collaboration with his colleagues, unlike workers in
office environments who normally execute their
tasks using desktop computers. So, information sys-
tems intended to support mobile worker collabo-
ration should support hands-free interaction and
have the autonomy to minimize user intervention
when executing services such as requesting assis-
tance from colleagues.

Apart from that, managing the business rules
guiding cooperation among mobile workers is a
critical issue. For example, you might want to ini-
tially allow task reassignment via P2P negotia-
tion (also known as mini-trade) between mobile
workers for all types of tasks but later exclude
tasks requiring specific skills. This requires effi-
cient version management of deployed software
to avoid inconsistent application behavior.

In mPower, developers can implement appli-
cation-specific cooperative services (computer-
ized services that semiautomate interactions
among two or more users to achieve a common

An intelligent agent enhances the provision of cooperative services
by adopting a component-based approach, increasing accessibility
to mobile workers in the field.

M U L T I A G E N T S Y S T E M S

Habin Lee, Patrik Mihailescu,
and John Shepherdson
BT Group Chief Technology Office

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

goal) as components that an agent can
plug and play as needed. We’ve incorpo-
rated multiagent systems in mPower
because of the extensive research indicat-
ing the relative ease with which you can
achieve software autonomy using asyn-
chronous, message-based cooperation
mechanisms (such as an Agent Commu-
nication Language4) and a belief-desire-
intention architecture.5 We adopted the
JADE-LEAP (Java Agent Development
Framework-Light Extensible Agent Plat-
form) multiagent system platform6 as
mPower’s core, owing to its desirable fea-
tures in usability, device adaptability, and
communication efficiency as well as its
small deployment footprint.7 JADE-LEAP
provides the agent execution environment
for our agents as well as the mechanism
for them to communicate with each other.

The personal assistant agent, this arti-
cle’s main focus, plays an important role

in mPower for the installation, update,
and execution of cooperative services. A
personal assistant’s cooperation support
capabilities include

• providing P2P-style services via plug-
gable software components,

• performing version management of
installed components for cooperative
services,

• minimizing user intervention in a
cooperation process by understanding
the working context, and

• configuring the agent-human interface
on the basis of the identified work
context to increase access to users.

Figure 1 shows a personal assistant’s
main components and the information
flows between them. In a normal sce-
nario, a GUI event (for example, a user
requesting a service via a mobile device)

is passed to a personal assistant’s UI man-
ager. If the UI manager interprets an event
as a service request, it passes the event to
the goal engine. The goal engine initiates
and controls a process that provides the
service. The goal graph repository con-
tains a goal-processing graph that de-
fines the service provision process. Exe-
cuting a goal-processing graph leads to
executing agent behaviors (agent capa-
bilities or actions) to receive user input,
to show output to the user, or to perform
message-based interactions with other
devices’ personal assistants.

The behavior manager maintains a
description of all agent behaviors and
either executes one or more behaviors or
calls the cooperation manager. The coop-
eration manager installs and updates
cooperative services by collaborating with
the service mediator agent. The sensor
manager collects data from external

86 PERVASIVEcomputing www.computer.org/pervasive

M U L T I A G E N T S Y S T E M S

I nitially, some projects researching the development of agent-

based personal assistants considered only office-based users who

interacted with their personal assistants on activities such as filtering

emails and personalizing news items.1–3 In recent years, the focus

has not only shifted to mobile computing but also to providing

more advanced services. For example, the CRUMPET project4 looked

at developing a personal assistant to improve a user’s experience

while on holiday by providing location-aware tourism services.

Projects that share a similar theme to our work—that is, coordi-

nation of services between mobile users—include ActiveCampus5

and MyCampus.6 Both projects focus on developing context-aware

services for students and staff within an education scenario. One

key differentiator between these projects and our work is our em-

phasis on coordination between team members as opposed to be-

tween individuals.

