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Abstract
State-of-the-art deep neural network plays an increasingly important role in artificial intelligence, while the huge number 
of parameters in networks brings high memory cost and computational complexity. To solve this problem, filter pruning is 
widely used for neural network compression and acceleration. However, existing algorithms focus mainly on pruning single 
model, and few results are available to multi-task pruning that is capable of pruning multi-model and promoting the learn-
ing performance. By utilizing the filter sharing technique, this paper aimed to establish a multi-task pruning framework 
for simultaneously pruning and merging filters in multi-task networks. An optimization problem of selecting the important 
filters is solved by developing a many-objective optimization algorithm where three criteria are adopted as objectives for 
the many-objective optimization problem. With the purpose of keeping the network structure, an index matrix is introduced 
to regulate the information sharing during multi-task training. The proposed multi-task pruning algorithm is quite flexible 
that can be performed with either adaptive or pre-specified pruning rates. Extensive experiments are performed to verify the 
applicability and superiority of the proposed method on both single-task and multi-task pruning.
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Introduction

With the success on applications in ImageNet challenge, the 
deep neural networks (DNNs) have been extensively uti-
lized in a wide variety of applications [1–3] and showed 
superiorities over other approaches. However, as the struc-
ture becomes deeper and larger, the number of network 
parameters would increase considerably, resulting in a dra-
matic escalation in computing cost during the utilization of 
DNNs. Therefore, DNN with relatively low computing cost 
yet high accuracy is urgently needed nowadays, which gives 
rise to the development of network pruning technique to 
simplify the structure and reduce the parameters. Pruning 

deep CNNs is an important direction for accelerating the 
network. Recent developments on pruning can be generally 
divided into two categories, namely weight pruning [4–6] 
and filter pruning [7–10, 60–62].

It is the objective of model pruning to compress the 
model size and accelerate the inference of the network. 
Weight-pruning methods remove connections in the filters or 
across different layers, thereby reducing the cost of memory 
cost. However, the main weakness of weight pruning is the 
unstructural operation manner. The unstructured sparsity 
of the filters makes weight pruning hard to deploy existing 
basic linear algebra subprograms (BLASs) libraries. Hence, 
weight pruning is not effective in reducing computational 
cost. In contrast, filter pruning allows models to be struc-
tured with sparsity, reducing the storage usage on devices 
and achieving practical acceleration.

It should be noted that most of the existing results regard-
ing the network pruning mainly concentrates on single net-
work structure, and few effort has been devoted to investi-
gating the multi-task pruning due primarily to the difficulty 
brought by the cross-coupling of different tasks as well as 
increasing parameters. Moreover, different from traditional 
multi-task learning algorithms, the methods proposed in this 
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paper of sharing information for different tasks should be 
designed with a trade-off between network size and perfor-
mance. In addition, keeping the balance between different 
tasks is also a challenge for multi-task pruning.

Very recently, it has been declared in [11] that the key 
of multi-task pruning is to reduce both intra-redundancy in 
single task and inter-redundancy between multiple tasks. 
However, the proposed algorithm cannot be applied directly 
for pruning because of depending on the results of network 
merging. Motivated by this, we intend to propose a unified 
Multi-task Filter Index Sharing (MFIS) framework which 
could systematically deal with both single-task and multi-
task pruning. As illustrated in Fig. 1, we first establish a 
filter candidate box which contains all filters in both tasks. 
Different from traditional methods for single-task prun-
ing, within our proposed framework, important filters are 
selected under certain criteria imposed on multi-task, which 
is converted into a many-objective optimization problem 
(MOP) [12]. Then, filter sharing (FS) strategy is developed 
to force each filter choosing one and only one important 
candidate to support. Filters that support the same candidate 
might be pruned, merged or remained according to FS strat-
egy. Moreover, an index matrix is introduced by the pruning 
and merging results of multi-networks to keep the network 
structure and to regulate the information sharing in subse-
quent multi-task learning.

The main contributions of this paper can be highlighted 
as follows: 

i) Different from most traditional pruning techniques only 
applicable for single task, we propose a more general 
framework MFIS, which is able to deal with both multi-
task pruning and single-network pruning.

ii) The proposed FIS in different networks is capable of 
selecting important filters and determining the most suit-
able operation (pruning, merging, or remaining) for each 
filter. Meanwhile, the index matrix in FIS can keep the 
network structure in multi-task training.

iii) Three criteria for selecting targeted important filters are 
put forward to further appropriately characterize the per-
formance of MFIS that is subsequently optimized via the 
MOP method.

iv) The proposed algorithm is quite flexible where two 
pruning rate strategies, namely adaptive rates for differ-
ent tasks and fixed rate for individual task, are adopted 
to balance the learning speed and accuracy.

v) Via extensive experiments, the effectiveness and effi-
ciency of MFIS are demonstrated on different networks 
and databases. We prove that MFIS performs better 
compared with both single-task pruning methods and 
multi-task pruning methods.

