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Abstract

UNDERSTANDING NEURAL REUSE:
A CASE STUDY ON IMPROVING ENERGY EFFICIENCY OF

CONVOLUTIONAL NEURAL NETWORKS

Merve Selçuk Şimşek
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2022

Artificial Neural Networks (ANNs) constitute a vital part in the Artificial Intelli-
gence (AI) technology today. Neural networks run in basically every electrical ma-
chinery for the purposes of response-time efficiency, machine learning, or simulation.
These networks have helped so many advancements in different parts of the areas over
the years. However, even the simplest ANN is power-hungry and causes an overhead
to the running platform; it is always expensive to benefit from a network. Moreover,
separate tasks are handled by different networks in order to make the output produced
by the network more accurate which results even more overhead.

Our main research question is “How can we make multiple ANNs more energy
efficient without losing their effectiveness?”. Accordingly, we showcase at least two
different tasks can be handled by the same network which is more efficient when the
two regular networks are combined. This idea is rooted and inspired by the Neural
Reuse theory which indicates the same neural paths are used for more than one task in
the brain, and these tasks do not need to be similar at all.

We merge two Convolutional Neural Networks (CNNs), one recognises sounds and
the other recognises images, then compress them via quantisation and make them even
lighter and faster as our case study. This research exploits and employs open-source
software resources and pretrained CNNs. The research targets traditional hardware
resources, such as a PC with a regular CPU or a mobile phone, and facilitates solutions
to this extent. Our ultimate aim is to provide easily accessible, i.e., open-source, and
reproducible by everybody with a simple computer software solutions while increasing
energy efficiency in multiple-networked systems via this research.

10



Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

11



Copyright

i. The author of this thesis (including any appendices and/or schedules to this
thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he
has given The University of Manchester certain rights to use such Copyright,
including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Uni-
versity IP Policy (see http://documents.manchester.ac.uk/DocuInf

o.aspx?DocID=487), in any relevant Thesis restriction declarations depos-
ited in the University Library, The University Library’s regulations (see http:

//www.manchester.ac.uk/library/aboutus/regulations) and in The
University’s policy on presentation of Theses

12

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations


Acknowledgements

I remember one particular time when I came across an Acknowledgement part in a
PhD dissertation, which went on and on about what a tough journey it was and how
challenging it was, that ending with the individual to thank oneself. I found it unusual
back then, during the infancy of my PhD journey. Well, youth. After so many ups
and downs in a roller coaster like journey which is called a PhD in the literature of all
candidates, a world-wide pandemic, losing two of my extended family members/loved
ones, and waiting anxiously the quarantine result of my mother and sister during the
final week of my submission deadline; I just have to start this part, before everything
else, by patting myself on the back and saying “You survived. You did it. And you did
it well.”.

I would like to thank my main supervisor Mikel, Prof. Luján, for many things in-
deed. Thanks for being kind and understanding to me for the times I sounded hopeless,
and felt like the Atlas regarding the enormous project I pursued from the very begin-
ning. A strong thanks for trusting me and my abilities; sending me to the outer world
to represent our team, to make presentations, to connect with people, and providing an
environment for networking. I’d like to thank you for encouraging me into pursuing
a PhD right in the beginning and being one of the best pep talk givers I knew back
then. Thank you for pointing, perhaps sometimes too many, research directions at me
Mikel; yet enabling an environment where I needed to be the soul captain of my own
ship facing the tsunamis, that is this PhD. Thank you for this opportunity and for your
belief in me that I would make it through regardless.

A big thanks go to my viva examiners Dr. David Halliday and Dr. Riza Batista-
Navarro at this point. I’ve never thought the viva day would be a day that I would
cherish regardless the outcome considering the anxiety the day carries. Thank you
both for your politeness which relieved my stress on this crucial day. I also appreciate
your detail-oriented, insightful comments, and valuable advice which improved my
thesis.

13



Next, I’d like to thank some more academics who were a part of my journey by
contributing to my field of knowledge and shaping my road-map in such sense. Thank
you Prof. Ross King for introducing the world of C. Elegans to me; Prof. Steve Furber,
my co-supervisor, for recommending me some of the books that now take place in my
bibliography, and inviting me to research on ants; Prof. Barbara Webb and Dr. Jörg
Conradt for giving me feedback on my research when we met at scientific meetings,
and indeed encouraging me by acknowledging that my idea was “good” and worth
following for. Thanks to you and my never-ending interest of researching the animal
brains, my research took a long way from investigating a brain atlas for frogs to this
far.

I’d like to thank Angela Saini, Prof. Brené Brown, and Prof. Cecilia Laschi with
two of whom I had the chance to meet personally. Thank you for all your encouraging
words and support which gave me “more power” indeed in this journey.

I’d also like to thank my colleagues Gabriel Fonseca-Guerra, Swapnil Gaikwad,
and Guillermo Callaghan, who should all have the Dr. title before their names by now;
for reading my reports, giving me feedback, and for the meaningful discussions along
the way. Even though you were oblivious to my field of research at times, I am indeed
thankful that you’ve always found it “cool”.

I am proud to say that this research stands on the shoulders of giants. As being
someone who was never shy of reinventing the wheel once upon a time, this is perhaps
the most valuable lesson that I have taught myself during my PhD studies. As always
being an open-source champion, now more than ever, I appreciate the open-source
community and everybody who is generous enough to share their work publicly -and
in a human-readable form!- on online resources. I’d like to especially thank the larq

team, and the creator of SpKeras, Dengyu Wu, in this sense, who were kind enough
to answer my countless questions, and hence contributed to my insight in the field of
energy-efficient convolutional neural networks.

I thank all the members of my family with their never-ending belief in me in any-
thing I do. Special thanks to my loving sister Mina, for the various song lists she
prepared to keep me concentrated on my work, and all the “good vibes” she sent me
from roughly four thousand km. away in various forms really to keep me as “zen” as
possible during this trying period. Additionally, I thank my friends who supported me
throughout the way and believed the outcome of this thesis would be positive no matter
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Chapter 1

Introduction

Energy can neither be created nor destroyed; it can only be transformed

from one form to another.

ÉMILIE DU CHÂTELET, PRINCIPIA-Commentary, 1749

Inspired by nature, by the biological neural networks, Artificial Neural Networks
(ANNs) has been on stage (Rosenblatt, 1958) for more than half a century. The simula-
tions of biological neural networks are important to comprehend where the intelligence

originates, how to fight with some mental diseases, and to see the effects of drugs in the

brain. Their emulations are also important to aid us, human beings, in daily life as Ar-
tificial Intelligence (AI)1 that able to hear, speak, write, see, and move (Anantrasirichai
and Bull, 2022).

The first ANN (Hay et al., 1960) was a visual deciphering emulation. Understand-
ing visual cues and deciphering them computationally have always been and are still of
interest to the AI community. Therefore, the rise, hence the common use, of the ANNs
started with the Convolutional Neural Networks (CNNs) which were formed initially to
process visual data, i.e., images and videos. This rise led to challenges specifically cre-
ated for intelligent visual processing (Russakovsky et al., 2015), various datasets and
benchmarks, a diverse range of ANN types and architectures, overall, ANNs becoming
successful deciphers, based on metrics, that compartmentalised in various places, from
mobile devices to TV’s, in our everyday lives. In time, the situation of ANNs created
a Jevons Paradox (Giampietro and Mayumi, 2018), meaning the more they were made
available, reachable, and “efficient to use” for various tasks; the more they became in

1We would like to highlight the relationship between the fundamental terms that we use in the thesis
before moving further. From left to right the terms gets more specific, and the terms on the right are
sub-terms of their preceding term: AI→MachineLearning(ML)→ ANNs→CNNs.
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demand. Their rise happened because of their being data-hungry given the demanded
task repertoire; and combining it with the demand towards ANNs eventually led them
to become power-hungry.

A recent study showcased that training Google’s Bidirectional Encoder Repres-
entations from Transformers (BERT) has almost the same amount of CO2 emission
(lbs) as a trans American flight (Strubell et al., 2020). Moreover, according to the
same study, training a Neural Architecture Search (NAS) network has ≈5 times more
CO2 emission than a car does throughout her life-time. Such results are displayed in
Table 1.1.

Table 1.1: CO2 equivalent emissions (lbs) of consumption vs. training ANN models
(Strubell et al., 2020).

CO2e2(lbs)

Consumption
Air travel, 1 passenger, NY ⇔ SF 1,984
Car, avg incl. fuel, 1 lifetime 126,000

Model
BERT 1,438
NAS 626,155

Considering the crises that going on in our world today (Kennedy et al., 2021),
keeping the greenhouse gas, e.g., CO2, emissions low has the uttermost value now
more than ever (Yue and Gao, 2018; Chen, 2021). One way to carbon neutrality,
meaning to achieve a balance between emitting and absorbing the carbon, is “reducing
energy consumption and increasing energy use efficiency” (Chen, 2021). We conclude
that as the recent dramatic findings prove (Strubell et al., 2020; Patterson et al., 2021),
ANNs, despite their current high-value in our lives, should be no exception to that.

This research investigates methods to make the ANNs, specifically CNNs, more
energy efficient. With the increased types of neural networks and their increased
use cases, especially on mobile platforms, e.g., autonomous cars, mobile robots, and
phones, not one, but at least two neural networks are in use today. Therefore, although
we also showcase how to make singular CNNs more energy efficient via our exper-
iments, our hypothesis is on making multiple CNNs more energy efficient. The
“more” here means, obtaining better metrics results, concerning the energy, compared
to their separate forms combined. Biological neural networks are the roots of our hy-
pothesis which is explained in the next Section, Section 1.1. Afterwards, we move on
to elaborate our research motivation in Section 1.2; outline the research questions and

2CO2e means carbon dioxide equivalent emissions that includes the primary greenhouse gas, i.e.,
carbon dioxide, along with other greenhouse gases, e.g., methane, nitrous oxide.
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objectives of this thesis in Section 1.3; explain thesis scope in Section 1.4; discuss our
contribution to the literature in Section 1.5; and conclude this chapter by offering a
summary to the thesis structure in Section 1.6.

1.1 Nature’s Solution to Preserving Energy in the Brain

As a chordate, a sea squirt is born with a nerve cord and a primitive nervous system.
Larval sea squirt, which resembles a frog tadpole, can sense the light and gravity,
freely move and search for food, all thanks to her primitive “brain” (Smith-Ferguson
and Beekman, 2020). Prior to stepping into adulthood, the sea squirt finds a safe
haven for herself, perhaps a shadow of a rock, and lands there for good. Adulthood
means metamorphosis for her which causes a series of physical changes in her body
(Karaiskou et al., 2015). The most dramatic change that occurs to the sea squirt is that
her nervous system disintegrates from her body and is gradually absorbed at this stage.
After this point, without a “brain” in her body, her journey turns into waiting for the
prey to come to herself. The adult squirt feeds herself with this way, without spending
any extra energy, until the end of her life.

A brain full of neurons as we know of is proved to be non-vital to live a life and
survive in animal kingdom, yet the brain emerged for a greater purpose than keeping
organisms just alive. Animals that are known to have no neural cells at all, for example
sponges, are also suspected to have them once upon a time, yet lost them by evolution
(Ryan and Chiodin, 2015) simply because their existence caused a budget that they
could not maintain. It is not the existence of the brain that matters, nor the size of the
brain, but its fitness to its function (Czekanski-Moir and Rundell, 2020). The brain
is necessary for a better adaptation of an organism while regulating energy consump-
tion for its cause at the same time (Sterling and Laughlin, 2015). A better adaptation
increases the chance of survival and reproduction of the organism. Moreover, less en-
ergy consumption in its body, in other words, saving the withhold energy, enables the
adaptation process to be maintained.

The human brain constitutes 2% of the body weight, yet consumes 20% of the
body’s overall energy (Attwell and Laughlin, 2001). Keeping a “brain” and and main-
taining its functions are expensive for the host; and the reason of this phenomenon,
especially regarding human brain as being the most cognitively capable in all animals,
has always captured interest of the researchers (Pulido and Ryan, 2021). Despite the
brain might seem as “power-hungry” by looking at the aforementioned numbers, the
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expense of such energy in return of brain’s endless function repertoire remains indis-
pensable, and even may seem little when dug deeper.

The more advanced the technology gets, the deeper gets our knowledge in neuros-
cience. It was believed earlier that the human brain is partially different than primate
brain; for instance, it weighs heavier and have more brain regions and neurons than
its counterparts. However, this knowledge now broadens thanks to the new imaging
technology: it is now known that the human brain is not only partially, but fundament-
ally different. This information shows itself in energy preserving within the human
brain which is greater in humans even compared to our closest living relatives based
on evolution (Beaulieu-Laroche et al., 2021).

There are several approaches aiming to explain how the brain utilises and preserves
its energy. One prominent approach aiming to explain this phenomenon, the free en-

ergy principle, takes the brain as a whole where neurons in different brain regions
(Strotzer, 2009) may or may not be connected. Nonetheless, according to the free en-

ergy principle, brain always chooses the most optimal path which would consume the
lowest possible energy3 in order to realise any functionality (Friston, 2010).

Another approach, neural reuse, offers an explanation to the phenomenon with a
pre and a post evolution lookout. Neural reuse theorises that paths needed to realise
new functionalities in the brain are overridden onto already existent paths, rather than
creating new paths, in order to save energy (Anderson, 2010, 2015). The neural reuse
and the free energy principle theories do not clash, but complement each other in our
opinion which inspires and constitutes the root of this thesis. We elaborate this topic
in Chapter 3.

1.2 Motivation and Hypothesis

Although the ANNs have become costly in time, their benefits can not be overlooked.
Despite its enormous training cost as shown in Table 1.1, during the recent pandemic,
i.e., COVID-19, BERT has helped many scientists and researchers world-wide by
powering the COVID-19 Research Explorer4. Therefore, the solution should be ad-
dressed to the question of “How can we make ANNs more energy efficient without
losing their effectiveness?”.

With the increased ANN usage, so was born network-based Transfer Learning (TL)

3The energy optimisation is put forward via maximum entropy approach in the paper.
4https://covid19-research-explorer.appspot.com/biomedexplorer/

https://covid19-research-explorer.appspot.com/biomedexplorer/
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(Tan et al., 2018). TL is a promising technique as it provides a shortcut for the ones
who would like to build their ANNs upon the existent, i.e., trained, ones. The transfer

here can be obtained based on a part of the trained network, e.g., via some of its layers,
or can be obtained by including the whole trained network into another, new, network.
However, TL comes with a limitation and a cost. The limitation is that for a successful
“transfer”, the network source domains, i.e., datasets, should be related. To illustrate,
if one domain comprises image data, the other one should do as well. Moreover, TL
requires extra training, ergo it is costly. The trained network, which will be addressed
as pretrained network throughout the thesis, that is used as a base, should be trained
even more, so that it would fit the new domain of hers.

This research investigates methods to make multiple CNNs energy efficient by
spending as little cost as possible with the consideration of performance/efficiency
trade-off. We emulate the neural reuse theory onto pretrained CNNs in this thesis,
also benefit from innately low-cost, energy efficient ANNs, such as Quantised Neural
Networks (QNNs), Binarised Neural Networks (BNNs), and Spiking Neural Networks
(SNNs). There are various online resources5,6,7 that supply pretrained ANNs today.
Our hypothesis suggests that, via such resources, we can benefit from ANNs more
than TL offers. In the light of our research question, we offer a hypothesis: “Mul-
tiple CNNs that are combined via neural reuse will preserve more energy than their
counterparts when converted into their innately energy efficient relatives”.

Considering the rising cost of the CNNs especially after the challenges, as men-
tioned in the Introduction, that were specifically organised for them, initiatives have
taken place to extend the use of low-power, on budget ANNs (Hu et al., 2021). Such
initiatives are generally called as “Green AI” today (Schwartz et al., 2020). All our
experiment efforts within this research involve techniques that align with Green AI.

There were also other initiatives to fix various problems in the domain of Machine
Learning (ML), specifically regarding ANNs. We list some of the addressed problems
in the literature along with the correspondent research below.

1. The weaknesses of the current ANN models, e.g., “brittleness”, being data-
hungry, presuming a stable world (Marcus, 2018; D’Amour et al., 2020).

