15,887 research outputs found

    Deep Multi-View Learning for Visual Understanding

    Get PDF
    PhD ThesisMulti-view data is the result of an entity being perceived or represented from multiple perspectives. Plenty of applications in visual understanding contain multi-view data. For example, the face images for training a recognition system are usually captured by different devices from multiple angles. This thesis focuses on the cross-view visual recognition problems, e.g., identifying the face images of the same person across different cameras. Several representative multi-view settings, from the supervised multi-view learning to the more challenging unsupervised domain adaptive (UDA) multi-view learning, are investigated. Novel multi-view learning algorithms are proposed correspondingly. To be more specific, the proposed methods are based on the advanced deep neural network (DNN) architectures for better handling visual data. However, directly combining the multi-view learning objectives with DNN can result in different issues, e.g., on scalability, and limit the application scenarios and model performance. Corresponding novelties in DNN methods are thus required to solve them. This thesis is organised into three parts. Each chapter focuses on a multi-view learning setting with novel solutions and is detailed as follows: Chapter 3 A supervised multi-view learning setting with two different views are studied. To recognise the data samples across views, one strategy is aligning them in a common feature space via correlation maximisation. It is also known as canonical correlation analysis (CCA). Deep CCA has been proposed for better performance with the non-linear projection via deep neural networks. Existing deep CCA models typically decorrelate the deep feature dimensions of each view before their Euclidean distances are minimised in the common space. This feature decorrelation is achieved by enforcing an exact decorrelation constraint which is computationally expensive due to the matrix inversion or SVD operations. Therefore, existing deep CCA models are inefficient and have scalability issues. Furthermore, the exact decorrelation is incompatible with the gradient based deep model training and results in sub-optimal solution. To overcome these aforementioned issues, a novel deep CCA model Soft CCA is introduced in this thesis. Specifically, the exact decorrelation is replaced by soft decorrelation via a mini-batch based Stochastic Decorrelation Loss (SDL). It can be jointly optimised with the other training objectives. In addition, our SDL loss can be applied to other deep models beyond multi-view learning. Chapter 4 The supervised multi-view learning setting, whereby more than two views exist, are studied in this chapter. Recently developed deep multi-view learning algorithms either learn a latent visual representation based on a single semantic level and/or require laborious human annotation of these factors as attributes. A novel deep neural network architecture, called Multi- Level Factorisation Net (MLFN), is proposed to automatically factorise the visual appearance into latent discriminative factors at multiple semantic levels without manual annotation. The main purpose is forcing different views share the same latent factors so that they are can be aligned at all layers. Specifically, MLFN is composed of multiple stacked blocks. Each block contains multiple factor modules to model latent factors at a specific level, and factor selection modules that dynamically select the factor modules to interpret the content of each input image. The outputs of the factor selection modules also provide a compact latent factor descriptor that is complementary to the conventional deeply learned feature, and they can be fused efficiently. The effectiveness of the proposed MLFN is demonstrated by not only the large-scale cross-view recognition problems but also the general object categorisation tasks. Chapter 5 The last problem is a special unsupervised domain adaptation setting called unsupervised domain adaptive (UDA) multi-view learning. It contains a fully annotated dataset as the source domain and another unsupervised dataset with relevant tasks as the target domain. The main purpose is to improve the performance of the unlabelled dataset with the annotated data from the other dataset. More importantly, this setting further requires both the source and target domains are multi-view datasets with relevant tasks. Therefore, the assumption of the aligned label space across domains is inappropriate in the UDA multi-view learning. For example, the person re-identification (Re-ID) datasets built on different surveillance scenarios are with images of different people captured and should be given disjoint person identity labels. Existing methods for UDA multi-view learning problems are aligning different domains either in the raw image space or a feature embedding space for domain alignment. In this thesis, a different framework, multi-task learning, is adopted with the domain specific objectives for a common space learning. Specifically, such common space is proposed to enable the knowledge transfer. The conventional supervised losses can be used for the labelled source data while the unsupervised objectives for the target domain play the key roles in domain adaptation. Two novel unsupervised objectives are introduced for UDA multi-view learning and result in two models as below. The first model, termed common factorised space model (CFSM), is built on the assumptions that the semantic latent attributes are shared between the source and target domains since they are relevant multi-view learning tasks. Different from the existing methods that based on domain alignment, CFSM emphasizes on transferring the information across domains via discovering discriminative latent factors in the proposed common space. However, the multi-view data from target domain is without labels. Therefore, an unsupervised factorisation loss is derived and applied on the common space for latent factors discovery across domains. The second model still learns a shared embedding space with multi-view data from both domains but with a different assumption. It attempts to discover the latent correspondence of multi-view data in the unsupervised target data. The target data’s contribution comes from a clustering process. Each cluster thus reveals the underlying cross-view correspondences across multiple views in target domain. To this end, a novel Stochastic Inference for Deep Clustering (SIDC) method is proposed. It reduces self-reinforcing errors that lead to premature convergence to a sub-optimal solution by changing the conventional deterministic cluster assignment to a stochastic one