Fig. 1  An illustration of the difference between the traditional single-task pruning method and our multi-task pruning method
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The remainder of this paper is organized as follows. In 
Section 2, we introduce the related work of model prun-
ing, multi-task learning and many-objective optimization 
problem. In Section 3, we describe our framework in detail. 
The experimental study and the corresponding analysis are 
presented in Section 4. Section 5 gives the conclusions of 
this paper.

Related Work

Model Pruning

Filter pruning removes the entire filters, which could reduce 
the memory cost, and meanwhile, shows effectiveness of 
promotion on the inference speed. In recent publications, 
some works (e.g., [13, 14]) have utilized the training data 
and filter activations to determine the pruned filters, while 
other methods (e.g., [15, 16]) have determined the impor-
tance of the filters by weights. Commonly, data-independent 
algorithms are more effective than the former because the 
utilizing of training data is always computation consuming. 
Among data-independent algorithms, researchers design cri-
terions to prune unimportant filters. In most existing publi-
cations regarding the model compression task, only single 
model compression has been considered which means that 
most criterions are designed for single mission. Although 
there have been some initial results on corresponding multi-
task case, the developed algorithms have certain limitations. 
For instance, in [17], the proposed MTZ framework has only 
been able to deal with compression without pruning. In 
[11], an RDNet has been first established by two pre-trained 
models with a threshold parameter � , but the technique of 
pruning, i.e., Variational Information Bottleneck (VIB), is 
borrowed from [18].

Multi‑task Learning

As is well known, multi-task Learning aims to improve gen-
eralization performance and reduces the risk of overfitting 
by jointly learning multiple related tasks [19–22]. ML of 
DNNs has been applied nowadays in various applications, 
from scene understanding [23] to face detection [1], to name 
but a few. ML enables combined model to generalize better 
for all tasks by sharing representations from related original 
networks. Recently, many researchers have devoted efforts 
on issues of ‘what to share’ and ‘how to share’ among tasks, 
especially those relevant to deep neural networks. Some rep-
resentative works can be summarized as follows. Yang et al. 
[24] have proposed an algorithm of learning cross-task shar-
ing structure at each layer in a deep network. Cross-stitching 
networks developed in [25] have introduced cross-stitch 
units to learn shared representations. In [26], soft ordering 

approach of shared layers has been applied in multi-task 
learning which shows more effective sharing ability. Lu et al. 
has proposed an automatic approach in [27] for designing 
multi-task deep learning architectures, which starts with a 
thin multi-layer network that is dynamically widened dur-
ing training. All the mentioned multi-task learning methods 
do not consider the network size and only focus on tasks 
highly related. The parameters even grow during training 
process, leading to opposite outcome for pruning. Hence, 
a new multi-task pruning algorithm should be designed for 
combining model pruning and multi-task learning.

Many‑objective Optimization Problem

On another reach frontier, MOP has been attracting particu-
lar attention in machine learning due to the fact that many 
relevant optimization problems can be converted to MOPs 
[12]. The description of an MOP problem is illustrated by 
the following (1) with m objectives:

where � = (�1, �2,… , �n) is a set of n decision variables; F(⋅) 
is the objective function.

In our proposed work, by borrowing the idea from many-
objective optimization problem, we first convert the issues 
of selecting the important filters into an MOP and then solve 
the problem by evolutionary algorithm, which will be dis-
cussed later in detail.

Methodology

Criteria for Selection

Taking two tasks as example, filter set VA and VB contain the 
original filters in model A and B, respectively. Filter can-
didate set C is initialize with V. We should first obtain an 
important filter set CE from C. For the purpose of converting 
the selection of important filters CE into an MOP, we intro-
duce a binary-valued hyperparameter �i ∈ {0, 1} for each 
filter fi ∈ C . When �i = 1 , it is said that fi belongs to CE . 
Then, � = (�1, �2,… , �m) is the set of decision variables. 
The objectives of MOP can be designed according to the 
following criteria.

Loss of Replacing

This criterion aims to assure that each filter in V has appro-
priately small �E with a candidate in CE:

(1)
min
�

F(�)

F = {F1(�),F2(�),… ,Fm(�)}
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where �E(i, j) denotes the loss of replacing fi with fj . Here, 
we calculate the loss of replacing fi ∈ V  with fj ∈ C on task 
A by

Similarly, the loss of replacing fi with fj on task B is defined 
by

Then, the corresponding objective functions are defined as 
follows:

F1(⋅) and F2(⋅) describe the losses of replacing for network A 
and B, respectively. With limit on size of CE , F1(⋅) and F2(⋅) 
will get rid of inappropriate candidates from CE , thereby 
reducing the intra-redundancy in tasks and inter-redundancy 
between tasks at the minimum loss.