5TensorFlow (TF) - Hub: https://tfhub.dev/
6PyTorch - Model Zoo: https://pytorch.org/serve/model zoo.html
7The Model Zoo for multiple platforms: https://modelzoo.co/

https://tfhub.dev/
https://pytorch.org/serve/model_zoo.html
https://modelzoo.co/
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2. Focusing too much onto certain metric results and benchmarks; lack of prac-
tical, real-world, solutions (Wagstaff, 2012; Marcus, 2018; Lipton and Stein-
hardt, 2019; Sodhani et al., 2020).

3. Underrepresented data and lack of diversity in datasets (Shankar et al., 2017).

4. Problems regarding openness, availability, and reproducibility (Dacrema et al.,
2019; Sodhani et al., 2020).

As our research concerns energy efficiency in CNNs, we only focus on items 2 and
4 in the above list. Aiming to reflect both the Green AI principles and item 2 above, we
use two separate metrics set to evaluate our hypothesis, and seven main metrics in total
as we aim to deliver this work as transparent as possible. We explain our metrics in
Chapter 6 - Section 6.1. Considering our work is upon increasing the energy efficiency
of the neural networks, we believe we address a real-world problem.

Dacrema et al. state the importance of reproducibility in their work as 11/18 State
of the Art (SotA) studies in top-n recommendation systems that they examined failed
to be reproduced. Sodhani et al. highlight the openness and sharing both the literary
and the code works of the research. We consider both statements regarding item 4, and
reflect them onto our research which are addressed in Chapter 4 - Section 4.1.2.4 and
Chapter 5 - Section 5.1.

1.3 Research Questions and Objectives

In the prior section, Section 1.2, we discussed our motivation, mentioned our main
research question, and stated the hypothesis of this thesis. In this section, we offer
a collective overview to the first steps of our scientific method: Research questions,
hypothesis, and objectives.

The hypothesis of this research is: Multiple CNNs that are combined via neural
reuse will preserve more energy than their counterparts when converted into their in-
nately energy efficient relatives. We list below the research questions that formed our
hypothesis.

RQ1. What are the efficient ways to work with multiple CNNs on conventional hard-
ware resources?

RQ2. How can we make multiple CNNs more energy efficient without losing their
effectiveness?
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RQ3. How do we measure energy efficiency in comparison to others without requiring
specialised devices?

The objectives to achieve by investigating the answers to the above research ques-
tions are listed below. Such objectives aid us to test and prove the merits of the hypo-
thesis.

• The objective to achieve by answering RQ1 is to survey the literature involving
CNNs that run on conventional hardware and the techniques that are used to
make multiple of them run efficiently.

• RQ2 is also the main research question of our research. The objective by re-
searching the answer to RQ2 will generate our methodology to offer a solution
to the research problem mentioned in the Introduction.

• The objective regarding the final research question, RQ3, is to devise our eval-
uation criteria by surveying the techniques that were used beforehand and nar-
rowing them down to the ones that would fit to our research.

1.4 Thesis Scope

This thesis focuses on feed-forward pretrained CNNs that process static input data on
mainframe8. The aim within this thesis is conducting an extensive energy efficiency
study on multiple CNNs that are merged and combined in the same body of neural
network, hence become multi-functional networks. Multi-functional networks gather
a functional repertoire in which each are distinctive from each other in the same net-
work body. For instance, the same CNNs can recognise images, and also classify
instrumental audio. This very example is the final product of this thesis.

Our hypothesis concerns making multiple CNNs more energy efficient. Therefore,
although there are research that target making singular CNNs more energy efficient,
e.g., pruning the network, we consider them as beyond the thesis scope and will not
elaborate such methods. TL (Tan et al., 2018), multi-task learning (Zhang and Yang,
2018), and shared representation learning are three major fields of ML in ANNs that
approximate to our study; and since we mention “multi-functionality” in the previous

8Mainframe is used here with the definition “the Central Processing Unit (CPU) and primary memory
of a computer” in the Oxford’s English dictionaries. Throughout the thesis conventional and traditional
terms will also be used regarding the ANNs which point to ANNs that run on mainframe.
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paragraph, these approaches may be confused with ours. However, there are signific-
ant differences between these techniques and ours. Firstly, all three of them require
training while we utilise pretrained neural networks as they are. Secondly, the tasks
that the networks will excel need to be similar in all of them. Otherwise, the training
would not result satisfactorily (Standley et al., 2020). This second reason definitely
excludes training an image classifier network with audio data later on, as we do in this
research.

The works that resemble ours usually use the terms such as merging (Wu et al.,
2019) and zipping (He et al., 2018) neural networks in the literature. Our work is also
built upon a merger research named NeuralMerger (Chou et al., 2018). The difference
of our work and theirs is that we benefit from different types of neural networks in
our research that are known for their efficiency, such as QNNs, BNNs, and SNNs. We
apply conversions between such networks which enriches our research and improves
our final results.

The reason of naming this thesis as “Understanding Neural Reuse” is two fold.
Firstly, because of the neural reuse theory, as this research is inspired by the theory and
aims to emulate it by using the same body of network to realise two distinct functions.
Secondly, as an analogy, because we reuse the pretrained neural networks repetitively:
to merge them with another network, and to convert them into three different types of
ANNs.

1.5 Novelty and Contributions

The novelty of this research lies in our overarching neural reuse emulation that we
achieve via pretrained conventional CNNs, and the results we obtain from such emu-
lation. To elaborate, inspired by the neural reuse theory, we combine an algorithmic
approach with three different types of energy-efficient ANNs to realise this object-
ive. This section summarises the following contributions of this thesis to the existent
literature:

• Based on our literature review, we believe that this is the first time the neural
reuse theory, elaborated in Chapter 3, is applied onto conventional pretrained
ANNs. Being a natural way to create energy efficient pathways in the living
organism’s brain, it is important for such theory to be understood and emulated
via computational resources; and we make it possible via the most commonly
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used ANNs, i.e., CNNs. We hope that this research will pave the way for others
as well considering the energy efficiency is more vital than ever today.

• Our work concerns multiple neural networks. We, specifically, focus on mak-
ing not one, but two CNNs energy efficient at the same time as we explain in
Chapter 4. We prove in Chapter 6 by the results of our experiments that without
hurting the accuracy of multiple models, a smaller network size and faster infer-
ence time is possible.

• We first merge multiple networks into a single network in order to decrease the
overall network size while providing multi-functionality to the merged network.
Thereafter, we convert the output network into a more energy efficient model
which further decreases the model size. Both of these steps provide a compaction
to a multi-functional network and the resulting model can fit into edge devices
where the memory of the system is very limited.

• We conduct various experiments over a set of different metrics on QNNs, BNNs,
and SNN models. This is the first research within our knowledge to utilise two
different network generations: second generation of ANNs and the third genera-
tion of ANNs which is explained in Chapter 2, in order to quantise, binarise, and
also convert into a spiking format multiple neural networks at the same time. We
detail our experiments in Chapter 5.

1.6 Thesis Structure

The outline of this thesis is as follows:

Chapter 2 provides background information on ANNs, starting with how the ANNs
emerged conceptually. Explanations and background information on CNNs are given
next, followed by special types of ANNs such as quantised and binarised neural net-
works. This chapter finishes with explanations on SNNs. All these types of networks
are covered in the background since it is essential to better understand the study and
the outcome of this thesis.

Chapter 3 presents the neural reuse theory starting with the biological aspects of
how neural reuse occur in nature. It involves explanations on how this biological phe-
nomenon can be translated into a computational paradigm and why it is beneficial to
use such approach in neural networks.
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Chapter 4 describes our approach of providing multi-functionality to CNNs as well
as solutions to decrease the model sizes of neural networks while providing much
needed computational efficiency. We present how the multi-functionality is enabled
in CNNs which also enables model compaction. We also describe how further optim-
isations can be achieved from the computational perspective by converting the multi-
functional model into different types of neural networks.

In Chapter 5 we explain the experimental setup, discussing the details of our exper-
iments and giving information on the datasets. Neural network architectures and the
training details we have used in this thesis to support our hypothesis are also elaborated
in this chapter.

Chapter 6 provides information on our evaluation metrics and the experimental
results. We show how our approach performs especially from model size and inference
time perspectives.

The conclusions on the work presented in this thesis and directions for future re-
search are given in Chapter 7.



Chapter 2

Background I: Artificial Neural
Networks

The energy itself starts within the atomic level in nature. Considering our work re-
lies on the principle of conserving energy, we believe one should start from the very
beginning, from the “atomic” phase of the concerning topic, that is ANNs in this thesis.

In this Chapter, we provide a technical background of the ANNs. Our background
review starts from the origins of feed-forward ANNs. Because our research concerns
energy usage, we examine ANNs from all compatible aspects regarding the energy.
Therefore, different generations, types, and architectures of ANNs which concern our
hypothesis are explained within the Chapter.

To put it simply, ANNs are algorithms to solve computational problems. By re-
viewing their background, we also put forward and highlight what causes overhead in
these algorithms, what makes them power-hungry, ergo, turns them into environment-
ally costly in this Chapter.

2.1 Generations of Artificial Neural Networks

The history of ANNs starts with single artificial neuron emulations inspired by biolo-
gical neurons (McCulloch and Pitts, 1943). Several artificial neuron prototypes were
put forward in time which led to generations of ANNs to come about. There are three
generations of ANNs. The generations are decided based on how neurons in the ANNs
process input and output signals. Note that, artificial neurons have also been addressed
as neural, computational or processing units in the ANN literature. The all three gen-
erations are illustrated by providing numerical details in a diagram in Figure 2.1.

28
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Figure 2.2: Structure of an artificial neuron2.

Before moving on to explaining the generations, we would like to portray the struc-
ture of an artificial neuron via Figure 2.2. Any artificial neuron, inspired by a biolo-
gical neuron, goes through two steps: combining its weighted inputs and applying a
threshold onto them which yields an output at the end. In Figure 2.2, variable x rep-
resents the input values ranging in an index of 0 to n, and variable w represents the
weights of each input with the same index range as x, from 0 to n. Firstly, the inputs
and their correspondent weight values are put into a linear combination method, also
called as linear unit or sum unit, i.e., sum in Figure 2.2. Thereafter, a threshold is ap-
plied onto the linear combination. Finally, the output is obtained. The two operations
that are shown in the middle of the Figure 2.2, sum and applying a threshold are still
common today in all artificial neurons. Every artificial neuron receives an input, cal-
culates a linear combination, applies a threshold onto the combination, and produces
an output. The aforementioned steps are also illustrated in Figure 2.1 which displays
the steps that the three generations of artificial neurons follow in detail.

Because the threshold function varies and is the key to differentiate the generations
of artificial neurons, it is represented with “?” in Figure 2.2. In Figure 2.1, the three
different approaches to threshold function, also called as threshold unit, are showcased
via labelled arrows each corresponding to the generation of a neuron. Different input
and output types are also labelled in Figure 2.1. Another difference between the generic
neuron figure, i.e., Figure 2.2, and the generational figure, i.e., Figure 2.1, is the Input

labels. In Figure 2.1, they are located in the “Artificial Neuron” part and sorted with the
1The figure is adapted from “Learning in Spiking Neural Networks” by Davies (2012, p. 24).
2The figure is adapted from “Machine Learning” by Mitchell (1997, p. 96).
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name Input ranging in an index of 1 to n. However, in Figure 2.2, both the input labels,
i.e., x, and the index ranges of inputs and weights, i.e., starting from 0 instead of 1,
differ. The reason for that is mathematical equations that will clarify the function of an
artificial neuron in the following sections are based on the variables in the Figure 2.2.

The 1st generation involve the neural networks that make use of McCulloch-Pitts

neurons. These neurons had fixed thresholds and only worked with binary values, i.e.,
0 and 1. Therefore, the first generation ANNs are also called as gated neural networks.
Such neural networks were utilised to emulate biologically inspired simple experi-
ments as they allowed association between the network layers. However, they lacked
the “learning” element. The Perceptron that is elaborated in Section 2.2 and some of
the Multi-Layer Perceptrons (MLPs) in Section 2.2.2 are among the first generation
ANNs in the literature. In Figure 2.1, the arrows labelled as 1 refer to the route that the
neurons of the 1st generation follows.

The 2nd generation ANNs uses artificial neurons that transform input signals non-
linearly, hence outputs them as continuous values. In other words, ANNs moved from
linear to non-linear transformation functions, ergo, binary outputs turned into contin-
ues outputs within this era. This era is believed to begun in 1985 when the Back-
Propagation (BP) algorithm was applied to ANNs3 (Rumelhart et al., 1985). BP al-
lowed ANNs to “learn” new tasks. The BP algorithm is still the backbone of ANNs in
learning today. CNNs in Section 2.3, QNNs in Section 2.4, and BNNs in Section 2.4.1
are 2nd generation ANNs that will be discussed in the thesis. In Figure 2.1, the beha-
viour of 2nd generation neurons are represented with the arrows labelled as 2.

The 3rd generation ANNs are called as Spiking Neural Networks (SNNs), and
as the name suggests they comprise of spiking neurons. These neurons work based
on several parameters all of which are inspired by biological spiking neurons. Fea-
tures of the spiking neuron, for instance, its activation potential, i.e., spiking, or firing,
threshold, and how long the spike would last, depend on the values of the parameters.
Considering the activation potential of the neuron, on which one might argue that the
most important feature of such neuron, spiking neurons are also called as Integrate

and Fire neurons (Maass, 1997). Since the main paradigm of SNNs is to simulate and
approximate to the biological neural networks, neuron models have the significant im-
portance here. Therefore, an SNN may include different types of neurons in different
layers of the network based on their tasks. Hodgkin and Huxley, Leaky Integrate and

3The idea of a BP algorithm dates back to 1960’s, firstly published in 1970. Later, its use on ANNs
were proposed by Werbos. However, the first BP learning application on ANNs was in 1985, thus we
review it that way.
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Fire (LIF) (Dayan and Abbott, 2001), and Izhikevich neuron models are among the
most commonly used spiking neuron types. SNNs have a special feature named Spike
Time Dependant Plasticity (STDP) which allows them to learn new tasks (Dayan and
Abbott, 2001). The 3rd generation ANNs resemble the 1st generation from the acts of
neurons and efficient use of the hardware resources points of view (Ghosh-Dastidar
and Adeli, 2009). In Figure 2.1, the arrows labelled as 3 indicate to the route that the
3rd generation neurons follow. SNNs will be further discussed in Section 2.5.

∗ ∗ ∗

The 2nd and 3rd generations of ANNs are in use today, and accordingly, different
platforms and software resources are utilised for their applications. The platform and
software resources of the 2nd generation are discussed along with our own choice in
Chapter 5 - Section 5.1. Such resources for the 3rd generation are described in Sec-
tion 2.5.

The single artificial neuron experiments, or neuron types as mentioned in the pre-
ceding paragraphs, is beyond the thesis scope. We focus on artificial neural systems
consisting of several neurons separated by layers, i.e., ANNs, in the following sections.

2.2 Perceptrons

“...if one understood the code or wiring diagram of the nervous system,

one should, in principle, be able to discover exactly what an organism re-

members by reconstructing the original sensory patterns from the memory

traces which they have left, much as we might develop a photographic

negative, or translate the pattern of electrical charges in the memory of a

digital computer.” Rosenblatt (1958)

The Perceptron which was introduced as a “hypothetical nervous system” (Rosen-
blatt, 1958) was the first computational form of a neural network. The creator of Per-

ceptron, Rosenblatt, aimed to emulate and hopefully decipher a peripheral sensory
organ via this work. The sensory organ was human eye, thus it was also called as
“photo-perceptron” in the 1958 paper. It is important to emphasise that the first ever
ANN initiative targeted to mimic “vision” which is still crucial for machine learning
today and is the fundamental experimental subject of this thesis.
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Figure 2.3: Structure of the first ANN, the analog machine Mark I Perceptron by Hay
et al. (1960, p. 4).

2.3 is the original illustration of the Mark I Perceptron by Hay et al. (1960, p. 4).
The Mark I machine consisted of three main components: A vision sensor (S-Units),
an input layer (A-Units), and an output layer (R-Units). This threesome structure is
also illustrated in Figure 2.7a. The network comprising Mark I had overall 16 analog
neurons. Because of the analog structure of the machine, the voltage capacity of every
unit, e.g., [0, 100] for A-Units, and the power consumption of every step was clearly
observable. The machine was able to “associate” as an ANN despite of the limited
setup thanks to the back and forth communication between the A and R Units.