A project that focuses on coordination between team members

is Electric Elves.7 It uses agent technology to automate commonly

executed tasks such as organizing meetings. In the Electric Elves

model, coordination between team members is offloaded to a

separate proxy that’s part of a domain-independent, team-based

architecture called Teamcore. By using this architecture, personal

assistants aren’t tied to a particular coordination interaction proto-

col. Our work requires personal assistants to perform the coordina-

tion themselves, and we achieve independence of coordination

protocols by using a component-based architecture that enables

personal assistants to dynamically install new cooperative services.

REFERENCES

1. P. Maes, “Agents That Reduce Work and Information Overload,” Comm.
ACM, vol. 37, no. 7, 1994, pp. 30–40.

2. C. Thomas and G. Fischer, “Using Agents to Personalize the Web,” Proc.
2nd Int’l Conf. Intelligent User Interfaces, ACM Press, 1997, pp. 53–60.

3. T. Haynes et al., “An Automated Meeting Scheduling System That Uses
User Preferences,” Proc. 1st Int’l Conf. Autonomous Agents, ACM Press,
1997; http://sigart.acm.org/proceedings/agents97/A166/A166.pdf.

4. S. Poslad et al., “CRUMPET: Creation of User-Friendly Mobile Services Per-
sonalised for Tourism,” Proc. 3G 2001—2nd Int’l Conf. 3G Mobile Com-
munication Technologies, IEEE Press, 2001, pp. 282.

5. M. Ratto et al., “The ActiveClass Project: Experiments in Encouraging
Classroom Participation,” Computer Support for Collaborative Learning
2003, Kluwer, 2003, pp. 477–486.

6. N. Sadeh, F. Gandon, and O. Kwon, Ambient Intelligence: The MyCam-
pus Experience, tech. report CMU-ISRI-05-123, Carnegie Mellon Univ.,
School of Computer Science, 2005.

7. H. Chalupsky et al., “Electric Elves: Applying Agent Technology to Sup-
port Human Organizations,” Proc. Int’l Conf. Innovative Application of
Artificial Intelligence (IAAI 01), AAAI Press, 2001, pp. 51–58.

Related Work on Teamwork Using Mobile Devices

sources such as GPS, PIMs (personal
information management systems), and
the system clock and inserts it into the
context repository. Upon insertion, the
context engine converts the data into
meaningful behavior that represents the
user’s current working context, on the
basis of predefined inference rules. The
context repository contains the accumu-
lated, processed context information.

During a service-provision process,
the goal engine might wish to receive fur-
ther information from a mobile worker.
If so, the UI manager decides which user
interface to use to collect the required
information on the basis of the context
repository’s state. The goal and context
engines use a modified version of the
Zeus Rete engine,8 which can be used in
a lightweight-computing environment
to schedule goal-achieving actions and
derive high-level context information.

Component-based
management

mPower implements each cooperative
service as a pluggable component and dis-
patches it to the mobile device for dynamic
installation and execution. The coopera-
tion component (C-COM)9 uses asyn-
chronous message exchange among mul-
tiple agents. It consists of two types of role
components—initiator (starts an inter-
action) and respondent (reacts to an ini-
tiator’s request)—each of which plays a
specific part on behalf of its user in a co-
operation context and encapsulates the
cooperation logic. For example, an initia-
tor that enables the FIPA Contract Net-
based10 mini-trade serviceperforms all of
a contract manager’s required actions. It
finds engineers with the right skill set, pre-
pares a call for bids that contains relevant
information (for example, job location
and required skills), evaluates received bids
(such as the distance between the job loca-
tion and the bidder’s location), contracts
with the winner, and so on. A personal
assistant dynamically installs each role

component on a mobile device according
to the roles the user played in the business
process. Any component in a personal
assistant that needs a cooperative service
simply treats a C-COM (see the coopera-
tion manager in figure 1) as a black box.

Using C-COMs provides easy version
management of deployed services (via
dynamic overwriting of obsolete com-
ponents) and allocation of the right co-
operative services to the right users
(based on their roles).

In figure 1, the service mediator deploys
new cooperative services. It manages a
service library that holds all application
cooperative service packages. A service
package consists of a service description,
one or more role components, a goal-
processing graph that guides service pro-
vision, and behaviors that retrieve user
input or present service output. A service
description contains versioning informa-
tion, the roles that are authorized to exe-
cute the component, a device profile spec-
ifying the minimum computing resources
a target device needs to execute each role
component, and so on.