The Diversity of Selected Candidates

This criterion is to keep the diversity of selected candidates 
in CE . To this end, we define the diversity of CE as the sum 
of losses by replacing fi ∈ CE with all the other filters in CE , 
which is represented as follows:

Then, the corresponding objective function F3(⋅) is defined 
by

(2)
∀fi ∈ V ∶ &∃fj ∈ CE,

s.t. 𝛿E(i, j) < 𝜖

(3)𝛿ÊA(i, j) =

⎧
⎪⎨⎪⎩

+∞ 𝛼j = 0 ∧ fi ∈ VA

𝛿EA(i, j) 𝛼j = 1 ∧ fi ∈ VA

0 fi ∈ VB

(4)𝛿ÊB(i, j) =

⎧
⎪⎨⎪⎩

+∞ 𝛼j = 0 ∧ fi ∈ VB

𝛿EB(i, j) 𝛼j = 1 ∧ fi ∈ VB

0 fi ∈ VA

(5)F1(�) =
∑
fi∈V

min
fj∈C

{𝛿ÊA(i, j)}

(6)F2(�) =
∑
fi∈V

min
fj∈C

{𝛿ÊB(i, j)}

(7)D =

�i=1∑
i

�j=1∑
j

�E(i, j)

(8)F3(�) = −D

The Entropy of Weights

A filter without variation may be failed on capturing the 
important information from input data [28]. Here, entropy 
of layer is introduced to evaluate the variation of filters’ 
weights, which can be calculated as follows:

where n is the number of classes of sampling weights and pk 
is the probability of classes k. High entropy of filters means 
high variation on weights. Then, the corresponding objective 
function F4(⋅) is defined by

Among aforementioned objectives, F1(⋅) and F2(⋅) control 
the intra-redundancy in tasks and inter-redundancy between 
tasks; F3(⋅) ensures diversity and searches candidates which 
are more similar to the clustering centres, close to supporters 
but irreplaceable with each other; Criterion F4(⋅) pays more 
attention to the contributions of candidates for preserving 
useful information. Each criterion conflicts with others and 
is chosen for different purpose. It is worth noting that though 
pruning with small L2 norm is a mainly used criterion for 
filter pruning [15, 16], ‘smaller-norm-less-important’ has 
been reconsidered in some literature [29]. For multi-task 
pruning, searching filters with similar information that can 
be shared (in multi-network) or replaced (in single-network) 
are more important for designing criteria.

Filter Sharing

As illustrated in Fig. 2, all filters in V should choose one and 
only one candidate in the important filter set CE . If fj∗ ∈ CE 
satisfies

we call fi a supporter of candidate fj∗.
The key point of the proposed filter sharing (FS) strategy 

is to collect filters which share the same candidate, with the 
same shape of colours in Fig. 2. On the one hand, pruning 
filters working on the same task (e.g., filters with green in VA 
or filters with blue in VB ) can help to reduce the parameters 
of networks and accelerate the inference. On the other hand, 
merging filters with different tasks (e.g., filters with cyan in 

(9)I = −

n∑
k=1

pk log pk

(10)F4(�) = −I

(11)j∗ = argmin
j

{�E(i, j)}.
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VA and VB ) can share information of two tasks. The orange 
and purple filters will be maintained in the new layers.

Then, we define CE = {CE
A
,CE

B
,CE

S
} with

where CE
A
 , CE

B
 and CE

S
 consist of filters attributed to, respec-

tively, task A, task B and both tasks; S� is comprised of sup-
porters with the same candidate f� , which is defined by

Note that S� ≠ ∅ because S� contains at least f� , namely, f� 
will support itself.

(12)

⎧⎪⎨⎪⎩

CE
A
= {fi�Si ⊆ VA}

CE
B
= {fj�Sj ⊆ VB}

CE
S
= {fk�Sk ∩ VA ≠ � ∧ Sk ∩ VB ≠ �}

(13)S𝜂 = {fi| argmin
j

𝛿Ê(i, j) = 𝜂}.

Fig. 2  Filter sharing in networks
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Pruning and Merging

Suppose that layer l has Nl filters. If a pruning rate Pl is set 
for layer in network A and B, we would not get Pl × Nl filters 
pruned with NE = (1 − Pl) × Nl for each network. Actually, 
the real sum of pruned filters is 2 × Pl × Nl − length(CE

S
) 

according to Algorithm 1.
Base on the aforementioned discussions, we have two 

strategies for pruning and merging step. Strategy one is to 
simply restrict the pruning rate P for the whole models and 
the real sum of reduced filters will be determined adaptively 
by FS strategy as well as the pruning rates on different tasks. 
Strategy two is to restrict the pruning rate for each network, 
under which we will prune additional length(CE

S
) with norm-

based criterion (pruning filters with small Lp norm) after 
filter sharing. Then the real pruning rate can be confirmed 
for each network. These two strategies can be chosen under 
different situations. Strategy one does not need to decide the 
specific rates on tasks. However, the real pruning rates can-
not be confirmed. In contrast, although the rate on every task 
should be manually decided when using strategy two, prun-
ing on networks are strictly executed under the preset rates.