Due to its association ability, Perceptron and Perceptron-like machines are also
called as “pattern regularity detectors”, yet not as recognisers caused by their lack of
learning element. Perceptron paved the way and inspired many for more advanced
Perceptron designs which would later be called generally as MLPs or multi-layered
networks.
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2.2.1 The “Learning” Element

Rosenblatt anticipated the wiring diagram to be the key element into deciphering a
biological neural network. The wiring diagram, also known as connectome in a neural
network maintained its significance to decipher, and mystery until the very first bio-
logical connectome was revealed. It is of a nematode, C.Elegans, a transparent mi-
croscopic worm whose body comprises 302 neurons (White et al., 1986; Larson et al.,
2018). The problem then emerged that even if we knew the exact connectome of a
neural network, the puzzle still wouldn’t be complete, and the network still wouldn’t
be in action unless the weights of the connectome are known (Rakowski and Kar-
bowski, 2017; Cohen and Denham, 2019). The weight solving is still burdensome
on computational systems today whether it is a simulation of a living being (Sarma
et al., 2018) or an ANN learning a new task hence needing the exact weights for its
connectome.
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Figure 2.4: The function of a Perceptron neuron.

The neurons used in the Perceptron were McCulloch and Pitts neurons and they
responded to a linear threshold function to yield an output. Figure 2.4 is the updated
version of Figure 2.2 via mathematical equations (Estebon, 1997) that define the func-
tion of a Perceptron neuron. The equations in the Figure 2.4 is also shown below
respectively in Equation 2.1 and 2.2.

S j =
n

∑
i=0

xiw ji (2.1)
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o j =

1 if S j > Θ,

0 otherwise.
(2.2)

Equation 2.1 is a linear input function, a weighted sum of the input set where each
item is symbolised as x and indexed via i. Equation 2.2 consists of a case which acts
like a logic gate that outputs a binary result based on a threshold, Θ. The output range
is represented via j in both equations. The result of the sum unit, Equation 2.1, S j,
is fed into the threshold unit, Equation 2.2, which yields the predicted output of the
artificial neural unit that is symbolised as o j.

Next to a linear unit and a threshold unit, Perceptron also had a convergence pro-
cedure, addressed as “error correction training technique” by Hay et al., to train, hence
improve the performance of the network. The error correction formula is shown in
Equation 2.3 (Estebon, 1997; Mitchell, 1997). In the below equation, Equation 2.3, C

is a constant representing the learning rate of the neural network assigned by the user;
the definition of x, w, and o symbols remain the same as the previous equations; and t

represents the “target” output, the desired and/or real output of the function.

w jinew = w jiold +C(t j−o j)xi (2.3)

The training technique in the Perceptron was based on comparing the predicted
output, o j, and the target output, t j. When the two outputs did not agree, an update
to the weight of the relevant input was made based on the difference in the outputs
multiplied by the learning rate constant, C in Equation 2.3. Although the procedure
aided to increase the performance of the network, it was still limited as a “learning”
method due to the ideal circumstances it required (Rumelhart et al., 1986; Estebon,
1997; Mitchell, 1997). Firstly, the training data of the network needed to be linearly
separable. Secondly, the C value needed to be sufficiently small, ideally close to 0.
Otherwise, the convergence was not guaranteed.

2.2.1.1 Introducing Back-Propagation Learning

The Perceptrons were found inauspicious back then (Minsky and Papert, 1969) due to
their limitations. Moreover, the criticism over the Perceptrons caused a cut in the fund-
ing of the related work and put an hold on the work over ANNs until the application
of Back-Propagation (BP)4 learning algorithm onto ANNs (Rumelhart et al., 1985)

4The term “Back-Propagation” is derived from backward error propagation. It is commonly referred
as Back-Propagation or Back-Prop in the literature. We will refer it as BP in short in the thesis.
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which showcased that they were able to learn in a supervised way. With the BP, the
2nd generation of ANNs also begun as the BP was designed to work with differential,
also called as nonlinear, threshold units instead of the linear units. Figure 2.5 is the
updated version of Figure 2.2 via mathematical equations that define the function of a
2nd generation artificial neuron (Rumelhart et al., 1986; Mitchell, 1997).
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(Input Function) (Activation Function)

Figure 2.5: The function of a 2nd generation artificial neuron.

The modern terminology to address the linear function, labelled as sum in Fig-
ure 2.5, is input function; and it is activation function for the threshold function in
Figure 2.5. Various activation function types are available to use today. However, in
the beginning it was the Sigmoid function. Therefore, the threshold function we dis-
play in Figure 2.5 is also the sigmoid. The differential equation belonging to sigmoid
(Rumelhart et al., 1986; Mitchell, 1997) in the Figure 2.5 is also shown in Equation 2.4.

o j = σ(S j) =
1

1+ e−S j
(2.4)

Although the training technique of Perceptron was not sufficient to be called en-
tirely as a learning technique, the BP was built on it and used the same fundamental
principles in terms of comparing the two outputs, measuring their difference, and
updating the weights accordingly. BP triggers learning by updating the weights of
neurons by “backward propagating” the errors caused by the mismatch between the
predicted output and the target output values of the network. The BP mechanism is
illustrated in Figure 2.6.

What makes BP algorithm progressive compared to the prior approach is its cap-
ability to work on linearly non-separable training data as well, and it does it via delta
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Figure 2.6: The mechanism of Back-Propagation learning.

rule. The delta rule, for the linearly non-separable data, involves a search of gradi-

ent descent to find the best candidate of a weight value to minimise the error. The
“descent” here refers to its top-to-bottom search style to find the steepest point in the
search space. In the previous paragraph, we have mentioned that the fundamentals of
the both approaches remained the same. The learning mechanism of Perceptron rather
approaches simplistically to updating the weights. In the second part of the Equa-
tion 2.3, on the right of +, we see the error calculation formula of the system. The
error calculation rule5 for a single neural unit chosen for the BP algorithm (Rumelhart
et al., 1985) is shown as follows:

E(t,o) =
1
2 ∑

j
(t j−o j)

2 (2.5)

BP aims to find the most optimal value for the weight update which would lower
the error via gradient descent, yet it might not entirely fix or correct the error. How-
ever, BP optimises the error. Therefore, we name the error checking unit as error

optimisation in Figure 2.6 instead of error correction. The optimisation is achieved via
the gradient descent rule that mathematically involves partial derivatives. The initial
partial derivative of the gradient descent (Rumelhart et al., 1986) is as follows:

∂E
∂w ji

(2.6)

5The chosen error rule here is a modified version of Mean Squared Error (MSE). We also use MSE
to evaluate our approach whose formula is shown in Chapter 6 - Section 6.1.1.
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In Equation 2.6, E refers to the error formula in Equation 2.5. The overall formula
in Equation 2.6 targets to minimise or eliminate the error caused by the value of the
weight, w ji. When chain rule is applied onto the partial derivative in Equation 2.6, the
ultimate result would be

∂E
∂w ji

=−(t j−o j)σ
′(S j)xi (2.7)

In Equation 2.7, σ′ refers to the derivative of the activation function of the neuron.
The activation function, i.e., Sigmoid, was illustrated in Figure 2.5, and its formula
was also showcased in Equation 2.4. S j refers to the input function of the neuron who
was also was illustrated in Figure 2.5 and whose formula was shown in Equation 2.1.
Finally, the xi refers to the input value. After computing the partial derivatives, the
formula for the delta rule is obtained as follows

∆w ji = α(t j−o j)σ
′(S j)xi (2.8)

The delta, i.e., ∆, rule specifies how the regarding weight, i.e., w ji, would be up-
dated. Similar to the C in Equation 2.3, α in Equation 2.8 also represents the learning
rate and is chosen as a small constant. The ∆ value is added onto the specific weight
to modify it. As a final comparison, we add the delta rule of Perceptron below, by ex-
changing C with α this time, which was designed for the linearly separable data unlike
the BP.

∆w ji = α(t j−o j)xi (2.9)

When all the required weights are updated in a network via BP, the network is
accepted as “converged”, and learnt the given task. The illustrations, equations, and
discussion in this section are over a single artificial neural unit6, yet the BP is designed
to enable learning for any scale of neural networks which we would discuss in the fol-
lowing sections. To consider the mechanism with multiple neurons and layers visually,
simply the pink box in Figure 2.6 can be filled with the pink coloured nodes in 2.7b.
With the addition of BP onto ANNs, their neuron and layer counts increased which
aided the networks to learn more diverse tasks. This is also the start point where the
ANNs begun to be computationally expensive.

6In multi-layered ANNs having more than one hidden layer, on which we discuss starting with
Section 2.2.2, BP algorithm applies two different approaches depending on a neuron being in a hidden
layer or being an output layer neuron. Because the BP algorithm is out of the thesis scope, we will not
further elaborate BP and will leave it as general background information here.
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2.2.2 Multi-Layer Perceptrons

The Multi-Layer Perceptrons (MLPs) were the first formed feed-forward ANNs. They
are able to process any input type as long as the input is vectorised such as text, im-
age, and sound data. An MLP consists of dense, i.e., fully-connected, layers that are
feed-forward from input to output. MLPs are especially applied to classification and
regression problems.

Input

Output

(a) Perceptron

Input Hidden

Hidden

Hidden

Output

(b) Multi-Layer Perceptron

Figure 2.7: Perceptron illustrations. (2.7a) illustrates the original Perceptron, Mark I,
where the input layer was directly connected to the output layer without having any
hidden layers in between. (2.7b) exemplifies an MLP which typically has one or more
hidden layers that are illustrated as pink coloured nodes in the graphics.

An MLP is an ANN in which all the neural units, i.e., neurons, in a layer are fully
connected to the units of the following layer. Because of their fully-connected nature,
along with Fully-Connected (FC), MLPs are also called as dense networks. An MLP
includes at least one hidden layer as shown in Figure 2.7b. The first Perceptron model
did not include any hidden layers. In the Perceptron, the output of vision sensor was fed
into the input layer which corresponds to the first layer in Figure 2.7a. Furthermore, the
input layer was directly connected to the output layer, which corresponds to the final
layer in Figure 2.7a, in the original Perceptron. The difference between the Perceptron
and the MLPs is displayed in Figure 2.7.

The first MLP was Cognitron which was an extended version of Perceptron aiming
to emulate the self-organising scheme and plasticity of the human brain (Fukushima,
1975). Cognitron used analog neurons that have the excitation and inhibition features
as in Perceptron, inspired by the biological neurons. The Cognitron took place prior to
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the invention of BP, hence it is one of the 1st generation ANNs. Afterwards, with the
applications of BP on ANNs, conserving the energy in neural networks has become
more and more difficult. We overview what made the 1st generation more energy-
efficient below.

– Computing style: Analogue computing that allows manual configuration of the
variables where necessary.

– Metric measurement: Transparent, more accurate measurement of metrics. For
instance, the overall consumed energy could be calculated via voltage readings
from the machines.

– Neuron types: Simplistically designed, yet biologically inspired, energy-efficient
neurons.

– Learning algorithm: Simplistic error correction techniques that allows associ-
ation between the layers.

NETtalk, a 2nd generation MLP, was the first ANN to which the BP learning tech-
nique applied (Sejnowski and Rosenberg, 1986). It had one hidden, overall three lay-
ers; its task was converting texts in English into speech. NETtalk reached a 95% best
guess rate7 after 12-hours long training with the BP (Estebon, 1997). The highest best
guess rate achieved via BP learning on NETtalk, reported by Sejnowski and Rosen-
berg, was 98%; whereas without the BP learning, the best guess rate decreased down
to 77% which showcases clearly the importance of the BP learning in ANN success
rate. Among the later, yet prominent, examples of MLPs are a smell recogniser, the
Artificial Nose, network (Santos et al., 1998); and two of the first Graphics Processing
Unit (GPU) applications of ANNs (Oh and Jung, 2004; Steinkraus et al., 2005).

MLPs were initially utilised for simulating biological systems where association
mattered (Fukushima, 1975; Santos et al., 1998). Later on, they were utilised for pro-
totyping and used as proof-of-concept, for instance the leading GPU applied MLPs
(Oh and Jung, 2004; Steinkraus et al., 2005). Today, MLPs are still in use for prototyp-
ing. However, we mostly see them as part of other ANN types, e.g., CNNs, especially
as constituting their final layers. MLPs that are used in such positions are called with
layer names that are Dense or Fully-Connected.

7The NETtalk paper defines its own metrics which are “perfect match” and the “best guess”. Best
guess refers to the closest output to the original output (see Sejnowski and Rosenberg, 1986, p. 665,
§Performance).
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2.3 Convolutional Neural Networks

Inspired by the mammalian visual system, Fukushima invented Neocognitron to solve
the visual pattern recognition problem via unsupervised learning with ANNs. Neocog-
nitron, like the Perceptron machine, was built to emulate the visual processing between
the eye and the brain. The difference between the two aforementioned touch-stone
machines was the level of detail in Neocognitron. Different biological neuron groups,
based on their tasks in visual processing, were emulated. These groups were divided
into layers in the corresponding neural network, and specific filters were applied onto
those layers to get the desired output. Applying the filters were called as “invariant
shifting” in the system which then addressed commonly, yet is addressed as the con-
volution operator today based on the correspondent Math function. Neocognitron is a
1st generation ANN and the first Convolutional Neural Network (CNN) in history.

Addressing with the today’s terminology, each convolved network layer generates
feature maps. The feature maps represent the detected patterns, i.e., features, in the
input, hence are crucial for the network’s outcome. Therefore, the features located in
each layer’s maps, i.e., local feature maps, should be globally reachable and recognis-
able by the network. This is achieved via weight-sharing in a CNN and it was firstly
applied on Neocognitron. The “weight-sharing” technique of Neocognitron was one
of the inspirations leading to the BP algorithm (Rumelhart et al., 1985). It also in-
spired the first BP applied CNN8 (LeCun et al., 1989). An important point here is
that, the reason of moving to CNNs from the available early ML techniques was not
only because they were biologically inspired solutions to the visual pattern recogni-
tion problem, but also because the earlier ANN solution, which were MLPs, was not a
good fit to the problem as they “generate too many parameters to generalise accurately”
(LeCun et al., 1989, 1990).

The architectural scheme of CNNs that still in application today initially appeared
in LeNet-1 architecture (LeCun et al., 1990). The LeNet-1 comprises two sets of
Convolution→ Subsampling layers following each other as displayed in Figure 2.8a;
these sets constitute the signature layering of CNNs. The H codes in Figure 2.8a rep-
resent Hidden layer as in the correspondent paper (LeCun et al., 1990). The training
time for LeNet-1 was reported as three days back then (LeCun et al., 1995).

8This early CNN by LeCun et al. only utilises Convolutional and Fully-Connected layers and does
not include Subsampling, i.e., Pooling, operation between the layers as later the modern CNN architec-
tures adapted.
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(a) LeNet-1

(b) LeNet-5

Figure 2.8: Architectures of the LeNet-1 and LeNet-5 CNNs. (2.8a) illustrates the
architecture of the LeNet-1(LeCun et al., 1990, p. 401), the first official CNN. (2.8b)
illustrates the LeNet-5 architecture (LeCun et al., 1998, p. 7), the ancestor of modern
CNNs.

Later on, in LeNet-5, FC layers were also added to the LeNet-1 architecture as final
layers of the network to improve the error rate (LeCun et al., 1995, 1998). LeNet-5
architecture is shown in Figure 2.8b. The task that were taught to the LeNet networks
was handwritten digit recognition to be used on the postal codes by BP via the data sup-
plied by US Postal Services. The training time for LeNet-5 was reported as two weeks
in 1995, and as two to three Central Processing Unit (CPU) days three years later by
LeCun et al. (1998). Although Fukushima did not use BP, his works (Fukushima,
1980; Fukushima and Miyake, 1982) aiming to simulate how mammalian visual sys-
tem processes patterns inspired LeNet architectures in terms of:

– The convolution operator, to obtain feature maps that detect different patterns,
– Weight sharing, between the feature maps,
– Convolutional and subsampling layers, that follow one another.
Convolutional layers are to detect the features in the input; and subsampling layers

are to combine the representative features together and minimise the count by elimin-
ating some of them (Lecun et al., 2015). Note that subsampling was also addressed as
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averaging during the early papers. Nowadays it is mostly referred as pooling.

The modern CNNs have a few more add-ons onto the above list, and these are
applying a non-linear function, i.e., activation function, right after the convolutional
layer and finishing the CNN with FC layers since they excel in classification (Lecun
et al., 2015; Anantrasirichai and Bull, 2022). Although the main application area of
CNNs have been “image recognition”, they also have been proved to be effective on
auditory and language perception as well (LeCun et al., 2010b).