The personal assistant periodically con-

tacts the service mediator at predefined
times (such as on daily initial log in) to
check if any new components or services
are available for the user role and device
combination. If so, the personal assistant
downloads and installs a new package
automatically. When a new C-COM is
available, the cooperation manager reg-
isters it in the C-COM repository, adds a
definition of its goal-processing graph to
the goal graph repository, and passes the
associated behaviors to the behavior man-
ager. In mPower, a Rete engine evaluates
a set of production (if-then) rules repre-
senting a goal-processing graph. Conse-
quently, the goal graph repository con-
tains sets of rules corresponding to the
goal-processing graphs. Finally, the UI
manager includes the new service name
in the list of available services on the
device GUI so that users can access it.

Figure 2 details further how a mobile
worker receives a cooperative service
when the UI manager passes a service
request to the goal engine as a GUI event.
The goal engine consists of the inference
control, inference engine, rule base, and
working memory. Inference control

APRIL–JUNE 2007 PERVASIVEcomputing 87

Service
libraryService

mediator

GUI event,
location, time,
schedule, and
user identity

Voice

Text

Context
repository

Message
queue

C-COM
repository

Cooperation
manager

Behavior
manager

Context
engine

Sensor
manager

UI manager
Service
registry

a: Argument
bs: Behavior Specification
c: Context information
cd: Context data
g: Goal
gg: Goal graph
m: Message
f: Fact

Goal graph
repository

Goal engine

g,f

bs, a

g

c

cd

a

g

gg

m

Figure 1. The personal assistant
architecture.

transforms the GUI event into a goal fact
by binding goal attribute values from
event attributes (such as a service name
and a job identifier) the user selected when
requesting the service. It also retrieves all
relevant rules that define the service’s goal-
processing graph and inserts them in the
inference engine’s rule base. The source
code in figure 2 is part of the simplified
rules for the job-trading service’s goal-
processing graph (shown in the figure). In
the graph, each node represents a pro-
cessing point wherein a behavior or C-
COM is executed, and each arc represents
conditions that should be met to reach a
succeeding node. Each rule represents a
route from one node to another.

For example, the rule execute-mini-trade
specifies that the goal engine can execute
the C-COM mini-trade if the working
memory contains a goal for job-trade and
that the working memory contains user
preference data as a result of executing
the behavior ConfPref. The example rules
also indicate that the personal assistant
can provide a service by executing mul-
tiple C-COMs in sequence. That is, the

goal engine should execute the mini-trade
C-COM before the maxi-trade (job reas-
signment via a team leader’s mediation)
C-COM. Inserting a goal fact in the
working memory triggers a chain of rule
firing, which will progress the traversal
of the goal-processing graph.

Minimizing manual
intervention

In some cases, a personal assistant can
execute cooperative services without
user involvement at the decision-making
points. For example, an implementation
of the job-trading service might require
workers’ context information (such as
skill sets and work schedules) to form the
content of the respondent’s bids. In this
case, the respondent role components can
autonomously collect such context infor-
mation to compose the bids.

The personal assistant’s context engine
and context repository play key roles in
collecting and maintaining context infor-
mation about each mobile worker’s envi-
ronment. The context engine collects
three types of sensor data from a mobile

device: Physical data provides geo-
graphical and time-related information
for a user’s working area. Task-oriented
data provides information on duties—
what day they’re assigned to a worker
and their execution schedule. Finally,
behavioral data includes chronological
data on the user’s interactions with the
application, such as GUI events and ser-
vices requested, along with the result
from executing the requested services.

The context engine manipulates the
collected sensor data to produce value-
added context information that applica-
tions can directly use. It achieves this
based on a set of production rules that
produce new contextual information on
the basis of the attribute values of the sen-
sor data and their relationships.