MOP Model for Multi‑task Pruning

Consequently, the MOP model is established as

In this paper, we shall use MOEA/D proposed in [30] to  
optimize the many-objective problem in (14). We provide the 
modified mutating strategy of MOEA/D as shown in Algo-
rithm 2. Instead of randomly changing � , we impose a proba-
bilistic constraint on the mutation of � in the following way:

First, we remove the filter fk from CE
cur

 which is nearest 
to CE

cur
:

Then, we add a filter fk ∈ C ⧵ CE
cur

 into CE
cur

:

Since the PF P = {�1,… ,�p} obtained by MOP algorithm 
is not a single optimal solution, we should seek an optimal 
value for � . For instance, �∗ can be chosen as follows:

(14)
min
�
F(�)

F = {F1(�),F2(�),F3(�),F4(�)}

(15)
k = argmin

i

�E(i, j)

s.t. i ≠ j

(16)k = argmax
i

{min
j

�E(i, j)}.

(17)
�
∗ = argmin

�

∑
fi(�)

s.t.
∑

�i = NE

where NE is the limit size of CE.

How to Update Weights

Suppose �E(i, j) is the difference between the original output 
results of fi and the corresponding results replaced by fj . We 
apply an alternative way introduced in [5, 31] to approximate 
the error function by Taylor series expansion as follows:

where l = 1,… , L is the number of layers; ��l = �l,j − �l,i 
denotes the perturbation when fi with parameter �l,i changes 
to fj with parameter �l,j ; �l = �2El∕��

2
l
 is the Hessian matrix 

which contains the whole second-order derivatives. The first 
term in (18) is vanished during training and higher-order 
terms O(‖��l‖3) can be regarded as 0 [5]. Hence, �EA

l
(i, j) 

for task A can be redefined by

where �A
l
 is calculated by

with xA
l
 the input of layer l for task A.

Then, in order to merge filters with as less losses as pos-
sible, f� can be updated by optimizing the following error 
function:

(18)
�El(i, j) = El(j) − El(i)

= (
�El

��l
)T��l +

1

2
��l

T
�l��l + O(‖��l‖3)

(19)�EA
l
(i, j) =

1

2
(��A

l
)T ⋅�

A
l
⋅ ��A

l

(20)�
A
l
=

1

n

∑
xA
l
⋅ (xA

l
)T
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where n is the number of filters in S� . By applying the 
method of Lagrange multipliers, the optimal result �(�) of 
f� is obtained via the following formula:

with �(n) denoting the Hessian matrix of fn . Particularly, 
if all the filters have the same input, then �(�) can be com-
puted by

It should be mentioned that computing � is still a tough 
work in some databases. Hence, we can calculate the dis-
tance instead (e.g., Euclidean distance) in the experiments:

where Nl−1 is the input channels of layer l; K × K denotes 
the kernel size. When using Euclidean distance in (7), the 
selection under criterion F3(⋅) is similar to judging filters by 
geometric median in [7].

(21)
min

��(1),…,��(n)

∑
fi∈S�

�E(i, �)

s.t. ��(1) + �(1) = … = ��(n) + �(n)

(22)

�(�) =��(n) + �(n)

=(�(1) +… +�(n))−1 ⋅ (�(1)(�(1) − �(n))+

… +�(n − 1)(�(n − 1) − �(n))) + �(n)

(23)�(�) =
1

n

∑
fi∈S�

�(i)

(24)�E(i, j) = dist(i, j) =

Nl−1� K� K�‖�i − �j‖2

For SP-FIS, we only need to establish one network and 
prune the redundant filters by setting weights with 0. The 
MOP of SP-FIS is established according to (14) as follows,

For MP-FIS, distinguishing from [17] and [11], index shar-
ing is proposed for multiple networks to keep network struc-
ture where sharing index will be preserved along with an 
index matrix I, shown in Fig. 3. To be specific, we record 
the indices of each single filter pointing to pruning, merging 
or remaining. Then, new networks can be easily recovered 
and trained according to the index matrix. The importance of 
keeping network structure has been proved in Section 4.4.1. 
Finally, the MFIS framework is described in Algorithm 3. It 
should be noticed that if a filter fi ∈ CE

S
 is pruned in step 11 

when using strategy two, it will be removed from CE
S
 along 

with its shared filter in the other model.
In order to show the differences between MFIS frame-

work and other methods more clearly, we compare with 
model compression methods, shown in Table 1.