2.3.1 Convolutional Neural Network Architectures

Starting with the LeNet-5, CNN architectures begun to thrive. In the papers where
LeNet-1 was summarised (LeCun et al., 1995) and LeNet-5 was introduced (LeCun
et al., 1998), Lecun mentions that “the true potential of ANNs will come true when

more data is present”. We have seen the realisation of it, especially with the availab-
ility of ImageNet (Russakovsky et al., 2015), the biggest image dataset until recently
(Sun et al., 2017). For reasons such as achieving higher accuracy in benchmarks, pre-
dominantly in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
various CNN architectures were invented.

We overview CNN architectures as deeper and deeper and wider in the next sec-
tion. Both of the aforementioned comparatives are based on LeNet-5 here. Neither
“deep” nor “wide” is defined by specific number of layers in the ANN literature, ergo
we do not quantify them in the thesis. The start point of both architecture types are
Deep Neural Networks (DNNs). DNNs, that is discussed in Section 2.3.1.1, are defined
as trainable ANNs with free parameters and multiple hidden layers (Anantrasirichai
and Bull, 2022). After the success of the newly introduced deep ANNs, i.e., DNNs,
in terms of high accuracy values obtained, the wide DNN concept appeared in the lit-
erature to reach even higher accuracy levels, and we discuss it in Part 2.3.1.1. Our
overview is over deep and wide CNN architectures separately to provide more insight,
yet the both concepts are regarded as, and under the umbrella of, DNNs in the ANN
literature.
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2.3.1.1 Deeper Architectures

After LeNet-5 (LeCun et al., 1998), the first renowned CNN became AlexNet (Kr-
izhevsky et al., 2012) as being the winner of ILSVRC in 20129. AlexNet was heavily
influenced by LeNet-5 by having 5 convolutional, overall 8 layers stacked in a similar
order. It became the pioneer of the modern CNNs by including REctified Linear Unit
(ReLU) as an activation function and adding Dropout layers to the architecture to avoid
overfitting of the data (Russakovsky et al., 2015). Moreover, it was trained via GPU.
All of these features of AlexNet paved the way for many more CNN architectures to
appear.

ZFNet (Zeiler and Fergus, 2014), the winner of ILSVRC13; then VGG-16 (Si-
monyan and Zisserman, 2015), runner-up of ILSVRC14 followed the footsteps of
AlexNet and put forward deeper CNNs, i.e., having more stacked layers. The deeper
an architecture becomes based on convolution operations, the more computationally
expensive it gets. However, such architectures resulted in lower error rates on Im-
ageNet compared to their counterparts, hence similar architectures have continued to
dominate the CNNs literature.

Deeper and Wider Architectures The “wide” CNN architectures started with the
Inception-V1 network, also known as GoogLeNet, which won the ILSVRC in 2014
(Szegedy et al., 2015). GoogLeNet is a DNN like the previous winners of the chal-
lenge. However, it is not only deep but also architecturally wide, which made it unique
back then. GoogLeNet has 22 deep layers, yet overall 58 layers when including the
wide layers. Such wide layers are called as Inception modules in the paper and they
consist of several convolutional, i.e., 1×1, 3×3, and 5×5, layers along with a max-
imum pooling layer. The inception modules work as parallel filters in the model that
process a given image input at different scales. The 1×1 convolutions are especially
planted with the aim of reducing the weights and, overall, reducing the underlying
operations in the model.

9Although ILSVRC started firstly in 2010, the first two winners of the challenge presented models
containing other ML techniques than ANNs.
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Figure 2.9: GoogLeNet partial illustration.
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Figure 2.9 illustrates a part of GoogLeNet including its first inception module. The
layers of the GoogLeNet architecture are illustrated as square boxes in the graphics
and the starting layer in the graphics is the fifth layer, i.e., a 3×3 convolutional layer,
in the original architecture. The colours of the layers are kept the same as in the other
graphics of CNN architectures in the thesis, e.g., Figure 2.8 in this Chapter. The details
of the partial GoogLeNet illustration in Figure 2.9 are listed below.

– The green/blue boxes that are in three different tones indicate convolutional lay-
ers. The lightest blue, i.e., turquoise coloured, boxes in the graphics are 1×1
convolution(operation)s; one tone darker of them, teal coloured boxes, are 3×3
convolutions; and the darkest coloured of them is a 5×5 convolution that is seen
as only one in the graphics placed in the inception module.

– The orange boxes indicate subsampling layers where the chosen subsampling
method is maximum pooling in GoogLeNet. We discuss subsampling including
maximum pooling in Chapter 5 - Section 5.3.1.1.

– The mustard colour box indicates a normalisation layer. The normalisation method
preferred for GoogLeNet was Local Response Normalisation (LRN). LRN was
used in and firstly introduced by AlexNet (Krizhevsky et al., 2012). We discuss
layer normalisation in Chapter 5 - Section 5.3.1.1 over an up-to-date technique
that is Batch Normalisation (BN), and do not provide details on LRN. However,
an important difference that we would like to mention between LRN and BN is
while BN layers are trainable, LRN layers are not, which affect the performance
of a CNN.

GoogLeNet reduced the Top-5 error rate≈50% less than the winner of the previous
winner, ZFNet. After such success of GoogLeNet in 2014, ResNet (He et al., 2016),
SENet (Hu et al., 2020), and PNASNet-5 (Liu et al., 2018) followed the same approach
in building “deep and wide” CNN architectures and won the ILSVRC in 2015, 2017
and 2018 respectively. These architectures continued to lower the error rate, yet an-
other big decrease in error rates, like the GoogLeNet achieved, did not occur again.

GoogLeNet was using inception modules, as seen in Figure 2.9, to encapsulate
the wide branching in the architecture with the aim of reducing computation and size
of the model. The CNN architectures mentioned in the previous paragraph applied
similar techniques, such as the “Shortcut modules” in ResNet, also known as residual
blocks; “Squeeze and Excitation (SE) blocks” in SENet; and “cells” in PNASNet-
5. The deep and wide architectures, and mix and match type of approaches still in
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demand in the image classification literature. Currently10 the Top-1 accuracy holder
in ImageNet is CoAtNet-7 (Dai et al., 2021) which is a mixed architecture including
CNNs and attention layers that constitute Transformer type of networks11.
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Figure 2.10: ILSVRC winner models between 2012 and 2015 vs. humans in image
classification.

Figure 2.10 showcases the accuracy vs. layer counts of the CNNs within the ILS-
VRC. The original LeNet-5 is a 7-layer CNN. AlexNet and ZFNet have 8; GoogLeNet
has 22; and ResNet, which outperforms humans based on error rate in image recogni-
tion, has 152 layers.

These architectures proved themselves regarding accuracy in image recognition as
shown in Figure 2.10. However, firstly their getting deeper, then wider, overall bigger
resulted in the energy draining problem of the CNNs.

10Lastly checked on 15/12/2021 via https://paperswithcode.com/sota/image-classificati
on-on-imagenet.

11Transformers are known to excel in the Natural Language Processing field today. We do not delve
into the Transformers in this thesis as it is out of our scope. However, more details can be found in
“Attention is all you need” by Vaswani et al..

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
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2.4 Quantised Neural Networks

The rising popularity of DNN models require efficient and accurate inference schemes,
even on mobile and low-power edge devices. Given the computational complexity of
the Full bit Precision-Floating Point (FP) operations on real hardware, using a quant-
ised model significantly increases the efficiency. Figure 2.11 illustrates the relation
between CNNs, which was the topic of the previous section, i.e., Section 2.3, and
Quantised Neural Networks (QNNs) in terms of the thesis scope.

ANN

CNN QNN

Accuracy Focused Energy-efficiency Focused

Figure 2.11: The relation between CNNs and QNNs.

Approaches in this field roughly fall into two categories. The first category, exem-
plified by MobileNet (Howard et al., 2017), SqueezeNet (Iandola et al., 2016), Shuffle-
Net (Ma et al., 2018), and DenseNet (Iandola et al., 2014), designs novel network ar-
chitectures that exploit computation/memory efficient operations. The second category
quantises the weights and/or activations of a CNN from 32 bit floating point into lower
bit-depth representations. This methodology, embraced by approaches such as Ternary
weight networks (Li et al., 2016), Binary Neural Networks (Lin et al., 2017), XNOR-
net (Rastegari et al., 2016), and many more approaches have shown that increased ef-
ficiency can be achieved without sacrificing much from the accuracy of the models. In
(Jacob et al., 2018) authors provide a quantisation scheme where floating-point arith-
metic is used during training; and integer-only arithmetic is used for inference in order
to reach a higher level of correspondence, and thus, improves the latency-vs-accuracy
trade-offs. The aforementioned work is especially important since the authors used
real mobile hardware to show the efficiency of their approach. The category that we
focus in this thesis is the second category.
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2.4.1 A Special Case: Binarised Neural Networks

ANN

CNN QNN

BNN

Accuracy Focused Energy-efficiency Focused

Figure 2.12: The relations between CNNs, QNNs, and BNNs.

Binarisation is a special case of quantisation in neural networks where some or all
the arithmetic involved in computing the outputs are constrained to single-bit values.
It is also called as extreme quantisation because of that (Gholami et al., 2022). In
Figure 2.12, we illustrate the relations between CNNs, QNNs, and BNNs. Because
BNNs are a subgroup of QNNs, they are categorised under QNNs in the (Energy-

efficiency Focused) EEF-ANN group in the Figure.

Table 2.1: A comparison of CNNs, QNNs, and BNNs in terms of precision of neural
unit weights.

ANN Type
Precision of Weights

Float32 Float16 Integer Binary Only

CNNs X

QNNs X X

BNNs X

In Table 2.1, a comparison of CNNs, QNNs, and BNNs are displayed over their
use of weight precision in artificial neural units. The weights of conventional ANNs
are addressed with the term full bit precision in the QNNs literature, compared to
the QNNs that innately have lower bit precision (Gholami et al., 2022). Therefore,
we also address the weights of CNNs accordingly, with the abbreviation FP. The full
bit precision regards floating point data in this concept, i.e., data type float, FP32 in
computational environment; whereas lower bit precision regards Float16, and the fixed
integer values that may be varied from int32 to int4 depending on the quantisation
degree which will be discussed in the following chapters.
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Umuroglu et al. define the full binarisation of a neural network as the network
having binary input activations, binary synapse weights, and binary output activations.
In other cases where one or two layers are binary, it is defined as a partially binarised
network. BNNs enable great benefits for decreasing the computational complexity
while reducing the model size for the following reasons.

– Binary weights and activations reduce memory usage and model size up to 32
times compared to single precision floating point models.

– If the weights are binarised, Multiply and ACcumulate operations (MACs) can
be replaced by simple accumulation operations removing the computational com-
plexity of multiplication.

– If both weights and activations are binarised, MACs can be replaced by bitwise
XNOR and bitcount operations which can be executed faster on CPUs compared
to floating point operations (Courbariaux et al., 2016).

These outcomes not only increase the performance and power efficiency of the
neural networks, but also help decrease the model sizes. However, the main setback of
binarisation is the accuracy aspect (Rastegari et al., 2016). Despite the fact that the bin-
arisation of the weights/activations into 1-bit values significantly affects the accuracy
of a model, further research is ongoing in order to minimise the loss of accuracy. Kim
and Smaragdis consider a predetermined amount of synapses having zero weight and
other synapses as a weight of one, where they report 98.7% accuracy with FC layers
on the MNIST dataset using XNOR and bitcount operations only.

Lin et al. propose multiple binary weight bases/activations scheme where the au-
thors show that using five binary activations can diminish the reduction in accuracy and
achieves prediction accuracy comparable to its full-precision version on ImageNet. Al-
though binarisation enables lots of advantages and the research in the literature try to
cope with the accuracy loss of the neural networks, all these proposed methods re-
quire the retraining of the existing models. In case a pretrained model’s weights and/or
activations are replaced with binarised weights/activations, the accuracy drop is un-
avertable12.

12We also attempted an experiment regarding the subject that discussed in Chapter 5 - Section 5.5.2.1
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2.5 Spiking Neural Networks

The first generation and the third generation neural networks resemble each other in
terms of ideology and technique. Networks in both aforementioned generations are
more biologically inspired and more plausible as simulations. The “time” factor in
simulations is mentioned as a must even though at some places is not applied to the
network. Connections are called as excitatory and inhibitory, as in the mammalians,
that the former excites the regarding neuron causing a higher voltage, and the latter
inhibits the neuron’s state by causing a decrease in its voltage levels. Due to artificial
neuron-wise similarities between the 1st and 3rd generations of ANNs, some studies
regard the Perceptron (Hay et al., 1960) as the first example of neuromorphic comput-
ing (Davies et al., 2021) which is the general term that is used to represent biologically
inspired systems and tools.

The origins of emulating a spiking neuron as in the mammalian brain with the aim
of deciphering and understanding led to creating an artificial spiking neuron which is
traced back to early 1900’s (Maass, 1997). It started with the singular neuron mod-
els, as mentioned earlier in the 3rd generation part of the Section 2.1, then turned into
networks of spiking neurons, i.e., SNNs. SNNs has been and is still in use to mostly
simulate or emulate the mammalian brain which can be used to test the effect of drugs
or trace the origins of neural diseases, e.g., Parkinson’s disease, computationally (Dav-
ies, 2012). A recent cortical simulation consisting of 77,000 neurons exemplify the
current state of SNNs (Rhodes et al., 2020).

Different hardware and software-based resources have been launched to simulate
SNNs over the years especially with the start of Human Brain Project (HBP) (Markram
et al., 2011; Amunts et al., 2016). BrainScaleS (Schemmel et al., 2010, 2022) is an ana-
log and SpiNNaker (Furber et al., 2014; Mayr et al., 2019) is a digital neuromorphic
computing platforms developed under the HBP. PyNN is a high-level software library,
an interface encapsulating many software libraries, that developed within the HBP,
under the same roof (Davison et al., 2009). Moreover, Loihi by Intel (Davies et al.,
2021) and TrueNorth by IBM (Akopyan et al., 2015) are the industrial neuromorphic
processors to simulate SNNs. SNNs work with continuous data forms. In order to
supply such data to the SNNs, either the discrete forms are translated into continuous
forms (Liu et al., 2016; Garcia et al., 2017), or fed directly from other neuromorphic
devices. One of such devices is event-based cameras that produce the visual output as
continuous, spatio-temporal data rather than frames (Brandli et al., 2014). Such neur-
omorphic partnerships generate highly efficient systems and are especially benefited in
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the field of robotics (Amir et al., 2017; Milde et al., 2017; Basu et al., 2018).

During the recent years, building conversion techniques, from the pretrained ANNs
into SNNs13, to enable running SNNs on conventional hardware have gained mo-
mentum (Yamazaki et al., 2022). It is also possible to train SNNs from scratch to
run on conventional machines with14,15,16 or without17 the help of software libraries.
All of these systems that running SNNs on conventional hardware imitate some of the
fundamental aspects of their neuromorphic counterparts, such as time-steps. Time-
steps can be assigned as a constant in the beginning to set spike-frequency (Wu et al.,
2022); or can be measured within the system, then are utilised based on observance in
terms of system optimisation (Stöckl and Maass, 2021), i.e., spike-timing. The concept
of time-steps is crucial for a spiking neuron as it specifies how frequently it might spike
given the sufficient conditions are met for the occasion. We further discuss about the
SNNs that are converted to run on conventional machines in Chapter 4 - Section 4.2.3
as a part of our thesis scope.

2.6 Summary

In this chapter, we offer an overview to ANN generations and models that are used in
this research. We examine the topic of ANNs by making a timeline and following the
crucial events in their history. Such crucial events are not only relevant to the success
of ANNs, but also relevant to what went wrong in the sense of how and when they
turned into power hungry.

Table 2.2: Feature summary of the ANNs utilised in this thesis that run on conventional
hardware resources.

Generation ANN Type Section
Precision of Weights Activation Type

Float32 Float16 Integer Binary Only Rate-based Spike-based

2nd

CNNs 2.3 X X

QNNs 2.4 X X X

BNNs 2.4.1 X X

3rd SNNs 2.5 X X X

13SNN-ToolBox: https://github.com/NeuromorphicProcessorProject/snn toolbox
14BindsNET: https://github.com/BindsNET/bindsnet
15Norse: https://github.com/norse/norse
16SpikingJelly: https://github.com/fangwei123456/spikingjelly
17https://github.com/Shikhargupta/Spiking-Neural-Network

https://github.com/NeuromorphicProcessorProject/snn_toolbox
https://github.com/BindsNET/bindsnet
https://github.com/norse/norse
https://github.com/fangwei123456/spikingjelly
https://github.com/Shikhargupta/Spiking-Neural-Network
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Figure 2.13: The relations between the ANNs that are mentioned throughout the thesis
in terms of energy-efficiency.