The context engine dynamically loads
the rules, which are stored in the local file
system. The process for setting up an in-
ference engine and loading facts (input
context data) and rules resembles the goal
engine’s process. We can add the new sen-
sor data schema and corresponding infer-
ence rules to the context engine via a pre-

88 PERVASIVEcomputing www.computer.org/pervasive

M U L T I A G E N T S Y S T E M S

Goal graph
repository

Cooperation

Goal-processing graph

manager
Behavior
manager

UI manager

Goal
engine

Event

Working
memory

Rule
base

Inference engine

Inference control

s2

s3

s4

s5

s1

(defrule confirm-preference
(Goal (id “job-trade”)(args $j))
=>

=>

=>

(exec (behavior (name “ConfPref”)
(args $j)))

(defrule execute-mini-trade
(Goal (id “job-trade”)(args $j))
(pref(wait-time ?t)(alert ?a))

(exec (c-com (name “mini-trade”)
(args $j ?t ?a))))

(defrule execute-maxi-trade
(Goal (id “job-trade”)(args $j)
(pref(wait-time ?t)(alert ?a))
(failed (name mini)(job $j))

(exec (c-com (name “maxi-trade”)))

C-COM
repository

Figure 2. A goal-achieving process for cooperative service provision.

defined interface of the sensor manager
(see figure 1).

Figure 3a shows how we can derive
value-added context information from
raw context data to implement a cus-
tomer-relationship-management cam-
paign called Ring Ahead Ring After.

In RARA, average mobile worker Bob
must contact his customers before each
visit to advise estimated arrival time and
after the visit to receive customer feed-
back. We can configure a personal assis-
tant to remind Bob to ring ahead as he’s
traveling to the next job location. So,
context information such as “the worker
is heading toward next job” is crucial for
RARA. The simplified rules r1 to r6 in
figure 3a show how the personal assis-
tant can infer the context information
“worker is heading for job Y” from raw
context data such as time, location, job
schedule, and job information. Each rec-
tangle represents either deduced context
information (grey) or sensor data (gold).
An independent line linking two rectan-
gles represents a rule saying that the per-
sonal assistant can derive context infor-
mation from a sensor data item (or other
context information). Lines linked by an
arc represent a rule saying that the per-
sonal assistant can derive context infor-
mation if and only if all the descendent
sensor data or context information exists
(the context information “User is mov-
ing east.” can be derived if and only if
both “Location” and “Time” data are
available). For instance, figure 4 shows
how we provide rule r6 to the personal
assistant. In this example, the terms pre-
ceded by “?” represent a variable that
can match with any relevant facts in the
Rete engine’s working memory.

Accessible anywhere, anytime
In addition to a text-based interface,

mPower’s personal assistant has a voice-
based interface, which facilitates com-
munication in situations where workers

don’t have their hands free. Figure 3b
shows how a personal assistant can pro-
vide Bob with voice-based cooperative
services via a mobile device in his poc-

ket. We’ve implemented voice-based
interaction by integrating third-party
voice solutions: automatic speech recog-
nition (ASR) and text-to-speech (TTS)

APRIL–JUNE 2007 PERVASIVEcomputing 89

(b)

(Propose
(sender john@foo1.com:8091
(receiver habin@foo2.com:8090
(content

(Trade (job “j1”)(desc “can you take this job ...”)
(postcode “ps1”)
(feedback “accept” “hold” “reject”)

))

Automatic speech
recognition

Cooperation
manager

HAI
controller

Voice receiver

Goal
engine

GUI handler

Worker is heading for job Y.

Job X has been
closed.Job Y is

scheduled after job X.

User is moving
east.

r6

(a)

2r

Time is within 30 min. from
expected job start time.

Job Y is located
east of job X.

r34r r1

5r

Job scheduleTimeLocation Job

Context
repository

Behavior
manager

Sensor data

Context information

Text to speech

Figure 3. (a) Context-reasoning rules and
(b) a voice- or text-based user interface
for cooperative services.

engines.11 The human agent interface
controller mediates interaction between
Bob and his personal assistant and ma-
nages both the GUI and voice-based
interfaces.

