1,035 research outputs found

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    スペクトルの線形性を考慮したハイパースペクトラル画像のノイズ除去とアンミキシングに関する研究

    Get PDF
    This study aims to generalize color line to M-dimensional spectral line feature (M>3) and introduce methods for denoising and unmixing of hyperspectral images based on the spectral linearity.For denoising, we propose a local spectral component decomposition method based on the spectral line. We first calculate the spectral line of an M-channel image, then using the line, we decompose the image into three components: a single M-channel image and two gray-scale images. By virtue of the decomposition, the noise is concentrated on the two images, thus the algorithm needs to denoise only two grayscale images, regardless of the number of channels. For unmixing, we propose an algorithm that exploits the low-rank local abundance by applying the unclear norm to the abundance matrix for local regions of spatial and abundance domains. In optimization problem, the local abundance regularizer is collaborated with the L2, 1 norm and the total variation.北九州市立大

    Visual Understanding via Multi-Feature Shared Learning with Global Consistency

    Full text link
    Image/video data is usually represented with multiple visual features. Fusion of multi-source information for establishing the attributes has been widely recognized. Multi-feature visual recognition has recently received much attention in multimedia applications. This paper studies visual understanding via a newly proposed l_2-norm based multi-feature shared learning framework, which can simultaneously learn a global label matrix and multiple sub-classifiers with the labeled multi-feature data. Additionally, a group graph manifold regularizer composed of the Laplacian and Hessian graph is proposed for better preserving the manifold structure of each feature, such that the label prediction power is much improved through the semi-supervised learning with global label consistency. For convenience, we call the proposed approach Global-Label-Consistent Classifier (GLCC). The merits of the proposed method include: 1) the manifold structure information of each feature is exploited in learning, resulting in a more faithful classification owing to the global label consistency; 2) a group graph manifold regularizer based on the Laplacian and Hessian regularization is constructed; 3) an efficient alternative optimization method is introduced as a fast solver owing to the convex sub-problems. Experiments on several benchmark visual datasets for multimedia understanding, such as the 17-category Oxford Flower dataset, the challenging 101-category Caltech dataset, the YouTube & Consumer Videos dataset and the large-scale NUS-WIDE dataset, demonstrate that the proposed approach compares favorably with the state-of-the-art algorithms. An extensive experiment on the deep convolutional activation features also show the effectiveness of the proposed approach. The code is available on http://www.escience.cn/people/lei/index.htmlComment: 13 pages,6 figures, this paper is accepted for publication in IEEE Transactions on Multimedi
    corecore