We illustrate the relations between the aforementioned ANNs in this chapter, which
will also be mentioned throughout the thesis, in Figure 2.13. We find it appropriate to
classify them as accuracy and energy-efficiency focused within the thesis scope. The
sections where the ANNs are introduced in this chapter are displayed in Table 2.2
along with their identifying features that contribute to the hypothesis of this thesis. For
example, the column “Activation Type” in the Table showcases clearly what makes
SNNs the 3rd generation, and how they are different than the rest of the neural net-
works. Moreover, the column “Precision of Weights” identifies the difference in the
data types and precision of the neural units of the regarding networks. In Figure 2.14,
we display the relations between all the aforementioned ANN types in this chapter over
the hardware resources on which they were built to run in the first place. We discussed
the term neuromorphic computing in Section 2.5 that is also where the similarities
between the SNNs and the Perceptron were highlighted.

ANN

CNN SNNPerceptron

Mainstream Neuromorphic Computing

MLP QNN

BNN

Figure 2.14: The relations between the ANNs that are mentioned in this chapter in
terms of computing resources.
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In the next chapter, Chapter 3, we proceed to covering biological foundations of
the neural networks. As we summarise and discuss in this chapter, inspirations from
nature have fed the researchers throughout the history of ANNs. The hypothesis in this
thesis also roots from the nature. Such roots, called the neural reuse theory, will be
elaborated in the next chapter along with the related work of this research.



Chapter 3

Background II: Neural Reuse

There is no machine like brain. It is soft, more energy-efficient than any human-made
machine, yet capable of putting forward tasks with an endless repertoire. It is no
surprise that scientists have always been curious about the mystery behind it.

A brain consists of a connectome, i.e., a series of connections between neurons.
It is the connectome that defines an organism; its behavioural patterns, abilities, and
disabilities. We may think of connectome as a map or a graph, as seen in Figure 3.1,
to put it in an analogy; and the analogies are the causes of what we have reached today
to put forward mechanisms of virtual brains that emulate the real brains.

“Nature vs. Nurture” concept have long been discussed in the literature to solve
the mystery behind the connectome. Experiments and observations indicate that even
twins might have entirely different connectome in their brains suggesting that the so
far evidence might point to “nurture” rather than “nature”. Aside from the possibilities,
for a certainty, the connectome and all the different connections in the brain are there
to fulfil a functionality.

Neurons are divided into groups based on their shape, e.g., pyramidal neurons;
evolution, i.e., reptilian brain, limbic brain, and neocortex; functionality, i.e., sens-
ory, motor, and interneurons; and brain region, e.g., the primary visual cortex (V1) or
Brodmann Area-17 (Strotzer, 2009) in the brain. The same shaped neurons might be
serving in different brain regions, as in the case of pyramidal neurons. Therefore, brain
regions are divided based on their functionality, as in the case of V1. In this chapter,
the neurons we mention will be based on their brain region.

A randomly generated graph to resemble a connectome is showcased in Figure 3.1.
The darker a node, the more connection it has in the graph. Based on that, the ma-
hogany coloured node at the centre of the graph has apparently the most connections;

55
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Figure 3.1: A connectome resemblance.

in a sense, it is a “hub”. Consider that the graph in Figure 3.1 includes neuron groups
which serve to different purposes, ergo considered as belonging to separate brain re-
gions. In that case, they would be connected to neurons which are not considered be-
longing to the same brain region. This means that there are interconnections between
different brain regions. This also means that the neurons enabling the interconnection
are used for more than one purpose, to fulfil different functionalities. In other words,
firstly, they are used to serve their original function, and then re-used to serve another
function. Moreover, this duality does not harm or change their original function. This
is called neural reuse (Anderson, 2010, 2015).

In this section, we delve into the neural reuse theory and explain it by giving ex-
amples from the biological neural networks. Additionally, the ANN applications in-
spired by neural reuse are presented in this chapter as related work, and as the technical
background information of this thesis.
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3.1 Neural Reuse: The Theory

Reuse by name suggests a change in the original use. When the change occurs, the
original use-case still remains, thus change here causes the reuse. When applied into
the nervous systems, the reuse concept becomes “neural reuse ”. Neural reuse, the
theory, suggests that the majority of the connections in a connectome are formed over
already existent ones through their reuse in different functions, mainly due to preserve
energy (Anderson, 2010). Same structures are used to realise sometimes even seem-
ingly unrelated functions via different type of connections.

The neurons which are used for multiple purposes in a nervous system may be
the output of two types of formations according to the neural reuse theory (Anderson,
2010): reuse in evolution and reuse during early development. These two possible
formations are discussed as two following scenarios:

Evolutionary Neural Reuse Neural reuse may be the result of millions of years long
evolution, and/or metamorphosis, in the first formation scenario. The result not
only affects neural integrity, but also may affect physical appearance in this scen-
ario. For instance, by the time a caterpillar turns into a butterfly after cocooning,
both its bodily structure, hence its integral organs, and its nervous system go
through change. The change belonging to the integral organs is obvious, thus
it is commonly addressed as remodelling of the body. The knowledge that re-
garding the nervous system change is not recycling of the underlying system, but
reuse, is the evidence of research findings pointing out remaining memory of the
butterfly belonging to its caterpillar days (Blackiston et al., 2008).

Developmental Neural Reuse Second scenario involves a change that does not affect
physical appearance from inside out, but essential for the system itself. A new
inner functionality is necessary for the system in this scenario. Therefore, neural
structures, either a whole brain region or a specific group of neurons, are intro-
duced a brand new identity which produces the desired functionality in order
to fulfil the need. However, when being introduced a new identity, their previ-
ous identity still remains. This phenomenon, using existent structures for a new
functionality rather than generating new ones, occurs to preserve energy (An-
derson, 2010). This, multi-functionality with energy efficiency, is the backbone
idea of the thesis where our focus is to apply developmental phase neural reuse
computationally.
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This theory were firstly rooted in and came to life after observing thousands of
functional Magnetic Resonance Imaging (fMRI) scans of the human brain. Such scans
were examined for diversity analysis and functional connectivity analysis before the
theory put forward. Although, the birth place of the theory is humans, many evidence
regarding neural reuse in other living beings has been put forward ever since. Neural
reuse does not solely concern the human brain or, in general, spiking neural systems,
but all nervous systems from the invertebrates to mammals whomever is applicable.

We discuss neural reuse further by providing examples in the following sections
in this chapter. In Section 3.2, neural reuse is exemplified by biological findings. In
Section 3.3, ANNs that are inspired by and adapted from the theory are discussed
which comprises the related work of this research.

3.2 Neural Reuse in Biological Neural Networks

Neural reuse is exemplified mostly with mammalian brain, specifically human brain,
with the aid of neuroimaging techniques, such as fMRI, in the theorised paper (An-
derson, 2010). It is the language usage and the ability to communicate of humans
influenced the author the most, and how language usage is connected to multiple areas
in the human brain such as motor-control and recognition. Furthermore, this was not
the only study showcasing “handy” language connections as language tasks being the
most scattered in the human brain (Anderson, 2015; Ardila et al., 2016; Ziegler et al.,
2018; Pulvermüller, 2018; Rajalingham et al., 2020; Phillips and Pylkkänen, 2021). In
a recent study which was conducted to shed a light to the brain while a programmer
codes, participants are observed using the same brain areas with speech comprehen-
sion when they are coding which may sound unusual (Siegmund et al., 2020). Some
studies point out that as being a recently evolved feature of the brain compared to the
rest of them, “language” was facilitated by the features already available in the brain,
and is the perfect candidate to exploit neural reuse (Zerilli, 2019).

Enculturation in numerals are considered as an example of neural reuse (Jones,
2020). Emotions felt via different senses such as to see and to read are the result of
neural reuse based on human observations (Ziegler et al., 2018). Other emotions which
may be tightly coupled with some illnesses, such as Obsessive-Compulsive Disorder
(OCD), are linked to neural reuse by clinical studies (Viol et al., 2019).

There are also other studies investigating local and global interactions within and
between human brain regions. Although the point at which we stand today is by far the
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furthest in the scientific history thanks to the technological advances, we are still far
away to reach concrete results over these neuroscientific theories. However, the latest
scientific findings also indicate that especially behaviours including motor functions,
visual activities, and active attention are widespread connected in the brain (Garcia
et al., 2020).

V1 was believed to be the start point of the all visual focused processing in the
brain as being the hub of the visual centre (Grill-Spector and Malach, 2004). How-
ever, clinical studies targeting people with cortical blindness, which is caused by brain
damage, showcased that despite the damage in V1, obstacle avoidance is still achieved
up to a certain degree by these people (Striemer et al., 2009; Ross et al., 2018). The
visually guided spatial co-ordination area, dorsal stream, was seen as active during
the obstacle avoidance experiments in their brain images. This phenomenon later got
pointed to the re-organisation, neuroplasticity, of the cross-modal perceptional brain
paths by another study (Voss, 2019). However, it still remains unclear whether it was
always the case of neural reuse between the two relevant areas of the brain, or solely
plasticity coming at a later age.

3.2.1 Neural Reuse in Invertebrates

Although the examples of this phenomenon is relatively easier to measure and observe
on the more advanced animals, e.g., humans, neural reuse is thought to be benefited
more by the biologically less advanced. With the help of advancing imaging tech-
niques, such as electron microscopy (Lizbinski and Jeanne, 2020), the majority of the
specimens of neural reuse in animal kingdom are observed in the invertebrate, espe-
cially in insect nervous systems (Niven and Chittka, 2010).

The body of C. Elegans consist of only 302 neurons. A specific example of neural
reuse for their case is how they move in their habitat. There are nine neurons respons-
ible for the worm’s movement, and the direction of the movement is decided by the
nine neurons and what kind of input they receive before the action (Rakowski and
Karbowski, 2017; Cohen and Denham, 2019).

Another example is the determining mechanism of movement in cockroaches. Cock-
roaches use all their legs during walking under normal circumstances. However, they
are observed as not using all of their legs while running away from a threat even though
the neurons controlling the movement of all their legs belong to the same small-world
network (Patanè et al., 2018).

Insect mushroom bodies are best known as to be the learning centres in insect brain



60 CHAPTER 3. BACKGROUND II: NEURAL REUSE

which serve mainly to store and recall (Sterling and Laughlin, 2015) and also de-
cision making (Heisenberg, 2003). Therefore, they are considered as the functional
equivalent of hippocampus and amygdala in mammalian brain which are believed to
be responsible for the same tasks. However, along with the aforementioned tasks,
mushroom bodies are also in charge of many other activities, such as sleep control,
regulating hunger and motor learning (Patanè et al., 2018). Some of the mushroom
body functions are still yet to be understood, but there is enough evidence to dispute
years long belief of insects limited capability. Due to wide task repertoire of mush-
room bodies while comprising only a few thousand neurons, they are seen as a neural
reuse paradigm (Arena et al., 2013; Vogt et al., 2014).

3.2.2 A Special Case: Synaptic Plasticity

Synaptic plasticity deserves a highlight in this section as it, although in such close prox-
imity, slightly differs from neural reuse. Both neural reuse and synaptic plasticity are
considered as the result of neuroplasticity. However, in case of synaptic plasticity, the
original function of the neuron, if there was any in the first place, is entirely lost. Syn-
aptic plasticity applies an “erase and write” approach onto neurons when the organism
is learning, thus requiring to obtain new functionalities. It has still utmost importance
for the living beings, hence we also give examples of such type of plasticity to draw
the line between them.

It has been believed that a perfectly structured brain, as we know of, is necessary
to accomplish complex functions in life for so long. One exception has appeared in
the recent years: a rat who is capable of functioning as her counterparts, yet with an
unusual brain structure in terms of size and shape. The rat has hydrocephaly disease
which results cerebrospinal fluids to dominate the entire brain, hence leaving her with
a shrunken, miniature version of her brain which is located next to her brain stem.
Having observed her miniature, yet structurally whole brain, the researchers run many
tests to compare her behavioural scheme to other rats. Nevertheless, none1 stands out
pointing to diminish her capabilities. This research conducted by Ferris et al. exhibits
the importance and power of neuroplasticity in regard to survival in nature.

The invertebrates have long been thought to be born with innate, rigid connections
in their nervous systems. However, supported by the advancing technologies, studies

1The researches in the study note to observing some behaviours in the rat, such as staying for too
long in a corner, which may indicate high anxiety levels. They do not conclude whether it is related to
the miniature brain of hers or not.
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are appearing more and more, especially in the recent years, proving the plasticity in
their neural networks as well. Such features are more observant in insects. Because
of the harsh living conditions in their habitat, their ability to learn where their nest
is located in the desert is discovered in desert ants (Rössler, 2019). Bees are espe-
cially known for their intelligence as being quick learners showcased on reinforcement
learning experiments (Tedjakumala and Giurfa, 2013; Peng and Chittka, 2017). Recent
studies showcase bees learning to pull a string, which is considered to require high in-
telligence in animal kingdom, and even teaching other bees to do the same as being
social creatures, in order to reach a reward, sugar water in the experiment (Alem et al.,
2016). All these are thanks to the synaptic plasticity in their mushroom bodies, the
learning centres, as introduced in the previous section, Section 3.2.1.

3.3 Neural Reuse in Artificial Neural Networks

The more ANNs become commonly used, the more research is done to increase their
efficiency, allowing them to be used on a diverse range of hardware resources. There-
fore, as an efficiency aid to reduce memory requirements as in biological neural net-
works, different types of reuse in ANNs emerged in literature in recent years. The
neural reuse includes an active search for neural collaborations which may show them-
selves as partnerships and/or alternatives (Anderson, 2015). Proving that, we come
across various different types of computational neural reuse studies in the literature
and reach a decision to review them under two main categories: neural reuse in elastic
systems and neural reuse in rigid systems.

While elastic systems in Section 3.3.1 follow the “evolutionary” route, the rigid

systems in Section 3.3.2 follow the during “development” route (see Section 3.1 for
route details) in neural reuse. We discuss the SotA research results in both parts in this
section.

3.3.1 Neural Reuse in Elastic Systems

The related work in this section is built upon Anderson’s neural reuse theory (Ander-
son, 2010). Being directly inspired by the biological neural networks, elastic systems
make use of neuroplasticity. To provide such neuroplasticity, they utilise dynamical
systems. The dynamical systems that are utilised by the work in this section are SNNs
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that involve STDP, reservoir computing, and feed-forward ANNs on which evolution-

ary algorithms are applied.

Arena et al. conduct research to emulate the mechanisms in insect mushroom bod-
ies via SNNs. The SNN in the aforementioned research comprises two layers and over-
all nine neurons that connected to each other via STDP which is the learning method in
SNNs. The resulting SNN is multi-functional and among the behavioural repertoire of
the neural network are conditioning, attention modelling, and memory consolidation.

The reservoir computing, or reservoir computer, is an umbrella term and a frame-
work for dynamical systems that allow flexibility in neural model design by providing
a “reservoir” that contains non-spiking neurons (Tanaka et al., 2019)2. The framework
relies on recurrent connections and is ideal to emulate the neural network of small
species, such as C. Elegans, or the retina of larger living beings where the neurons
are non-spiking (Grosu, 2020). Unlike the feed-forward ANNs, and like the SNNs,
reservoir computers process sequential data (Tanaka et al., 2019). Continuous Time
Recurrent Neural Networks (CTRNNs) which are especially used in the robotics today
(Hasani, 2020) to realise realistic and energy-efficient neural modelling are among the
sub-types of reservoir computing. The main principle of reservoir computers is to en-
able self-sustainability in a learning system even, and especially, in chaotic systems as
in nature (Flynn et al., 2021).

Unlike their previous work (Setzler and Izquierdo, 2017; Candadai and Izquierdo,
2018), in which CTRNNs were used to realise multiple functionalities via neural reuse,
Benson et al. use a feed-forward ANN to put forward three different functionalities by
using the same network. They apply evolutionary algorithms to evolve the network
to perform multiple tasks. Such tasks are inverted pendulum, cart-pole balancing, and
single-legged walking. The network consists of two hidden layers and overall 14 neur-
ons.