    LATTE: Application Oriented Social Network Embedding

    Full text link
    In recent years, many research works propose to embed the network structured data into a low-dimensional feature space, where each node is represented as a feature vector. However, due to the detachment of embedding process with external tasks, the learned embedding results by most existing embedding models can be ineffective for application tasks with specific objectives, e.g., community detection or information diffusion. In this paper, we propose study the application oriented heterogeneous social network embedding problem. Significantly different from the existing works, besides the network structure preservation, the problem should also incorporate the objectives of external applications in the objective function. To resolve the problem, in this paper, we propose a novel network embedding framework, namely the "appLicAtion orienTed neTwork Embedding" (Latte) model. In Latte, the heterogeneous network structure can be applied to compute the node "diffusive proximity" scores, which capture both local and global network structures. Based on these computed scores, Latte learns the network representation feature vectors by extending the autoencoder model model to the heterogeneous network scenario, which can also effectively unite the objectives of network embedding and external application tasks. Extensive experiments have been done on real-world heterogeneous social network datasets, and the experimental results have demonstrated the outstanding performance of Latte in learning the representation vectors for specific application tasks.Comment: 11 Pages, 12 Figures, 1 Tabl

    Mining Event-Oriented Topics in Microblog Stream with Unsupervised Multi-View Hierarchical Embedding

    Get PDF
    This article presents an unsupervised multi-view hierarchical embedding (UMHE) framework to sufficiently reveal the intrinsic topical knowledge in social events. Event-oriented topics are highly related to such events as it can provide explicit descriptions of what have happened in social community. In many real-world cases, however, it is difficult to include all attributes of microblogs, more often, textual aspects only are available. Traditional topic modelling methods have failed to generate event-oriented topics with the textual aspects, since the inherent relations between topics are often overlooked in these methods. Meanwhile, the metrics in original word vocabulary space might not effectively capture semantic distances. Our UMHE framework overcomes the severe information deficiency and poor feature representation. The UMHE first develops a multi-view Bayesian rose tree to preliminarily generate prior knowledge for latent topics and their relations. With such prior knowledge, we design an unsupervised translation-based hierarchical embedding method to make a better representation of these latent topics. By applying self-adaptive spectral clustering on the embedding space and the original space concomitantly, we eventually extract event-oriented topics in word distributions to express social events. Our framework is purely data-driven and unsupervised, without any external knowledge. Experimental results on TREC Tweets2011 dataset and Sina Weibo dataset demonstrate that the UMHE framework can construct hierarchical structure with high fitness, but also yield topic embeddings with salient semantics; therefore, it can derive event-oriented topics with meaningful descriptions

    Nonparametric Estimation of Multi-View Latent Variable Models

    Full text link
    Spectral methods have greatly advanced the estimation of latent variable models, generating a sequence of novel and efficient algorithms with strong theoretical guarantees. However, current spectral algorithms are largely restricted to mixtures of discrete or Gaussian distributions. In this paper, we propose a kernel method for learning multi-view latent variable models, allowing each mixture component to be nonparametric. The key idea of the method is to embed the joint distribution of a multi-view latent variable into a reproducing kernel Hilbert space, and then the latent parameters are recovered using a robust tensor power method. We establish that the sample complexity for the proposed method is quadratic in the number of latent components and is a low order polynomial in the other relevant parameters. Thus, our non-parametric tensor approach to learning latent variable models enjoys good sample and computational efficiencies. Moreover, the non-parametric tensor power method compares favorably to EM algorithm and other existing spectral algorithms in our experiments

    Semantic Autoencoder for Zero-Shot Learning

    Full text link
    Existing zero-shot learning (ZSL) models typically learn a projection function from a feature space to a semantic embedding space (e.g.~attribute space). However, such a projection function is only concerned with predicting the training seen class semantic representation (e.g.~attribute prediction) or classification. When applied to test data, which in the context of ZSL contains different (unseen) classes without training data, a ZSL model typically suffers from the project domain shift problem. In this work, we present a novel solution to ZSL based on learning a Semantic AutoEncoder (SAE). Taking the encoder-decoder paradigm, an encoder aims to project a visual feature vector into the semantic space as in the existing ZSL models. However, the decoder exerts an additional constraint, that is, the projection/code must be able to reconstruct the original visual feature. We show that with this additional reconstruction constraint, the learned projection function from the seen classes is able to generalise better to the new unseen classes. Importantly, the encoder and decoder are linear and symmetric which enable us to develop an extremely efficient learning algorithm. Extensive experiments on six benchmark datasets demonstrate that the proposed SAE outperforms significantly the existing ZSL models with the additional benefit of lower computational cost. Furthermore, when the SAE is applied to supervised clustering problem, it also beats the state-of-the-art.Comment: accepted to CVPR201
    • …
    corecore