436 research outputs found

    Routing UAVs to Co-Optimize Mission Effectiveness and Network Performance with Dynamic Programming

    Get PDF
    In support of the Air Force Research Laboratory\u27s (AFRL) vision of the layered sensing operations center, command and control intelligence surveillance and reconnaissance (C2ISR) more focus must be placed on architectures that support information systems, rather than just the information systems themselves. By extending the role of UAVs beyond simply intelligence, surveillance, and reconnaissance (ISR) operations and into a dual-role with networking operations we can better utilize our information assets. To achieve the goal of dual-role UAVs, a concrete approach to planning must be taken. This research defines a mathematical model and a non-trivial deterministic algorithmic approach to determining UAV placement to support ad-hoc network capability, while maintaining the valuable service of surveillance activities

    Federated Learning in UAV-Enhanced Networks: Joint Coverage and Convergence Time Optimization

    Full text link
    Federated learning (FL) involves several devices that collaboratively train a shared model without transferring their local data. FL reduces the communication overhead, making it a promising learning method in UAV-enhanced wireless networks with scarce energy resources. Despite the potential, implementing FL in UAV-enhanced networks is challenging, as conventional UAV placement methods that maximize coverage increase the FL delay significantly. Moreover, the uncertainty and lack of a priori information about crucial variables, such as channel quality, exacerbate the problem. In this paper, we first analyze the statistical characteristics of a UAV-enhanced wireless sensor network (WSN) with energy harvesting. We then develop a model and solution based on the multi-objective multi-armed bandit theory to maximize the network coverage while minimizing the FL delay. Besides, we propose another solution that is particularly useful with large action sets and strict energy constraints at the UAVs. Our proposal uses a scalarized best-arm identification algorithm to find the optimal arms that maximize the ratio of the expected reward to the expected energy cost by sequentially eliminating one or more arms in each round. Then, we derive the upper bound on the error probability of our multi-objective and cost-aware algorithm. Numerical results show the effectiveness of our approach

    Positioning of multiple unmanned aerial vehicle base stations in future wireless network

    Get PDF
    Abstract. Unmanned aerial vehicle (UAV) base stations (BSs) can be a reliable and efficient alternative to full fill the coverage and capacity requirements when the backbone network fails to provide the requirements during temporary events and after disasters. In this thesis, we consider three-dimensional deployment of multiple UAV-BSs in a millimeter-Wave network. Initially, we defined a set of locations for a UAV-BS to be deployed inside a cell, then possible combinations of predefined locations for multiple UAV-BSs are determined and assumed that users have fixed locations. We developed a novel algorithm to find the feasible positions from the predefined locations of multiple UAVs subject to a signal-to-interference-plus-noise ratio (SINR) constraint of every associated user to guarantees the quality-of-service (QoS), UAV-BS’s limited hovering altitude constraint and restricted operating zone because of regulation policies. Further, we take into consideration the millimeter-wave transmission and multi-antenna techniques to generate directional beams to serve the users in a cell. We cast the positioning problem as an β„“β‚€ minimization problem. This is a combinatorial, NP-hard, and finding the optimum solution is not tractable by exhaustive search. Therefore, we focused on the sub-optimal algorithm to find a feasible solution. We approximate the β„“β‚€ minimization problem as non-combinatorial ℓ₁-norm problem. The simulation results reveal that, with millimeter-wave transmission the positioning of the UAV-BS while satisfying the constrains is feasible. Further, the analysis shows that the proposed algorithm achieves a near-optimal location to deploy multiple UVABS simultaneously

    Joint Design of Wireless Fronthaul and Access Links in Massive MIMO CRANs

    Get PDF
    Cloud radio access network (CRAN) has emerged as a promising mobile network architecture for the current 5th generation (5G) and beyond networks. This thesis focuses on novel architectures and optimization approaches for CRAN systems with massive multiple-input multiple-output (MIMO) enabled in the wireless fronthaul link. In particular, we propose a joint design of wireless fronthaul and access links for CRANs and aim to maximize the network spectral efficiency (SE) and energy efficiency (EE). Regarding downlink transmission in massive MIMO CRANs, the precoding designs of the access link are optimized by accounting for both perfect instantaneous channel state information (CSI) and stochastic CSI of the access link separately. The system design adopts a decompress-and-forward (DCF) scheme at the remote radio heads (RRHs), with optimization of the multivariate compression covariance noise. Constrained by the maximum power budgets set for the central unit (CU) and RRHs, we aim to maximize the network sum-rate and minimize the total transmit power for all user equipments (UEs). Moreover, we present a separate optimization design and compare its performance, feasibility, and computational efficiency with the proposed joint design. Considering the uplink transmission, we utilize a compress-and-forward (CF) scheme at the RRHs. Assuming that perfect CSI is available at the CU, our objective is to optimize the precoding matrix of the access link while adopting conventional precoding methods for the fronthaul link. This thesis also proposes an unmanned aerial vehicle (UAV)-enabled CRAN architecture with a massive MIMO CU as a supplement system to the terrestrial communication networks. The locations of UAVs are optimized along with compression noise, precoding matrices, and transmit power. To tackle the non-convex optimization problems described above, we employ efficient iterative algorithms and conduct a thorough exploration of practical simulations, yielding promising results that outperform benchmark schemes. In summary, this thesis explores future wireless CRAN architectures, leveraging promising technologies including massive MIMO and UAV-enabled communications. Furthermore, this work presents comprehensive optimization designs aimed at further enhancing the network efficiency

    Optimizing Energy Efficiency in UAV-Based Wireless Communication Networks: A Comparative Analysis of TAODV and DSR Protocols using the Trust Score Algorithm for Signal Processing

    Get PDF
    This study presents a comprehensive analysis of energy efficiency optimization in signal processing algorithms for UAV-based wireless communication networks. Employing a multifaceted approach that integrates mathematical modeling, game theory analysis, and an array of testing methodologies, the research aims to address the critical challenge of enhancing communication protocol performance while minimizing energy consumption. Central to our investigation is the development and application of the Trust Score Algorithm (TSA), a novel quantitative tool designed to evaluate and compare the efficacy of various signal processing algorithms across multiple dimensions, including energy efficiency, reliability, adaptability, security, and latency. Through detailed comparative analysis and data visualization techniques, the study reveals that the Proposed_TAODV protocol significantly outperforms traditional TAODV and DSR protocols in several key metrics. These include throughput efficiency, end-to-end delay, and packet delivery ratio, particularly as the number of UAV nodes scales up. Such findings underscore the Proposed_TAODV protocol's superior stability and performance, advocating for its potential in improving the sustainability and effectiveness of UAV-based communication networks. The research methodology encompasses both theoretical and empirical testing phases, ranging from simulation-based analysis, to validate the performance of the signal processing algorithms under varied operational conditions. The results not only affirm the superior performance of the Proposed_TAODV protocol but also highlight the utility of the TSA in guiding the selection and optimization of signal processing algorithms for UAV networks
    • …
    corecore