∗ ∗ ∗

Notice that in the works of Arena et al. and Benson et al., the regarding multi-
functional neural networks are small considering their overall layers and neuron counts.
They are indeed smaller than even the first ever created ANN, Mark I as introduced in
Chapter 2 - Section 2.2. Keeping that in mind, it is important to mention here that the
objective of the above aforementioned research is two-fold. Firstly, it is to understand

2We do not mention this topic in Chapter 2 where we explain the ANNs background because the
thesis specifically concerns the feed-forward ANNs.
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how neural reuse works in nature by emulating the biological neural networks into ap-
propriate computational platforms. Secondly, it is to preserve the energy within the
targeted system, such as robots, in which the battery power is crucial. Finally, as men-
tioned in the introduction of this section, Section 3.3, they follow the “evolutionary”
route in neural reuse by making their model multi-functional from the very beginning.

3.3.2 Neural Reuse in Rigid Systems

The conventional ANNs lose their elasticity once their training process is complete.
They would need to be re-trained to regain elasticity which is energy consuming.
Therefore, we call them as “rigid” within this section. The systems that we men-
tion in this section are all feed-forward CNNs. We explain the reuse solutions for rigid
single networks in Section 3.3.2.1 and for multiple networks in Section 3.3.2.2. The
research in this section aims to put forward more energy efficient CNN solutions to
facilitate their use on computationally limited resources, such as embedded platforms
and mobile devices.

3.3.2.1 Neural reuse on a Single Convolutional Neural Network

Kopuklu et al. offer to use the same layer blocks, where possible in the architecture of
a model, instead of generating new ones. This idea roots in the fact that CNNs are built
by the same repetitive layers architecturally. This approach, named as LruNet in the
paper, is applied prior to training the model. Obtaining reduction in memory access
cost is aimed via LruNet. Solely accuracy results are presented in the evaluation part
of LruNet, thus we are unable to report the reduced memory access cost values.

Ning and Shen apply vector-reuse between the layers in CNNs during the inference
stage. Such reuse, named as deep reuse in the paper, is achieved via finding the similar
neuron-vectors searching from neuron to neuron, and assigning them where applicable.
Five stages, among which are clustering and similarity distance measuring, are gone
through in the deep reuse algorithm to find vector similarities. Up to 2x speed-up is
achieved during the inference stage via deep reuse.

3.3.2.2 Neural reuse on Multiple Convolutional Neural Networks

This section focuses on neural reuse in multiple neural networks by “merging pre-
trained CNNs”. The merge especially fits into the neural reuse during “development”
in biological neural networks as each network already has a functionality that is going
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to remain after the merge as well. The below research utilises weight sharing among
the layers for an efficient merge.

NeuralMerger by Chou et al. is the first research in this field and a pioneer to offer
to merge different inputted CNNs which is still technically the only one to do so up
to this date. We explain the details of this research in Chapter 4 - Section 4.1.2 as it
constitutes the base of our work.

Wu et al. merge two MobileNet’s (Howard et al., 2017) that were trained on sep-
arate, solely image, datasets. Their merged model reaches ≈ 1.3x compression and ≈
1.5x speedup during inference.

Currently the SotA in this category is Multi-Task Zipping (MTZ) (He et al., 2021)3.
MTZ is built upon the work of He et al. (2018) which was able to merge two networks
at a time, and is able to merge up to nine CNNs via layer-wise weight sharing. It
has layer coverings for convolutional, fully connected and residual layers; also, for
now, empirically supports different inputted models, for example audio and image, as
reported. MTZ results with a 0.46% error rate increase on average of total nine models
and a 5x in total model size decrease.

3.4 Discussion: The Link Between The Terminologies
in this Chapter

We mentioned the two possible formations in theory regarding neural reuse earlier in
Section 3.1 which are “evolutionary” and “developmental” neural reuse. Furthermore,
we reviewed the computational applications related to the neural reuse theory under
two categories as “elastic” and “rigid” systems in Section 3.3. The former terminology
is used in the form put forward by Anderson, yet the latter terminology is our prefer-
ence based on the state, i.e., being elastic or rigid, of a system that the neural reuse
becomes active.

We mentioned that our research ideologically follows the developmental route of
neural reuse in Section 3.1. Moreover, we reviewed our related work in Section 3.3.2.2
under “rigid” systems.

The ANNs that are reviewed as rigid systems in this research are conventional,
feed-forward CNNs that were trained once, then became stiff, hence the name “ri-
gid”. Such systems were later worked on by applying algorithmic manoeuvres either

3The date of publication for the work MTZ by He et al. is 02/11/2021. The regarding SotA results
are lastly checked on 18/12/2021 via Google Scholar.
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to make them work more efficiently (Section 3.3.2.1), and/or to introduce them more
functionalities (Section 3.3.2.2). Because such systems align with our research goal,
we review our related work in Section 3.3.2.2 under “rigid” systems. On the other
hand, we review mixed types of approaches including ANNs, e.g., SNNs; and reser-
voir computing paradigm, e.g., CTRNNs, that emulating neural reuse computationally
in Section 3.3.1 as elastic systems. These approaches, by being directly inspired by the
neural reuse theorem, utilise neuroplasticity and either apply evolutionary algorithms
or exploit synaptic plasticity to introduce neural reuse to their systems, hence the name
“elastic”. They follow a top-to-bottom approach in the way they apply neuroplasti-
city where the neural reuse is set to grow in the very beginning, hence present all the
time within the system. This approach aligns with the evolutionary route mentioned in
Section 3.1.

Considering our review material and the terminology in this chapter, the elastic sys-
tems fit the evolutionary route, and the rigid systems fit the developmental route. How-
ever, this description is only relevant for the discussed approaches within the thesis.

3.5 Summary

In this chapter, we have presented the theoretical background of neural reuse theory and
provided examples of the theory both from biological and artificial neural networks.
Regarding the examples of neural reuse on computational systems, Section 3.3.2.2
comprises the related work of this thesis.

As we have discussed in Section 3.2.1, neural reuse in insects increase their gen-
eral ability by enabling multiple tasks with limited neurons and neural paths. From
a computational perspective, this can translate into computational devices that have
limited memory and computational capacity such as edge devices, which with neural
reuse, can operate multiple tasks without requiring more memory space. In addition
to this, the limited computational capacity in edge devices require higher energy ef-
ficiency since these devices generally operate on battery power. In the next chapter,
Chapter 4, we present our approach to provide multi-functionality to convolutional
neural networks and offer solutions to decrease the memory and computational costs.



Chapter 4

Achieving Energy Efficiency in
Multi-functional Neural Networks

The Truth: It’s more about the algorithm than the hardware.

(HOROWITZ, 2014)

We defined the neural reuse theory, provided examples from the biological neural
networks, and discussed our literature survey including computational forms of neural
reuse in the previous chapter, Chapter 3. In this chapter we explain how “develop-
mental” route neural reuse, explained in the previous chapter, can be achieved in the
form of multi-functional neural networks. Neural reuse in simple terms means parts
of a, or a whole, neural network being reused for a different purpose, such as for or
within another network. We can establish neural reuse as multi-functional neural net-
work where instead of two different networks doing inference on two different jobs,
the networks can have some common parts that they share and the shared parts are
reused essentially for different networks. Such reuse provides compactness as well as
efficiency which we aim to show in this work.

We illustrate two scenarios regarding neural reuse in Figure 4.1. On one hand,
the first scenario, Figure 4.1a, showcases a straightforward approach in combining
two neural networks: They are stored and utilised together without any intervention.
Therefore, we see that their actual sizes are combined without any compression which
is as expected. On the other hand, Figure 4.1b showcases an ideal neural reuse scenario
in case of two neural networks: They are merged, combined in a way to utilise their
shared, i.e., similar, parts in one body. Therefore, their size together is less than the
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total combined1 and such combination remain compact without hurting the memory.
In other words, let the model size in physical memory be a for CNN-I, and b for CNN-
II in Figure 4.1: while the total output size, the size of CNN I+II, would be a+ b in
Figure 4.1a; it would be < a+b in Figure 4.1b.

CNN-I 

CNN-II 

CNN I+II 

(a) Without Reuse

CNN-I 

CNN-II 

CNN I+II 

(b) With Reuse

Figure 4.1: The illustration of two CNNs merged with, and without neural reuse.
(4.1a) Illustrates two CNNs merged without neural reuse. (4.1b) Illustrates two CNNs
merged with neural reuse.

We have described how we interpreted the developmental route and devised to
emulate neural reuse in our research in the preceding paragraphs. Our experiments,
that we discuss in-depth in Chapter 5 and 6, prove that solely combining neural net-
works for multi-functionality does not yield sufficiently satisfactory outcomes as we
would address as neural reuse emulation. Therefore, we propose a two-step approach
(1) to provide multi-functionality and (2) to decrease the energy costs of CNNs as dis-
played in Figure 4.2. In the first step, we use a research tool named NeuralMerger

which can merge two pretrained networks even if they are essentially different typed
classification models, i.e., sound and image data. Merging two different models and
reusing both partially is how neural reuse works in nature as discussed in Chapter 3.
NeuralMerger is not only able to merge two different networks, but also decreases the
model size thanks to the reuse. In the second step, we convert the multi-functional
network into different neural network types using binarisation, quantisation, or con-
version into SNNs in order to provide further efficiency. Binarisation and quantisation
are used to decrease the model sizes and computational complexity while SNNs are
inherently energy efficient.

1The illustration depicts an ideal scenario where the two CNNs are combined in ½ ratio. That would
not be the case for every application since the outcome would be proportional to the similarities between
the networks. However, the point of neural reuse is that the final size of the combined networks to remain
less than the overall combination of both sizes.
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Figure 4.2: The two algorithmic steps of our approach.

This chapter consists of three sections: The first two sections involve the first,
Section 4.1, and second, Section 4.2, steps of our approach consecutively, and the final
section, Section 4.3, summarises the chapter.

In Section 4.1, we outline the literature survey regarding multi-functional ANNs.
The survey also involves introducing the first step of our approach that is realised via
NeuralMerger by Chou et al. in Section 4.1.2.1. In Section 4.2, we elaborate the
second part of our approach that consists of various conversion experiments which is
the technical part of our novel proposal.

4.1 Achieving Multi-functionality in Neural Networks

The recent developments in neural networks enabled a wide range of AI applications
including computer vision, speech recognition, Natural Language Processing (NLP)
etc. To handle various tasks, the usual way is to design different network models and
train these models with corresponding datasets. Well-trained networks perform quite
well for a specific purpose, but in more practical AI applications, it is common to
use multiple tasks simultaneously. Having multiple models for different but specific
tasks result in a race for the computational resources on the system between models.
Therefore, integrating multiple network models to use the system resources efficiently
becomes an important problem for future AI applications.

Sharing resources on a system is indeed a difficult optimisation problem, but latest
research shows that there are ways to combine multiple neural networks into a single
model in order to eliminate resource sharing difficulties in the system level altogether.
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The main approaches to achieve multi-functionality in neural networks can be di-
vided into two groups; training a new network from scratch that is able to do multiple
tasks which we explain in Section 4.1.1, and merging multiple pretrained neural net-
works into a single network which we explain in Section 4.1.2.

4.1.1 Training Neural Networks for Multi-functionality

There are different approaches in order to achieve multiple tasks simultaneously via
a single neural network. A typical way is to increase the output nodes of a network
and train it from scratch. Kaiser et al. propose an approach that allows image, sound,
and text inputs with different dimensions and then convert them into a unified rep-
resentation. Their multi-model architecture with building blocks enable to create a
deep learning model that is able to learn a number of large-scale tasks from multiple
domains.

The goal of Aytar et al. is to create representations that are aligned across modality.
For example, considering the sentence ”she jumped into the pool.”, the concept of this
sentence can also be represented as the image of a pool or the sound of splashing. The
authors use such representations to create a deep convolutional neural network that
accepts sound, sentence and image inputs and the model is then trained from scratch.
Their experiments show that the new model achieves higher retrieval and classification
performance for challenging in-the-wild situations.

Although it is useful to create multi-functional neural networks using a learn-them-
all approach, learning multiple tasks from scratch requires a cumbersome training ef-
fort and intensive inference computation. Additionally, in a learn-them-all approach,
it is difficult to choose a network architecture that is suitable for learning all the tasks
well in advance. Since many well-trained models are available now, merging pre-
trained models to provide multi-functionality is another valid option.

4.1.2 Merging Pretrained Neural Networks

There are a few studies focusing on merging well-trained network models into a single
model. We have briefly discussed how the neural reuse approaches have been imple-
mented by merging pretrained networks in the literature in Chapter 3 - Section 3.3.2.2.
A systematic approach is proposed by Chou et al. for merging and compressing mul-
tiple CNN models where the input types of the models are allowed to be different. This
work and the tool that is the outcome of this research, NeuralMerger, has been used in
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this thesis in order to merge multiple pretrained network models into a single model,
thus providing multi-functionality to a network while compressing the multi-model ap-
proach. We base our first step onto NeuralMerger because (1) it holds the best metric
results in terms of accuracy and model size compression, (2) it enables working with
different data types at the same time, (3) the inter-network quantisation it achieves via
k-means clustering which is the key to how NeuralMerger merges pretrained models.
The third item basically offers an ML solution to an ML problem. An illustration of
the main mechanism of NeuralMerger is displayed in Figure 4.3.

CNN-I 

CNN-II 

STEP-I 

CNN I+II 

Figure 4.3: An illustration of the main scheme of NeuralMerger.

In this section, we explain the internals of NeuralMerger and provide detailed ex-
planations on how two CNNs are merged. NeuralMerger follows a three step procedure
in order to merge two networks. Assume two models, A and B are being merged, where
cA and cB represent convolutional layers, followed by fully connected layers represen-
ted by fA and fB. In the first step, NeuralMerger merges the convolutional layers, in the
second step, the fully connected layers are merged, and in the final step newly merged
network is fine-tuned via BP. These steps are explained in detail below.

4.1.2.1 NeuralMerger: Merging Convolutional Layers

NeuralMerger is able to merge layers of the same type be it convolutional or fully
connected layers from two different networks. The principle is that, given two layers,
one in model A and one in model B, finding a set of codewords that represent the
weights of the layers from both networks with small quantisation errors.
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Assume that two convolutional layers, one from model A and one from model B are
to be merged. The layer of model A has the input size NA ×MA × dA, where NA ×MA

corresponds to the spatial size, and dA is the number of channels. The input is con-
volved with pA convolution kernels where the size of each kernel is nA × mA × dA.
The same notations also apply to model B.

The aim of the NeuralMerger is to jointly encode the convolutional coefficients in
order to achieve a decrease in the number of joint coefficients compared to the total
number of separate coefficients, i.e., convolutional kernels of model A is denoted as
pA and model B as pB, the number of codewords the NeuralMerger aims to achieve is
shown as p < p A + pB. However, jointly encoding the convolutional coefficients is dif-
ficult if the kernel dimensions are different between the models. To address this issue,
NeuralMerger unifies the different sized convolutional kernels by first decomposing
each convolutional kernel into 1 × 1 kernels.

Given an ordinary convolution operation, the convolution is generally applied as a
2D sliding window operation followed by a channel-wise summation operation along
the depth direction. NeuralMerger decomposes a convolution operation sized n×m× d,
into convolution of multiple 1 × 1 × d operations and combine them with shift opera-
tions. Spatial decomposition of the convolutional kernels results in for each model as
C = nm convolutions of size 1× 1× d. The kernels for each model can then be unified
into 1× 1 in the spatial domain regardless of the differences between the convolutional
kernels sizes of model A and model B.

After decomposing the convolutional kernels in the spatial directions, NeuralMer-
ger separates the kernels along the depth direction due to the possible mismatch in
depth channel differences between the models. The separation is done by simply sep-
arating 1 × 1 × d kernels into non-overlapping 1 × 1 × r kernels along the depth
direction. In case the depth d is not divisible by the value r, the last segment of the
separated kernel is padded with zeros.

After the convolutional kernels are decomposed into smaller units, NeuralMerger
runs a k-means clustering algorithm with various initials and select the results yield-
ing the least representation error to produce the codewords. From these codewords,
codebooks are created for each segment. The convolutions are pre-computed on the
codebook, and a lookup table is built to index the results. All these steps are shown in
Figure 4.4.
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4.1.2.2 NeuralMerger: Merging Fully-Connected Layers

Unlike the convolutional layers which have sliding window operations, the operations
in fully-connected layers are all summation based. Therefore, given the two weight
matrices of models A and B, the weight vectors in each layer are simply divided into
length-r segments along the row direction. The dim-r weight vectors in the same seg-
ment are then clustered using a k-means algorithm and C codewords are found. The
codebook for the fully-connected layers is thus built this way, similar to the convolu-
tional layers.