Extending MFIS to Many‑task Cases

MFIS can be easily extended to an M-task ( M ≥ 3 ) case 
which is illustrated in Fig. 4. Each network Mk can accept 
information from the other networks because FIS can 

(25)
min
�
F(�)

F = {F1(�),F3(�),F4(�)}

Multi‑task Filter Index Sharing Framework

We are now in a position to propose the MFIS framework. 
MFIS can be classified into the following two categories 
according to the number of tasks: single-task pruning 
FIS (SP-FIS) and multi-task pruning FIS (MP-FIS).

determine each filter to be pruned, merged or remained for 
networks. In Fig. 4, original networks are presented with dif-
ferent color blocks in the bottom line. In the top block line, 
the grey blocks describe the unimportant filters selected by 
our algorithm and the color ones are the remained or merged 
filters for three tasks. Each filter may work for one to three 
tasks after pruning and merging.
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Experiments

In this section, we shall examine our MFIS framework 
on single-task pruning and multi-task pruning on various 
benchmarks with different networks. We will further explore 
the influence of keeping network structure and the balance 
on different tasks with MFIS. Finally, the MFIS will be 
extended to more task case.

Experimental Settings

Databases

In our experiments, the following databases are considered: 
MNIST database [32] is a small digital handwriting data 
set, which contains 60,000 images. CIFAR-10 and CIFAR-
100 [33] contain 60,000 colour images in each database, in 
which 50,000 training images and 10,000 testing images are 
included. SVHN [34] is a real-world image dataset, which is 
obtained from house numbers in Google Street View images, 
with 73,257 digits for training and 26,032 digits for testing. 

ILSVRC-2012 [35] (ImageNet) is a large-scale dataset con-
taining 1.28 million training images and 50,000 validation 
images of 1,000 classes.

Training Settings

Two types of network structure are used in the following 
experiments: VGG-net [37] and ResNet [38]. VGG used here 
is a slight modified version in [39] without Dropout [40], 
which contains only 2 FC layers. Compared with VGG-16 
[37], the modified VGG has much fewer parameters in the 
fully connected layers. Hence, it could be more challeng-
ing to do compression work on it. We train the pre-trained 
networks with optimizer (stochastic gradient descent algo-
rithm, SGD), initial learning rate (0.1) for baseline, momen-
tum (0.9), batch size (128) and weight decay (0.0005). For 
CIFAR, the learning rate is divided by 5× at epoch 60, 120 
and 160 and the network is trained for 200 epochs in total. 
For ImageNet, the learning rate is divided by 10× after every 
30 epochs and the total epoch is 100. The training schedule 
of learning rate is set following the work in [7].

Pruning Settings

For pruning the scratch model, we utilize the regular train-
ing schedule without additional fine-tuning. For pruning, 
the pre-trained model with fine-tuning, the learning rate is 
reduced to one-tenth of the original learning rate [7]. For 
MOEA/D, we set the scale of the optimization iteration to 
be 200 for ResNet-20, 32, 56, 110 and 1000 for VGG-net 
and ResNet-50. The probabilities of mating and mutating 
are set to be 0.5 and 0.7.

Fig. 3  The multi-task indexing 
steps

Table 1  The difference between MFIS and other methods

prune reduce 
Params.

reduce 
FLOPs

multi-task

PFEC [16] ✓ ✓ ✓ ✗
MTZ [17] ✗ ✓ ✗ ✓
SP-FIS ✓ ✓ ✓ ✗
MP-FIS ✓ ✓ ✓ ✓
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Performance Metric

To measure the network compression and testing perfor-
mance, the following measurements are applied:

Acc. The accuracy of testing on database. Acc. ↓ (%) is 
the accuracy drop between pruned and the baseline model. 
The smaller, the better. For CIFAR-10, top-1 accuracy is 
provided, while for ILSVRC-2012, both top-1 and top-5 
accuracies are reported.

Params. In this paper, Params. ↓ (%) indicates the per-
centage of reduced parameters in networks. Bigger Params. 
↓ (%) means larger compression ratio.

FLOPs The overall floating point operations (FLOPs) 
denote the computation cost of networks. We use FLOPs ↓ 
(%) to describe the percentage of reduced FLOPs.