Suppose that a colleague sends Bob’s
PDA a job-trading offer message that
requires a real-time response (see figure
5). A respondent role component in the
job-trading service handles the message
and passes it to the goal engine. The goal
engine then sets up a Rete engine session
by loading the corresponding rules from
the goal graph repository plus the mes-
sage contents into working memory.

On the basis of the job-trading offer’s
details, a node of the goal-processing
graph needs Bob’s input. The behavior
manager (on the goal engine’s request)
invokes the HAI controller, which con-
tacts the context repository to obtain the
mobile device’s current state and Bob’s
interaction history. Because Bob hasn’t

interacted with the device for some time
and the response deadline is tight, the
HAI controller activates the TTS and
GUI components simultaneously. The
TTS engine reads the descriptive part of
the message content to Bob. After that,
the HAI controller activates the voice
receiver because Bob will likely give a
voice command. If Bob responds to the
offer by using a GUI component (for
example, by clicking the button of the
PDA’s pop-up dialog box in figure 5), the
GUI delivers the response to the HAI
controller via the GUI handler, and the
HAI controller deactivates the voice
receiver. If Bob responds to the offer
using the Bluetooth headset, the HAI
controller forwards the voice input to
the ASR engine along with context infor-
mation—in this case, a list of possible
responses: accept, hold, and reject. The
ASR engine uses the context information
to simplify translation and to increase

the match’s accuracy by reducing the size
of the voice recognition dictionary.

mPower in the real world
A team of several BT engineers used a

trial application based on mPower tech-
nology. They were responsible for main-
taining and installing network services in
the UK during 2005. The trial aimed to
assess the feasibility of moving from cen-
tralized job management to team-based
job management, in which teams rather
than individuals receive job assignments
and team members must cooperatively
manage the assigned jobs. Before the trial,
they used laptop computers to check the
jobs assigned to them from a centralized
job-scheduling system via a tethered dial-
up connection made either at a BT build-
ing or a customer’s job site.

We selected trial participants from a
pool of volunteers. The official trial
period was three months; however, the
participants used the system unsup-
ported for several months after the offi-
cial end date because they liked the new
way of working.

For the trial, we gave each engineer a
PDA running the Microsoft Pocket PC
2003 operating system, which included 55
Mbytes of available RAM. We equipped
each PDA with an external GPS receiver
and a third-party satellite navigation ap-
plication. We installed a third-party Java
Virtual Machine and used the Standard
Widget Toolkit to implement the GUI
components. Each mPower-based PDA
client included a personal assistant, and
we ran job agents responsible for col-
lecting jobs assigned to the team and
job-related knowledge on a server on the
corporate intranet. Communication be-
tween PDA clients and the server took
place via GPRS (General Packet Radio
Service) secured by a virtual private net-
work connection.

Each time users logged in to the client,
their personal assistant connected to the
service mediator to check if service com-

90 PERVASIVEcomputing www.computer.org/pervasive

M U L T I A G E N T S Y S T E M S

Figure 5. mPower deployed in various real-world scenarios.

Figure 4. The content of rule r6 in the personal assistant.

(defrule r6
(worker is moving in ?direction)
(jobschedule (prior ?jx)(posterior ?jy))
(job (id ?jx)(status closed))
(located_to (source ?jx)(destination ?jy)(direction ?direction))
(job ?jy should be started within 30)
=>
(assert (worker is heading toward job ?jy))

APRIL–JUNE 2007 PERVASIVEcomputing 91

ponent updates were available for down-
load. We set up weekly meetings with the
trials’ manager primarily to discuss over-
all progress and any effects on the per-
formance of routine business due to
introducing new technology. We col-
lected any technical concerns directly
from the participants and dealt with
them immediately by updating the rele-
vant service components, which were
deployed via the service mediator.