Figure 4.4: Illustration2of merging convolutional layers of two models going through
three main steps: (1) Align - different sized layers and filters (2) Encode - coefficients
→ k-means clustering (3) Unify - codebook→ lookup table.

4.1.2.3 NeuralMerger: Fine-tuning Phase

After the construction of the codebooks for the convolutional and fully connected lay-
ers, the model becomes ready to be fine-tuned from the training data through end-to-
end BP. In NeuralMerger, all layers in the codebooks are tunable which is an advantage
compared to single-model compression approaches (Wu et al., 2016).

2The Illustration is extracted from the work of (Chou et al., 2018, p. 2052).
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For the fine-tuning phase, NeuralMerger uses the combination of two error terms.
The first one is the classification, or regression, loss which is utilised in the original
models A and B. The second one is the output mismatch error which is calculated for
each layer. When applying the input, x1, to the model A or B, the output of each layer
in the merged model should be close to the output of the associated layer, L1; and the
norm is used to measure this error.

4.1.2.4 Our Utilisation of NeuralMerger

We use NeuralMerger by Chou et al. as a tool during the first step of our approach
illustrated in Figure 4.2. The source code3 of the NeuralMerger is publicly available.
However, we have needed to make changes in the code in terms of software engineering
to make it work with the current technology and fit into our code.

The code was written to work with a specific programming language, Python 2.7,
and a main software library, TensorFlow (TF) 1.4.0, versions that reached their end of
lives and are not supported anymore4,5. Therefore, we update all the required software
packages and modify the code6 to fit the newest possible versions and release it as
open-source.

NeuralMerger was written in native TF which is currently the low-level Application
Programming Interface (API) of the software library. Because such merge mechanism
requires intricate code manoeuvres, we leave the main API level as it was. Nonetheless,
we introduce saving the weights and/or the models into NeuralMerger. Such save
mechanism is possible now either with low-level or the high-level API of TF. For the
low-level API, we enable saving via the checkpoints of the TF; for the high-level API,
Keras, the save is available after the model is trained via NeuralMerger. With this way,
the models can be combined and used within Keras as well. This is how we obtain the
singular neural network experiment results that are discussed in Chapter 6.

3NeuralMerger: https://github.com/ivclab/NeuralMerger/tree/master/Fine-tuning
4Python versions: https://devguide.python.org/versions/
5TensorFlow versions: https://www.tensorflow.org/versions
6Our modified NeuralMerger repository: https://github.com/mervess/neural-reuse/tree

/main/fine-tuning

https://github.com/ivclab/NeuralMerger/tree/master/Fine-tuning
https://devguide.python.org/versions/
https://www.tensorflow.org/versions
https://github.com/mervess/neural-reuse/tree/main/fine-tuning
https://github.com/mervess/neural-reuse/tree/main/fine-tuning
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4.2 Converting Merged Networks to Provide Energy
Efficiency

NeuralMerger utilises a joint encoding scheme for weight sharing which can be under-
stood as a inter-network quantisation. Using a shifting and summation scheme, due to
the decomposed kernels, in addition to the weight sharing decreases both the size of the
model and the computational complexity, since shifting a summation on 1×1 kernels
are faster than multiply accumulate computations. However, the merged model still
uses FP floating-point numbers for the computations which are more expensive com-
pared to integer values. These computations are especially difficult on edge devices
where the computational capability is limited.

In order to decrease the computational cost of inference in merged models, we
propose applying conversion mechanisms to the merged network to enable further ef-
ficiency both computationally and memory-wise.

4.2.1 Overhead on the Traditional Hardware

ANNs are mostly trained on high throughput devices such as large servers and GPUs
due to the requirement of a large number of FP computations. As a result, it is chal-
lenging to run neural networks on low-power devices and research efforts are invested
from both academia and industry to port neural networks into low-power devices i.e.,
phones, watches etc. While some research focus on running neural networks faster on
these devices (Vanhoucke et al., 2011; Gong et al., 2014; Han et al., 2015; Romero
et al., 2015) other efforts focus on either reducing the model sizes or reducing the
computational complexity while trying to retain the accuracy of the models (Han et al.,
2015; Yu et al., 2019). Both aspects of research aim to increase the energy efficiency
of neural networks, but on some edge devices where the memory and computational
power are limited, decreasing model size and computational complexity takes preced-
ence to even execute a neural network model in the first place.

Table 4.1 shows the cost of computations and memory operations in energy. While
Han et al. did not specify how these energy calculations were made, they have ref-
erenced to [ref: Energy table for 45nm process, Stanford VLSI wiki.] which is not
an open source wiki. Therefore, we do not exactly know how these numbers were
measured, but given the fact that these numbers are reported for 45nm technology, we
assume each operation is schematically implemented via 45nm technology on Very
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Table 4.1: Energy costs of floating point computations vs. integer computations (Han
et al., 2015).

Operation (32 bit) Energy (pJ) Relative Cost
int ADD 0.1 1
f loat ADD 0.9 9
Register file access 1 10
int MULT 3.1 31
f loat MULT 3.7 37
SRAM cache access 5 50
DRAM memory access 640 6400

Large-Scale Integration (VLSI) design tools from Cadence or Synopsys in order to
achieve the energy results per operation. Overall, the raw energy numbers are irrelev-
ant since 45nm technology is old. However, the important part of the Table 4.1 is that
it displays the relative cost of each operation which is independent of the technology
used.

Computationally, doing any FP operation costs more energy compared to the same
length integer operation as shown in the Table 4.1. Moreover, the most expensive op-
erations are memory operations, especially accessing off-chip memory. Therefore, in
order to achieve more energy efficient execution of neural network models, decreasing
the computational complexity of operations by replacing more expensive FP operations
with integer ones, also decreasing the memory usage increases the energy efficiency of
the system.

The two main methods for decreasing both the computational complexity and the
model size of neural networks that is related to the work in this thesis are quantisation
and binarisation of the CNNs which we discuss next. Another method to achieve
energy efficiency is to use an SNN model which is inherently energy efficient. Since
conversion into SNNs is an orthogonal optimisation to merging two networks, we also
discuss this option later in this chapter. We illustrate the aforementioned methods that
constitute our second step in Figure 4.5.
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Figure 4.5: Step-II of our approach.

4.2.2 Quantisation of a Merged Neural Network

Although our initial intention was to convert the merged model into a BNN, our exper-
iments have showed that converting a pretrained ANN directly into a BNN results in a
monumental accuracy drop and an increase in model loss. Therefore, when it comes to
BNNs, training from scratch is proved to be necessary. However, unlike the binarisa-
tion operation, a higher degree of quantisation in neural networks is possible without
training the ANN. We choose the furthest possible degree in quantisation that does not
require a training among the degrees of quantisation.

In the first step of our approach we used NeuralMerger to merge multiple net-
works which also does a cross-network quantisation on weights that helps reduce the
storage requirements. Since our method already has this feature, we do not focus on
approaches that quantise only the weights (Gong et al., 2014; Chen et al., 2015; Han
et al., 2016; Zhou et al., 2017) which are less related with computational efficiency,
instead we use the methodology proposed by Jacob et al. in order to reduce the com-
putational complexity.

Jacob et al. propose a quantisation scheme that permits efficient implementation
of all arithmetic computations using only integer arithmetic operations on quantised
values. Since the performance and energy efficiency of integer only calculations is
far superior than of floating point operations, this type of optimisation fits very well
into what we aim to achieve in this thesis. We prefer to use TF-Lite7 for our quant-
isation part of this thesis due to the following reasons: (1) it is a well-known and

7https://www.tensorflow.org/lite

https://www.tensorflow.org/lite
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mature infrastructure for machine learning, targeting low-power devices, (2) the work
of Jacob et al. is implemented into TF-Lite, which is what we refer to for our quant-
isation methodology, (3) easy to use and open source characteristics of TF-Lite makes
it widely used in research enabling further technological developments.

The quantisation scheme is an affine mapping of integers q, to real numbers r of
the form

r = S(q−Z) (4.1)

for the constants S and Z as shown in Equation 4.1. For 8-bit quantisation, q is
quantised as an 8-bit integer, the constant S (for scale) is an arbitrary positive real
number and the constant Z (for zero point) is of the same type as quantised value;
and represents the quantised zero-point value which corresponds to the real value zero.
Having a static quantised zero-point value allows the representation of real value zero
which enables more efficient implementation of neural network operators since these
often require zero-padding of arrays around the boundaries.

Jacob et al. also show that this quantisation can be applied to matrix multiplica-
tion, resulting in an integer-arithmetic-only matrix multiplication where the only non-
integer values are S values which can be calculated offline. The steps that the quantisa-
tion scheme follows is listed below in which the second step involves applying Equa-
tion 4.1 to the weights of the pretrained network.

1. Create a training graph of the model using floating-point values.

2. Using proposed TF fake quantisation operations, downcast the tensors into fewer
bit representations.

3. Simulation of the quantised model.

4. Optimisation of the inference graph for running in a low bit inference engine.

5. Run inference using the quantised inference graph.

The approach is already contributed to the TF-Lite, thus it is easy to follow these
steps and use this quantisation method in any model.

As discussed in Section 4.1.2, our approach first merges multiple networks into a
single network, capable of multi-functionality. In the next step of our approach, we
use this merged network and quantise it using the approach explained above. One
of the main differences is that the merged network uses a look-up table for shared
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weights. In order to also quantise the look-up table, we have used the TF’s check-
pointing capability to get the shared weights and also quantise these values that are
going to be used during inference stage. We discuss the results of these experiments in
Chapter 6.

4.2.3 Converting a Conventional Neural Network into a Spiking
Neural Network

As the “popularity” of SNNs rises, so do the energy-efficiency measurements of dif-
ferent hardware resources and discussions accordingly. A recent study showcased that
running an SNN simulation on digital neuromorphic hardware consumes≈2 times less
energy than running an equivalent ANN on the same system (Davidson and Furber,
2021). Another study comparing analog vs. digital neuromorphic hardware resources
concluded that the analog consumes 20 times less energy than their digital counterparts
along with requiring 5 times less memory space (Joubert et al., 2012).

Although SNNs are known to work most efficiently on neuromorphic hardware
(Pfeiffer and Pfeil, 2018), they are also harder to work on and train on such resources.
As alternatives, there are software libraries to simulate and run SNNs on conventional
hardware, yet they require from scratch training (Hazan et al., 2018). However, the
highest accuracy results that can compete with the CNNs have been obtained via the
conversion of pretrained networks so far. Because we aim to exploit pretrained ANNs
which are built to run on conventional machines, and additionally, considering the
aforementioned hardships on neuromorphic hardware, our choice is to benefit from
ANN-SNN conversion algorithms. Note that, unlike the case of quantisation, after
converting FP-CNNs into SNNs, the weights of the neural network remain the same.

The two most common neural coding methods to convert a conventional ANN into
an SNN are by using either a firing rate based or a spike timing based method (Brette,
2015; Guo et al., 2021). Such methods are also called as rate-based / rate coding and
spike-based / temporal coding methods in the literature. In the former, the information
is conveyed via spike rates; and in the latter, it is conveyed via the timing of spikes in
the neural network.

Rate coding focuses on the cumulative rates coming from the spikes. It offers a col-
lective approach by diverting decisions, needed for the result of a given task, towards
the highest spike rates received from the neurons. Some rate coding approaches make
use of thresholding as an interrupt mechanism for collecting the rates (Wu et al., 2022).
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Moreover, weight normalisation is applied to the model to reduce the loss after the rate
coding based conversions (Li and Furber, 2021; Wu et al., 2022). Rate coding has been
widely applied due to its simply intelligible mechanism in the literature. Nonetheless,
because of its “collective” point of view, rate coding is also known for its applications
having latency, and slow processing times (Guo et al., 2021).

Temporal coding focuses on the timing of spikes. SNN simulations on neuromorphic
platforms include built-in temporal schemes, yet conventional platforms, without run-
ning a specialised software library such as PyNN (Davison et al., 2009) as mentioned
in Chapter 2 - Section 2.5, do not have such schemes. When applying the conver-
sion via temporal coding, while some of these methods pivot on the first spike time8

(Guo et al., 2021), others generate a timescale on the conventional machine, and follow
through based on time steps (Stöckl and Maass, 2021). Temporal coding conversion
technique reduces the spikes of the SNN since it focuses on not the overall rates, but
the timing of the spikes. Therefore, it also reduces the latency of the conversion (Guo
et al., 2021).

Although rate-based conversions are more common in the literature, spike-based
conversions are considered as better fitted to the neuromorphic computing, hence more
suitable for the overall nature of SNNs (Davidson and Furber, 2021). Note that both
techniques are stated to root in human brain and utilised by the different regions of the
brain in literature (Brette, 2015; Guo et al., 2021). Depending on the structure of the
neural model, a temporal coded model can also be translated into a rate coded model
(Brette, 2015).

Our aim is to minimise the energy consumption by applying a conversion into
SNNs which are innately more energy efficient than traditional ANNs. Therefore, we
experiment with both rate and temporal coding based conversion methods, and ob-
serve the trade-off between the metrics after conversion in order to reach a decision.
We choose representative SotA research of each coding technique for our experiments
which will be detailed in Chapter 5 - Section 5.5.1. After this point, the two meth-
ods will be addressed as rate coding and temporal coding methods in the following
chapters of the thesis.

8Temporal coding via first spike time is also addressed as Time-to-First-Spike coding in literature.
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4.3 Summary

In this chapter we introduced our approach to provide both energy efficiency and multi-
functionality to ANNs. Our approach is inspired by the developmental route of the
neural reuse theory discussed in Chapter 3. We show the internal workings of the
NeuralMerger tool that we use to provide multi-functionality to ANNs by merging two
networks into a single network, followed by the conversion of the merged model into a
quantised model and into SNN in order to provide energy efficiency. We illustrate our
algorithmic approach summarising the aforementioned technical steps in Figure 4.6
below.
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Figure 4.6: The proposed algorithmic approach.

NeuralMerger enables the multi-functional aspect as well as providing compaction
of models when merged. The quantisation method is an orthogonal optimisation step
to provide computational efficiency to an already compacted merged network. Ad-
ditionally, we show how the conversion into SNNs happen, since SNNs are innately
energy efficient compared to ANNs. In the following chapters we show our experi-
mental setup, in Chapter 5, and the results of our approach, in Chapter 6.



Chapter 5

Experimental Setup

In this chapter, we explain the experimental setup we did to understand the effect of
neural reuse on CNNs. We pay attention to the energy consumption between different
types of CNNs which have the same origin. FP-CNNs and SNNs; then, QNNs and
BNNs are used for our experiments. After explaining the nature of our experiments in
this chapter, we discuss the results of the experiments and evaluate them in the next
chapter, Chapter 6.

5.1 Hardware and Software Environment

All the experiments mentioned in this thesis are run on a 64-bit, Linux (Ubuntu 16.04)
machine that has 4 Intel(R) Core(TM) i7-7600U CPU @2.80GHz. Every experi-
ment is run solely and when the machine is in the idle state for a better comparison.

All the ANN experiments are run via programming language Python, version

3.7.10, with the ML algorithms library TF (Abadi et al., 2016a,b). TF-1.14.01 is used in
the neural reuse focused experiments where low-level code manoeuvrability is needed.
The high-level API of TF, Keras on TF-2.5.02 is preferred for the rest of the exper-
iments for the purposes of readability and maintainability in the codes. We use the
Python library Larq3 (Geiger and Team, 2020) which was built upon Keras for the
experiments that include BNNs. The TF module TF-Lite4 is used for the other quant-
isation experiments.

1TF-1.14.0 API: https://github.com/tensorflow/docs/tree/r1.14/site/en/api docs
2Keras API: https://www.tensorflow.org/versions/r2.5/api docs/python/tf/keras
3Larq: https://docs.larq.dev/larq/
4TF-Lite: https://www.tensorflow.org/versions/r2.5/api docs/python/tf/lite
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We choose TF as the main software library in this research because of its versatility
enabling the codes to be employed not only on the traditional hardware, but also on the
edge devices. All the codes that are used to run the experiments are publicly available
at GitHub 5.

5.2 Datasets

Modified National Institute of Standards and Technology (MNIST) (LeCun et al.,
2010a), Fashion-MNIST (Xiao et al., 2017), and Sound20 (Chou et al., 2018) data-
sets are used in this research. The purpose of Sound20 is to recognise different types
of sounds and the rest of the datasets are image classification datasets. The details of
the datasets and why they are chosen for this research are explained in this section.