Single‑task Pruning

For CIFAR-10 dataset, we test our SP-FIS on ResNet with 
depth 20, 32, 56, 110 and show the results in Table 2. We 
compare SP-FIS with existing single-task acceleration algo-
rithms, namely, PFEC [16], CP [13], MIL [36], SFP [15], 
NISP [10], FPGM [7] and HRank [8]. For CIFAR, we run 
each setting three times and report the “mean ± std”. In 
“Fine-tune?” column, “✓” and “✗” denote whether to use 
the pre-trained model as initialization or not, respectively. 
The experiment results validate the effectiveness of our 
method. Specifically, the best result of FPGM (FPGM-mix) 
on ResNet-110 accelerates the random initialized with an 
improvement of 0.17% on accuracy, but our SP-FIS achieves 
the results of 0.33% improvement with the same speedup 
ratio. Likewise, on ResNet-56, FPGM achieves the best 
result of 0.66% accuracy drop with FPGM-only, while our 
SP-FIS gains better result of only 0.32% accuracy drop. In 
comparison to SFP, our SP-FIS shows 0.49% accuracy drop 
which is better than 0.55% for SFP on ResNet-32, while the 

acceleration rate of 53.2% is also much better than 41.5% for 
SFP. To make the comparison more clearly, we also provide 
a result of 41.5% acceleration rate for SP-FIS, which gives 
an accuracy drop of only 0.18%. For pre-trained models, SP-
FIS also achieve comparable results compared to other state-
of-the-art methods. SP-FIS gives superior results because 
our method selects proper candidates for both pre-trained 
and randomly initialized networks by taking into account 
the three objectives mentioned earlier.

The proposed framework is also tested on ILSVRC-2012 
with pre-trained ResNet-50. Following [7], we do not prune 
the projection shortcuts for simplification. The results are 
described in Table 3 and compared with six state-of-the-art 
methods.

Multi‑task Pruning

In the experiments of MP-FIS, we first perform MP-FIS on 
VGG-net with pruning rate P on the whole models. Because 
few methods prune multi-task networks simultaneously, the  
following two methods are utilized for the comparison with 
our MP-FIS, namely, MTZ [17], a multi-task model com-
pression method but without pruning, and PFEC [16], a 
pruning method for single task. All models use the same 
pre-trained networks. All models use the same pre-trained 
networks.

The experiment results are described in Table 4, where 
“ / ” denotes no result is provided. Considering that PFEC 
is a single-task method, we perform it on CIFAR-10 and 
CIFAR-100 separately with two types of compression ratio 
strategies: 49.90% parameters reduced on CIFAR-10 and 
49.74% on CIFAR-100; 71.19% parameters reduced on 
CIFAR-10 and 27.41% on CIFAR-100. Note that MTZ does 
not accelerate the networks (no result on “FLOPs ↓ (%)” 
column) because of lack of pruning step. In “Params. ↓ (%)” 
column, the percentage of reduced parameters is given in 

Fig. 4  The many-task case of 
MFIS
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Table 2  Comparison of single-task pruning of ResNet on CIFAR-10

Depth Method Fine-tune? Baseline Acc. (%) Pruned Acc. (%) Acc. ↓ (%) FLOPs FLOPs ↓ (%)

SFP [15] ✗ 92.20 (±0.18) 90.83 (±0.31) 1.37 2.43E7 42.2
20 FPGM-only [7] ✗ 92.20 (±0.18) 90.44 (±0.20) 1.76 1.87E7 54.0

FPGM-mix [7] ✗ 92.20 (±0.18) 90.62 (±0.17) 1.58 1.87E7 54.0
Ours (SP-FIS) ✗ 92.20 (±0.18) 90.78 (±0.17) 1.42 1.87E7 54.0
MIL [36] ✗ 92.33 90.74 1.59 4.70E7 31.2
SFP [15] ✗ 92.63 (±0.70) 92.08 (±0.08) 0.55 4.03E7 41.5
Ours (SP-FIS) ✗ 92.63 (±0.70) 92.45 (±0.02) 0.18 4.03E7 41.5

32 FPGM-only [7] ✗ 92.63 (±0.70) 91.93 (±0.03) 0.70 3.23E7 53.2
FPGM-mix [7] ✗ 92.63 (±0.70) 91.91 (±0.21) 0.72 3.23E7 53.2
Ours (SP-FIS) ✗ 92.63 (±0.70) 92.14 (±0.11) 0.49 3.23E7 53.2
PFEC [16] ✗ 93.04 91.31 1.75 9.09E7 27.6
CP [13] ✗ 92.80 90.90 1.90 - 50.0
SFP [15] ✗ 93.59 (±0.58) 92.26 (±0.31) 1.33 5.94E7 52.6
FPGM-only [7] ✗ 93.59 (±0.58) 92.93 (±0.49) 0.66 5.94E7 52.6
FPGM-mix [7] ✗ 93.59 (±0.58) 92.89 (±0.32) 0.70 5.94E7 52.6
Ours (SP-FIS) ✗ 93.59 (±0.58) 93.27 (±0.20) 0.32 5.94E7 52.6