We offered three types of cooperative
services to each engineer: market-based
job assignments, job trading, and urgent
job notifications. Market-based job as-
signments let team members choose
which jobs to execute depending on their
circumstances. For the trial, we put all
jobs in a team job queue, and each engi-
neer could reserve preferred jobs, which
then disappeared from general view to
prevent duplicate reservations. A job
agent managed team jobs, and each per-
sonal assistant communicated with the
job agent to obtain a list of available jobs.
Each engineer could remove any job reser-
vations that couldn’t be finished before
the customer’s deadline. However, certain
important gold jobs (jobs that strongly
impact revenue, customer satisfaction, or
both) required engineers to use the job-
trading service to meet the deadline of the
jobs. The gold job notification service let
engineers record their preferences regard-
ing job selection with the job agent, which
matched user preferences to attributes of
team jobs in the queue and then notified
the engineer.

Technical issues
The component-based provision of

cooperative services particularly helped
with managing deployed services on mo-
bile devices. Trial participants provided
additional requirements for using coop-
erative services during the trial. We
quickly integrated the requirements in the
C-COMs and dynamically installed them
on their mobile devices. Downloading a

new version of a C-COM over GPRS
typically took less than 10 seconds.

The ASR feedback wasn’t as positive
as that for TTS, and we saw limited ASR
use. Conversely, TTS use was quite high,
especially when the engineers were dri-
ving or working up poles or in ducts.

The GPRS connection’s much-vaunted
“always on” property didn’t live up to its
name in rural areas, and frequent VPN
reconnection (in particular, two-phase
authentication) irritated users. So, we
updated the personal assistant to include
connection-management functionality,
which autonomously tried to regain a lost
GPRS connection and prompted users to
enter their VPN login details when it
obtained a new GPRS connection. Also,
many PDAs, including those used in the
trial, automatically go into hibernation
mode after a certain amount of time with
no user input. The hibernation mode
froze the application, which then sus-
pended the personal assistant until the
next user input, decreasing access to
users. We resolved this through a fix sup-
plied by the PDA manufacturer, but this
greatly increased battery consumption.

To accommodate the devices’ small
screens (320 by 420 pixels), we implanted

a highly effective, simplified job closure
process. In the simplified version, the per-
sonal assistant guided users through this
complex data entry task using progres-
sive screen builds based on their most
recent input, using XML-to-Java inter-
pretation. However, at the trials’ begin-
ning, many participants complained
about having to enter job-related notes
on the PDA because they didn’t feel that

the virtual keyboard or phone-style key-
pad was satisfactory for inputting large
amounts of free text. So, we updated the
GUI to contain a drop-down list of fre-
quently used phrases, and participants
could choose one or more and edit them
as needed. This increased the system’s user
acceptance.

Process findings
The trial had very positive results in

terms of business process performance.
The market-based job-scheduling mech-
anism increased productivity (the aver-
age number of jobs closed per day by
each engineer) by 10 percent. We might
attribute this to the reduced delay be-
tween a job creation and an engineer’s
awareness of it, which resulted from
using the notification service.

On average, each participant withdrew
reservations from 20 percent of their re-
served jobs, and about 15 percent of these
jobs were then reassigned to other mem-
bers via job trading. It was hard to mea-
sure the impact of using the voice-based
user interface and context-awareness
functionality on productivity. The partici-
pant feedback hinted that such function-
ality contributed to an increased percep-

tion of teamwork due to their colleagues’
increased accessibility.

Finally, we observed a change in the par-
ticipants’ attitude toward the business
process. In the trial, the market-based job
assignments let engineers make the deci-
sions rather than rely on a centralized
workflow system, especially with respect
to job selection. This strong involvement
in decision making resulted in participants

The strong involvement in decision making

resulted in participants having

a more proactive attitude

toward the execution of assigned jobs.

having a more proactive attitude toward
the execution of assigned jobs.

W
e believe features that en-
hance the accessibility and
autonomy of mobile work-
forces should be present in

any system designed to support their
decision making. mPower’s successful
trial has resulted in a deal between BT
and a third party to commercialize
mPower technology.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their com-
ments, which were crucial in enhancing this article.

REFERENCES
1. D. Bowen and E. Lawler, “Empowering Ser-

vice Employees,” MIT Sloan Management
Rev., vol. 36, no. 4, 1995, pp. 73–84.

