48 research outputs found

    Multi-task zipping via layer-wise neuron sharing

    Get PDF
    Future mobile devices are anticipated to perceive, understand and react to the world on their own by running multiple correlated deep neural networks on-device. Yet the complexity of these neural networks needs to be trimmed down both within-model and cross-model to fit in mobile storage and memory. Previous studies focus on squeezing the redundancy within a single neural network. In this work, we aim to reduce the redundancy across multiple models. We propose Multi-Task Zipping (MTZ), a framework to automatically merge correlated, pre-trained deep neural networks for cross-model compression. Central in MTZ is a layer-wise neuron sharing and incoming weight updating scheme that induces a minimal change in the error function. MTZ inherits information from each model and demands light retraining to re-boost the accuracy of individual tasks. Evaluations show that MTZ is able to fully merge the hidden layers of two VGG-16 networks with a 3.18% increase in the test error averaged on ImageNet and CelebA, or share 39.61% parameters between the two networks with <0.5% increase in the test errors for both tasks. The number of iterations to retrain the combined network is at least 17.8 times lower than that of training a single VGG-16 network. Moreover, experiments show that MTZ is also able to effectively merge multiple residual networks.Comment: Published as a conference paper at NeurIPS 201

    MIMONet: Multi-Input Multi-Output On-Device Deep Learning

    Full text link
    Future intelligent robots are expected to process multiple inputs simultaneously (such as image and audio data) and generate multiple outputs accordingly (such as gender and emotion), similar to humans. Recent research has shown that multi-input single-output (MISO) deep neural networks (DNN) outperform traditional single-input single-output (SISO) models, representing a significant step towards this goal. In this paper, we propose MIMONet, a novel on-device multi-input multi-output (MIMO) DNN framework that achieves high accuracy and on-device efficiency in terms of critical performance metrics such as latency, energy, and memory usage. Leveraging existing SISO model compression techniques, MIMONet develops a new deep-compression method that is specifically tailored to MIMO models. This new method explores unique yet non-trivial properties of the MIMO model, resulting in boosted accuracy and on-device efficiency. Extensive experiments on three embedded platforms commonly used in robotic systems, as well as a case study using the TurtleBot3 robot, demonstrate that MIMONet achieves higher accuracy and superior on-device efficiency compared to state-of-the-art SISO and MISO models, as well as a baseline MIMO model we constructed. Our evaluation highlights the real-world applicability of MIMONet and its potential to significantly enhance the performance of intelligent robotic systems.Comment: Submitted to ICRA 202

    REPAIR: REnormalizing Permuted Activations for Interpolation Repair

    Full text link
    In this paper we look into the conjecture of Entezari et al. (2021) which states that if the permutation invariance of neural networks is taken into account, then there is likely no loss barrier to the linear interpolation between SGD solutions. First, we observe that neuron alignment methods alone are insufficient to establish low-barrier linear connectivity between SGD solutions due to a phenomenon we call variance collapse: interpolated deep networks suffer a collapse in the variance of their activations, causing poor performance. Next, we propose REPAIR (REnormalizing Permuted Activations for Interpolation Repair) which mitigates variance collapse by rescaling the preactivations of such interpolated networks. We explore the interaction between our method and the choice of normalization layer, network width, and depth, and demonstrate that using REPAIR on top of neuron alignment methods leads to 60%-100% relative barrier reduction across a wide variety of architecture families and tasks. In particular, we report a 74% barrier reduction for ResNet50 on ImageNet and 90% barrier reduction for ResNet18 on CIFAR10
    corecore