56 PFEC [16] ✓ 93.04 93.06 -0.02 9.09E7 27.6
NISP [10] ✓ - - 0.03 - 42.6
CP [13] ✓ 92.80 91.80 1.00 - 50.0
HRank [8] ✓ 93.26 93.17 0.09 6.27E7 50.0
SFP [15] ✓ 93.59 (±0.58) 93.35 (±0.31) 0.24 5.94E7 52.6
FPGM-only [7] ✓ 93.59 (±0.58) 93.49 (±0.13) 0.10 5.94E7 52.6
FPGM-mix [7] ✓ 93.59 (±0.58) 93.26 (±0.03) 0.33 5.94E7 52.6
Ours (SP-FIS) ✓ 93.76 93.57 (±0.04) 0.19 5.94E7 52.6
MIL [36] ✗ 93.63 93.44 0.19 - 34.2
PFEC [16] ✗ 93.53 92.94 0.61 1.55E8 38.6
SFP [15] ✗ 93.68 (±0.32) 93.38 (±0.30) 0.30 1.50E8 40.8
FPGM-only [7] ✗ 93.68 (±0.32) 93.73 (±0.23) -0.05 1.21E8 52.3
FPGM-mix [7] ✗ 93.68 (±0.32) 93.85 (±0.11) -0.17 1.21E8 52.3

110 Ours (SP-FIS) ✗ 93.68 (±0.32) 94.01 (±0.08) -0.33 1.21E8 52.3
PFEC [16] ✓ 93.53 93.30 0.20 1.55E8 38.6
NISP [10] ✓ - - 0.18 - 43.8
FPGM-only [7] ✓ 93.68 (±0.32) 93.74 (±0.10) -0.06 1.21E8 52.3
HRank [8] ✓ 93.50 93.36 0.14 1.06E8 58.2
Ours (SP-FIS) ✓ 94.05 94.16 (±0.09) -0.11 1.21E8 52.3

Table 3  Comparison of pruning ResNet-50 on ILSVRC-2012

Depth Method Baseline Top-1 Baseline Top-5 Pruned Top-1 Pruned Top-5 Top-1 Top-5 FLOPs↓
Acc.(%) Acc.(%) Acc.(%) Acc.(%) Acc.↓ (%) Acc.↓(%) (%)

ThiNet [14] 72.88 91.14 72.04 90.67 0.84 0.47 36.7
SFP [15] 76.15 92.87 62.14 84.60 14.01 8.27 41.8
HRank [8] 76.15 92.87 74.98 92.33 1.17 0.54 43.8

50 NISP [10] - - - - 0.89 - 44.0
CP [13] - 92.20 - 90.80 - 1.40 50.0
FPGM [7] 76.15 92.87 74.83 92.32 1.32 0.55 53.5
Ours (SP-FIS) 76.15 92.87 75.23 92.50 0.92 0.37 53.5
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three conditions: whole networks, network on CIFAR-10 
and network on CIFAR-100, due to the existence of shared 
parameters in MTZ and MP-FIS. For MP-FIS, MP-FIS “with 
H” and “w/o H” describe computing �E by (19) or comput-
ing Euclidean distance instead. Obviously, it can be seen that 
the proposed MP-FIS performs much better in comparison 
to other methods.

The advantages of MP-FIS can be attributed to the fact that  
it allows access to relevant information in different tasks and  
limits redundant information in the same task, while traditional 
pruning methods only focus on one single task and do not 
take into account the facilitation of multi-task for learning. 
Although MTZ can deal with multiple tasks, it just simply 
forces one-to-one merging of filters between different tasks 
without pruning, which may lead to adverse outcome for 
tasks, especially when tasks are not strongly correlated, such 
as CIFAR-10 and CIFAR-100.

Then, we test our method with pruning rate P on each net-
work of ResNet with depth 32, 56, and 110. The additional 
length (CE

S
) filters are pruned with norm-based criterion.  

As shown in shown in Table 5, we record the best accuracy 
results for two tasks, respectively, which means that filters 
in CE

S
 are not forced to be shared for testing in this experi-

ment. Likewise, as a single-task pruning method, FPGM 
is performed on CIFAR-10 and CIFAR-100 separately for 

comparison. The result also validates the effectiveness of our  
method.

