25,703 research outputs found

    Robust Recovery of Subspace Structures by Low-Rank Representation

    Full text link
    In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method termed Low-Rank Representation (LRR), which seeks the lowest-rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that LRR well solves the subspace recovery problem: when the data is clean, we prove that LRR exactly captures the true subspace structures; for the data contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for the data corrupted by arbitrary errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace segmentation and error correction, in an efficient way.Comment: IEEE Trans. Pattern Analysis and Machine Intelligenc

    Learning and Matching Multi-View Descriptors for Registration of Point Clouds

    Full text link
    Critical to the registration of point clouds is the establishment of a set of accurate correspondences between points in 3D space. The correspondence problem is generally addressed by the design of discriminative 3D local descriptors on the one hand, and the development of robust matching strategies on the other hand. In this work, we first propose a multi-view local descriptor, which is learned from the images of multiple views, for the description of 3D keypoints. Then, we develop a robust matching approach, aiming at rejecting outlier matches based on the efficient inference via belief propagation on the defined graphical model. We have demonstrated the boost of our approaches to registration on the public scanning and multi-view stereo datasets. The superior performance has been verified by the intensive comparisons against a variety of descriptors and matching methods

    redMaPPer III: A Detailed Comparison of the Planck 2013 and SDSS DR8 RedMaPPer Cluster Catalogs

    Full text link
    We compare the Planck Sunyaev-Zeldovich (SZ) cluster sample (PSZ1) to the Sloan Digital Sky Survey (SDSS) redMaPPer catalog, finding that all Planck clusters within the redMaPPer mask and within the redshift range probed by redMaPPer are contained in the redMaPPer cluster catalog. These common clusters define a tight scaling relation in the richness-SZ mass (λ\lambda--MSZM_{SZ}) plane, with an intrinsic scatter in richness of σλMSZ=0.266±0.017\sigma_{\lambda|M_{SZ}} = 0.266 \pm 0.017. The corresponding intrinsic scatter in true cluster halo mass at fixed richness is 21%\approx 21\%. The regularity of this scaling relation is used to identify failures in both the redMaPPer and Planck cluster catalogs. Of the 245 galaxy clusters in common, we identify three failures in redMaPPer and 36 failures in the PSZ1. Of these, at least 12 are due to clusters whose optical counterpart was correctly identified in the PSZ1, but where the quoted redshift for the optical counterpart in the external data base used in the PSZ1 was incorrect. The failure rates for redMaPPer and the PSZ1 are 1.2%1.2\% and 14.7%14.7\% respectively, or 9.8% in the PSZ1 after subtracting the external data base errors. We have further identified 5 PSZ1 sources that suffer from projection effects (multiple rich systems along the line-of-sight of the SZ detection) and 17 new high redshift (z0.6z\gtrsim 0.6) cluster candidates of varying degrees of confidence. Should all of the high-redshift cluster candidates identified here be confirmed, we will have tripled the number of high redshift Planck clusters in the SDSS region. Our results highlight the power of multi-wavelength observations to identify and characterize systematic errors in galaxy cluster data sets, and clearly establish photometric data both as a robust cluster finding method, and as an important part of defining clean galaxy cluster samples.Comment: comments welcom
    corecore