2. “Enabling the Mobile Workforce: The

Issues and Trends,” white paper, Tech-
Republic, Feb. 2006; http://whitepapers.
techrepublic.com.com/whitepaper.aspx?
docid=165945.

3. J. Shepherdson, H. Lee, and P. Mihailescu,
“mPower: A Reusable Framework for
Building Multi-Agent Systems to Automate
Business Processes,” BT Technology J., vol.
21, no. 4, 2003, pp. 92–103.

4. Y. Labrou, T. Finin, and Y. Peng, “Agent
Communication Languages: The Current
Landscape,” IEEE Intelligent Systems, vol.
14, no. 2, 1999, pp. 45–52.

5. M. Georgeff and F. Ingrand, “Decision-
Making in an Embedded Reasoning Sys-
tem,” Proc. 11th Int’l Joint Conf. Artificial
Intelligence (IJCAI 89), Morgan Kaufmann,
1989, pp. 972–978.

6. F. Bellifemine et al., “JADE—A White Arti-
cle,” Telecom Italia Lab J. EXP, vol. 3, no.
3, 2003, pp. 6–19.

7. P. Mihailescu et al., “MAS Platforms as an
Enabler of Enterprise Mobilization: The
State of the Art,” Proc. IEEE Int’l Conf.
Systems, Man & Cybernetics (SMC 04),
vol. 2, IEEE Press, 2004, pp. 1889–1894.

8. J. Collis et al., “The Zeus Agent Building
Tool-Kit,” BT Technology J., vol. 16, no.
3, 1998, pp. 60–68.

9. H. Lee, P. Mihailescu, and J. Shepherdson,
“Conversational Component-Based Open
Multi-Agent Architecture for Flexible Infor-
mation Trade,” Proc. 1st European Work-
shop Multi-Agent Systems (EUMAS 03),
LNAI 2782, Springer, pp. 109–116.

10. FIPA Contract Net Interaction Protocol
Specification, Foundation for Intelligent
Physical Agents, Dec. 2002; www.fipa.
org/specs/fipa00029/SC00029H.pdf.

11. J. Page and A. Breen, “The Laureate Text-
to-Speech System: Architecture and Appli-
cations,” BT Technology J., vol. 14, no 1,
1996, pp. 84–99.

For more information on this or any other comput-
ing topic, please visit our Digital Library at www.
computer.org/publications/dlib.

92 PERVASIVEcomputing www.computer.org/pervasive

M U L T I A G E N T S Y S T E M S

the AUTHORS

Habin Lee is a senior research fellow in Brunel University’s Brunel Business School.
He contributed to the mPower project at BT for more than five years before joining
Brunel. His research interests include agent technology for business processes, infor-
mation systems development methodology, and computer-supported cooperative
work. He received his PhD in management information systems from the Korea Ad-
vanced Institute of Science and Technology. Contact him at Business & Manage-
ment, Brunel Business School, Brunel Univ., Uxbridge, Middlesex, UB8 3PH, UK;
habin.lee@brunel.ac.uk.

Patrik Mihailescu is a software engineer at ShoZu. Before that, he was a key con-
tributor to mPower as a research engineer at the BT Intelligent Systems Research
Centre. His research interests include multiagent systems, peer-to-peer technologies,
and ubiquitous computing. He received his PhD in computer science from Monash
University. Contact him at ShoZu, the Space 57-61 Mortimer St., London W1W 8HS,
UK; patrik.mihailescu@googlemail.com.

John Shepherdson is a technical manager in the BT Group Chief Technology Of-
fice’s Intelligent Systems Research Centre and leads the Intelligent Business Systems
Research Group. His research interests include multiagent systems technologies and
wireless applications and services. He received his MS in artificial intelligence from
the University of Kingston. He’s a chartered engineer, a member of the Institution
of Engineering and Technology, and a certified leadership coach. Contact him at
PP12/MLB1, B62, Adastral Park, Martlesham Heath, Suffolk, IP5 3RE, UK; john.
shepherdson@bt.com.

www.computer.org/pervasive

Visit us on
the Web