More Explorations

Influence of Keeping Network Structure

For the purpose of proving the necessity of keeping network 
structure, we define TE to scale the tendency of sharing infor-
mation from different tasks in the next layer as follows:

where �EA(A,B) represents the average loss on model A 
of replacing filters in model A with those in model B. For 
pre-trained models, Lenet-300-100 network [32], which is 
a fully connected network with 2 FC hidden layers will 
be trained on MNIST database. We change the limit size 
in the first FC layer and then observe the variation of TE 
in the second FC layer. The results are shown in Fig. 5, 
from which we can observe that, without keeping network 
structure, the difference between filters becomes much big-
ger in two models. Such a phenomenon is mainly due to 
the fact that the filter similarity between two models has 

(26)TE =
1 − (�EA(A,B) + �EB(B,A))

1 − (�EA(A,A) + �EB(B,B))

Table 4  Comparison of multi-task pruning of VGG-net on CIFAR-10 and CIFAR-100

Method Acc.(%) Acc. ↓ (%) Params.↓ (%) FLOPs ↓ (%)

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 whole CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

93.41 / -0.14 / / 49.90 / 21.72 /
PFEC [16] / 70.58 / 0.97 / / 49.74 / 21.72

93.45 / -0.18 / / 71.19 / 31.15 /
/ 71.19 / 0.36 / / 27.41 / 11.93

MTZ [17] 93.31 71.16 -0.04 0.39 43.25 / / / /
MP-FIS w/o H 93.52 71.42 -0.25 0.13 49.92 72.38 27.53 31.68 10.50
MP-FIS with H 93.48 71.80 -0.21 -0.25 49.45 70.61 28.36 30.00 11.22

Table 5  Comparison of multi-task pruning of ResNet on CIFAR-10 and CIFAR-100

Depth Method Baseline Acc. (%) Pruned Acc. (%) Acc. ↓ (%) FLOPs ↓ (%)

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

FPGM [7] 93.18 / 92.75 / 0.43 / 41.5 /
32 / 70.28 / 69.44 / 0.84 / 41.5

Ours (MP-FIS) 93.18 70.28 92.96 70.12 0.22 0.16 41.5 41.5
FPGM [7] 93.76 / 93.55 / 0.21 / 52.6 /

56 / 71.79 / 70.51 / 1.28 / 52.6
Ours (MP-FIS) 93.76 71.79 93.60 71.16 0.16 0.63 52.6 52.6
FPGM [7] 94.05 / 94.22 / -0.17 / 52.3 /

110 / 73.88 / 72.80 / 1.08 / 52.3
Ours (MP-FIS) 94.05 73.88 94.22 73.04 -0.17 0.84 52.3 52.3
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been influenced after breaking layer structure in the prun-
ing step.

Balance on Tasks

With the hope of further showing that MFIS is able to 
prune the most appropriate filters between networks, 
we depict, in Fig. 6, the pruning rates of CIFAR-10 and 
CIFAR-100 in the last 6 layers of VGG-net. It is seen that 
the average pruning rate in CIFAR-100 is far smaller than 
that in CIFAR-10, as for VGG-net, network of CIFAR-
10 has much more redundant filters compared with  

CIFAR-100. This has also been proved in Table  4 that 
PFEC achieves similar accuracies with 71.19% or 49.90% 
parameters reduced on CIFAR-10, while the performance 
is much worse with 49.74% or 27.41% parameters reduced 
on CIFAR-100.

Extending MFIS to Many‑task Cases

We extend MFIS to a 3-task (CIFAR-10, CIFAR-100 and 
SVHN) case and give the results in Table 6. We can see 
that the results of the MP-FIS ( M = 3 ) are further improved 
compared to MP-FIS ( M = 2).

Fig. 5  The tendency TE of sharing filters from different tasks in the second FC layer with and without keeping layer structure
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Conclusion

In this paper, a multi-task pruning algorithm MFIS 
has been provided by virtue of the filter index sharing 
approach. A filter sharing strategy has been proposed capa-
ble of automatically sharing filters of both inner networks 
(pruning) and external networks (merging). Through FIS, 
the proposed algorithm can determine the most suitable 
operation for filters. Three criteria have been developed 
to select important filters of multi-task networks. The pro-
posed MFIS can deal with both multi-task pruning and 

single-network pruning by converting the optimization 
problem into MOP. In experiment parts, our proposed 
framework has shown much better performance in compar-
ison to certain state-of-the-art methods via tests based on 
several benchmarks. It is has also been proved that MFIS 
works well on many-task case. However, there are still cer-
tain limitations of the developed MFIS. For instance, the 
criteria proposed in this paper for MFIS are only applicable 
for image classification task. In the future, some other type 
of tasks (e.g., semantic segmentation) should be consid-
ered in applications. One of the potential research topics 
might be taking more sorts of criteria into consideration 
and applying the framework into real-world applications 
[2, 3, 41–59]
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Fig. 6  The pruning rate of networks on different tasks in the last 6 layer

Table 6  Pruning ResNet on more than two tasks

Method Task-1 Task-2 Task-3 FLOPs ↓
Acc. (%) Acc. (%) Acc. (%) (%)

baseline 93.18 70.28 96.15 /
MP-FIS ( M = 2) 92.96 70.12 / 41.5
MP-FIS ( M = 3) 92.99 70.32 96.33 41.5
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