All the datasets that are used in the thesis are publicly available. The image classi-
fication datasets can be obtained on the website of TF6 and Sound20 dataset is available
at GitHub7.

5.2.1 MNIST

The first ever image recognition dataset, MNIST, emerged at the same time with the
ancestor of the CNNs today, LeNet-5 (LeCun et al., 1998). MNIST is the modified
version of National Institute of Standards and Technology (NIST) dataset, and it was
born as a result of the handwritten digit recognition research in the domain of post-

codes by Lecun et al. The dataset has been in active use by the computer vision and
ANN community since 2010 (LeCun et al., 2010a) and the most commonly-used im-
age recognition dataset of all times to this date. We prefer to use MNIST in our initial
experiment (see Section 5.3.1) in terms of intelligibility in the proof-of-concept.

The MNIST dataset that is used in this research is a part of the TF’s high-level API
Keras8, version 3.0.1. The dataset comprises of 60,000 training and 10,000 test data,
overall 70,000 images, all of which are 28×28 in width×height, encoded in grayscale
format, handwritten digits. The dataset contains 10 categories/classes that are labelled
from 0 to 9 to classify the handwritten digits. A sample of the images from the dataset
is shown in Figure 5.1.

5Our main repository: https://github.com/mervess/networks-on-board
6TF-Datasets: https://www.tensorflow.org/datasets/
7Sound20: https://github.com/ivclab/Sound20
8MNIST: https://www.tensorflow.org/versions/r2.5/api docs/python/tf/keras/data

sets/mnist

https://github.com/mervess/networks-on-board
https://www.tensorflow.org/datasets/
https://github.com/ivclab/Sound20
https://www.tensorflow.org/versions/r2.5/api_docs/python/tf/keras/datasets/mnist
https://www.tensorflow.org/versions/r2.5/api_docs/python/tf/keras/datasets/mnist
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Figure 5.1: A snapshot from the MNIST dataset.

5.2.2 Fashion-MNIST

Considering the over-use of the MNIST dataset throughout the years, and especially
the near the top accuracy rates, i.e., 99%, that are being received via the dataset, a
refreshing, yet an MNIST-like dataset, Fashion-MNIST was generated (Xiao et al.,
2017). Fashion-MNIST has proved itself as a challenge to be mastered on by the res-
ulted accuracy and error rates so far which is shown in Table 5.4. Moreover, compared
to other SotA image classification datasets, e.g., ImageNet (Russakovsky et al., 2015),
it is lighter on memory. Combining the two aforementioned reasons makes Fashion-
MNIST dataset the perfect candidate for the energy concerned ANN tasks. Therefore,
we run our main neural reuse experiment (see Section 5.3.2) using the Fashion-MNIST
data.

The Fashion-MNIST dataset that is used in this research is a part of the TF’s high-
level API Keras9, version 3.0.1. The dataset, since inspired by and based on it, has
technically the same features with the MNIST set. The only difference between the
MNIST and the Fashion-MNIST is that the Fashion-MNIST consists of fashion items

9Fashion-MNIST: https://www.tensorflow.org/versions/r2.5/api docs/python/tf/ke
ras/datasets/fashion mnist

https://www.tensorflow.org/versions/r2.5/api_docs/python/tf/keras/datasets/fashion_mnist
https://www.tensorflow.org/versions/r2.5/api_docs/python/tf/keras/datasets/fashion_mnist
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instead of handwritten digits as images. The dataset contains 10 classes each labelled
in a different fashion item category. The labels are listed in Table 5.1.

Table 5.1: Image classification labels and their description in the dataset Fashion-
MNIST.

Label Description
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

5.2.3 Sound20

What makes neural reuse interesting in terms of energy efficiency is that it is able
to re-use neurons which originally respond to, or decipher from different peripheral
sensory organs (see Chapter 3 for the details). Images correspond to the input of visual
sensory organ, the eye, for us, human beings. Along with the image classification
datasets used in the research which satisfies the “visual sensory info”, for the proof-
of-concept purposes in neural reuse, a dataset representing a different input type was
also necessary. The different input type is “sound” here which corresponds to the input
of auditory sensory organ, the ear, in humans. We choose Sound20 over other publicly
available audio datasets in order to benefit from the pretrained weights of the LeNet
model in the work of Chou et al..

The Sound20 dataset (Chou et al., 2018) is the product of two separate studies
and consists of a mixture of instrumental audio and animal sounds (Hao et al., 2012).
Labels 1-12 correspond to instrumental audio, and labels 13-19 correspond to animal
sounds which overall constitute 20 sound classes listed as labels along with their de-
scriptions in Table 5.2.
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Table 5.2: Sound classification labels and their description in the dataset Sound20.

Sound20
Instrumental Audio Animal Sounds

Label Description Label Description

0 Drum FloorTom 13 Bufo Alvarius (a type of toads)
1 Drum HiHat 14 Bufo Canorus (a type of toads)
2 Drum Kick 15 Pseudacris Crucifer (a type of frogs)
3 Drum MidTom 16 Allonemobius Allardi (a type of crickets)
4 Drum Ride 17 Anaxipha Exigua (a type of crickets)
5 Drum Rim 18 Amblycorypha Carinata (a type of katydid)
6 Drum SmallTom 19 Belocephalus Sabalis (a type of katydid)
7 Drum Snare
8 Guitar 3rd Fret
9 Guitar 9th Fret
10 Guitar Chord1
11 Guitar Chord2
12 Guitar 7th Fret

5.2.4 Comparison of the Datasets, State-of-the-Art, and Discus-
sion

We provide comparative information on datasets and discuss the SotA results in this
section. Table 5.3 shows the overall numerical information of the datasets and Table 5.4
shows the SotA of the image datasets as they are commonly used in the literature.

Table 5.3: Numerical summary of the datasets that are utilised in this research.

Data Count
Dataset

Total Train Test Validation
Data Shape

Number of

Classes

Dataset

Size

MNIST 70,000 60,000 10,000 - 28×28×1 10 21 MB

Fashion-MNIST 70,000 60,000 10,000 - 28×28×1 10 36.42 MB

Sound20 23,612 16,636 3,727 3,249 32×32×1 20 94.04 MB

The values in the “Data Shape” column on Table 5.3 hold different meanings for
the image datasets, MNIST and Fashion-MNIST, and the sound dataset, Sound20. On
one hand, regarding the image datasets, the common shape, 28×28×1, corresponds
to width×height×channel. Because all the images in the datasets are in grayscale
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format, the channel value is 1 for them. On the other hand, the sound data in Sound20
are represented by a spectrogram to be processed by ANNs. Therefore, regarding
the sound dataset, the data shape 32×32×1, corresponds to x×y×null. In a sound
spectrogram, x axis refers to time, and the y axis refers to frequency of the sound.
Because the sound data on a spectrogram is inherently two dimensional and does not
involve a channel as image data does, we have addressed it as null recently. However,
in the case of Sound20, the sound data is also assigned with a channel to match and to
be processed with the image data at the same time. All the data used in this research
are stored in numpy arrays in the Python environment.

Classical CNNs, that includes repetitive Conv+Pooling layer blocks, yet with dif-
ferent arrangements, i.e., filter sizes may differ, stayed at the top of the SotA for a long
time. However, with more data on the table and the emergence of more competent
databases, these traditional approaches have begun to come short. This topic is also
discussed in Chapter 2 - Section 2.3.1.1. We present the SotA in Table 5.4. Both HVC

and DARTS+Attention in the Table approach completely differently to image classific-
ation, and the recommended ANN architectures are accordingly different.

Table 5.4: SotA in image classification datasets used in this thesis10.

Methods Dataset Parameters Top-1 Accuracy (%) Error Rate (%)
HVC (Byerly et al., 2021) MNIST 1.5 M 99.87 0.13
DARTS+Attention (Tanveer et al., 2020) Fashion-MNIST 3.2 M 96.91 3.09

Byerly et al. use a capsule design network in which they benefit from vector
multiplications instead of using conventional matrix multiplications in convolutional
layers. Via benefiting from vectors, they are able to do element-wise multiplications
which have less overhead computationally, compared to matrix multiplications. They
name their method Homogeneous Vector Capsules (HVC). Overall, their ANN archi-
tecture achieves the highest accuracy, 99.87%, and the lowest percentage error rate,
0.13 on the MNIST dataset in the literature to this date.

Tanveer et al. employ NAS to decide on their network architecture and embeds At-
tention modules into the architecture to increase the overall accuracy of the network.
NAS approaches in general are known to be computationally expensive since they gen-
erate a neural network from scratch without any supervision. We showcased the cost of

10The regarding SotA results are lastly checked on 18/10/2021. Below is our resources to check the
leaderboards.

MNIST: https://paperswithcode.com/sota/image-classification-on-mnist
Fashion-MNIST: https://paperswithcode.com/sota/image-classification-on-fashion-

mnist

https://paperswithcode.com/sota/image-classification-on-mnist
https://paperswithcode.com/sota/image-classification-on-fashion-mnist
https://paperswithcode.com/sota/image-classification-on-fashion-mnist
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a NAS approach earlier in Chapter 1, in Table 1.1. In order to increase the performance
of the architecture search, and thus minimise the computational overhead, the authors
prefer Differential Architecture Search (DARTS) which is a stochastic form of the
NAS. What makes DARTS faster, yet eventually producing inferior results in accuracy
compared to other stochastic methods, is that it benefits from approximate computing.
Attention modules are introduced at this point as fixed computing modules in order to
avoid the eventual accuracy loss. Overall, their ANN architecture achieves the highest
accuracy, 96.91%, and the lowest percentage error rate, 3.09 on the Fashion-MNIST
dataset in the literature to this date.

Note that, as our research is not “accuracy” or benchmark focused, such SotA
results based on accuracy are not among our related work. By demonstrating the SotA
results regarding the used datasets in this research, we would like to give an integrated
overview and offer clearer comparison between different approaches.

5.3 Architectures of the Neural Models

In the previous section, Section 5.2, we provide information over the datasets that are
used in this research. In this section, we explain and discuss the CNNs that are applied
onto the datasets during the experiments.

5.3.1 Singular Neural Network Experiment: MNIST on LeNet-5

Initial energy-based experiments start with MNIST on LeNet-5. Our reason to choose
both LeNet-5 and the MNIST dataset is their simplicity and intelligibility, hence their
power to stress the points in proof-of-concept.

We mention two LeNet architectures, LeNet 1 and 5, in Section 2.3. Note that, we
only talk about LeNet-5 in this chapter since it has been the most recent version of
the LeNet family. Therefore, we call LeNet-5 as only LeNet after this point for the
simplicity in reading.

5.3.1.1 Architecture of the Full-Precision Model

We use almost the identical architecture of the original LeNet that was shown earlier
in Figure 2.8b. Our modified LeNet architecture is shown in Figure 5.2.

Although, we preserve LeNet in our experiments as much as we can despite the
technological differences between the times, our model has a few differences compared
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Figure 5.2: LeNet architecture that we use for the “singular” experiments.

to the original version of the model. These differences are listed below.

BN. BN technique (Ioffe and Szegedy, 2015) is relatively new compared to the rest
of the advances in CNNs. The BN layer normalises the values in the previous
layer in a model which leads to acceleration in training and increase in accuracy.
Therefore, BN is usually added after the operation-heavy layers, e.g., a convolu-
tional or an FC layer, in ANNs. For the aforementioned reasons, we update our
LeNet with BN layers which are placed after each convolutional and FC layers
in the model as seen in Figure 5.2.

Activation function. Activation function tanh is used right after every convolutional
layer until F6 in the original LeNet (LeCun et al., 1998, p. 8). However, we
prefer ReLU over tanh in all the experiments we run in this research because of
the reasons below.

− It is computationally cheaper, yet more effective than tanh.

− Its algorithmic structure makes it more suitable to be used in SNNs that
run on conventional hardware resources. Therefore, some ANN to SNN
conversion tools explicitly states that they only work with ReLU (see Sec-
tion 5.5.1).

ReLU is displayed as the little puzzle piece in grey colour that is directly attached
to the BN layers in Figure 5.2.

Subsampling. We use Average Pooling, denoted as AvgPool and illustrated as AVG in
Figure 5.2, as the subsampling method in LeNet. AvgPool calculates the aver-
age value of a given matrix and with this way makes a subsample of the input
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matrix. A complex subsampling method involving more calculations were used
in the LeNet (LeCun et al., 1998, p. 7, §LeNet-5). The most commonly used
subsampling methods today are AvgPool and Maximum Pooling. We choose to
use AvgPool for the reasons below.

− Its functionality is closer to the subsampling function that was used in the
original LeNet.

− Our FLOating-Point operations (FLOPs) tests showed that using AvgPool

or MaxPool has no difference in computational complexity.

− AvgPool is proved to result more robustly when applied to even the most
challenging datasets.

Layer C5. C5 is the final convolutional layer in the LeNet (see Figure 2.8b). How-
ever, it is different compared to prior convolutional layers in that it consists of
1×1 feature maps. In other words, under the right circumstances, it works as
a FC layer (LeCun et al., 1998, p. 8). LeCun et al. explain the situation in the
paper as, if an input larger than the size 32×32 is fed into the network, then such
convolution operation would be necessary. We tested both a FC C5 and a convo-
lutional C5 in our LeNet architecture, and observed that the overall complexity
(in FLOPs) of the neural network remains the same, as the weight count of the
layer does not change. However, we notice a minor accuracy drop11 in the use
case of a convolutional-C5. We keep the input size in that margin, 32×32 or
smaller, in our experiments with LeNet, thus we choose to convert C5 into a FC
layer. As illustrated in Figure 5.2, we, firstly, flatten the layer S4 to enable full
connection. Thereafter, we replace the final convolutional layer, i.e., C5, in the
original LeNet with a FC layer named F5.

After this point, the CNN models used in the experiments will be called with
shortened names for the sake of intelligibility in the upcoming sections and chapters.
The LeNet architecture described in this section will be addressed as oLeNet since it
approximates to the original LeNet architecture.

5.3.1.2 Architecture of the Binarised Model

Although we intended to keep the oLeNet as it is because of the fundamental dif-
ferences, described in Chapter 2 - Section 2.4.1, in training between the BNNs and

11A drop of 0.04%.
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FP-ANN models, we had to make changes to the model to fit into the BNN structure.
The differences between the neural network types are listed below.

– Quantising all the layers in a FP neural network results in dramatic drop in accur-
acy. Therefore, some of the layers are kept as they are depending on the design
decision. Such layers might be the initial layer, final layer, and BN layers in a
neural network.

– BNNs have to have BN layers to make them keep balanced.

– MaxPool works the best for them as they already consist of highly reduced values
that are either −1 or +1.

– Activation functions do not work on them as they do in FP-ANNs. The activation
function we used beforehand, ReLU, due to its no-negativity policy, does not help
in BNNs in our case.

Because of the above reasons, during our binarised LeNet, which will be addressed
as bLeNet from now on as being the binarised neural network in this research, imple-
mentation12,

– We use MaxPool instead of AvgPool.

– We do not use any activation functions in the model.

– The neural network model is fully binarised except the BN layers.

Figure 5.3: The BNN architecture of LeNet.

The bLeNet architecture adapted from oLeNet in light of the aforementioned dif-
ferences is shown in Figure 5.3. Additionally, we present another form of bLeNet that
not only showcases the layers of the architecture, but also showcases various numer-
ical details of the model in Figure 5.4b. We also present the same form of oLeNet

12We tried several other combinations of the LeNet architecture before settling into the final version
of the bLeNet. Because this version resulted with the highest accuracy and the lowest loss rates, we
have kept it.
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Figure 5.4: Full precision and binarised forms of the same CNN model, LeNet.
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next to bLeNet for a better comparison in Figure 5.4. The numerical details of both of
the models; the kernels, filters and channel dimensions are kept the same as in LeNet
(LeCun et al., 1998).

Perhaps the first noticeable difference between oLeNet and bLeNet in Figure 5.4
is the sizes of the models. Having no activation layers, as in ReLU in oLeNet, bLeNet
has less layers, and hence, is smaller architecturally compared to oLeNet. Given the
fact that BNNs is a special type of QNNs, weights of the layers that require intense
computation such as convolutional and FC layers are quantised into −1 or +1 for
energy efficiency purposes in BNNs. Therefore, the names of convolutional and FC
layers have the Quant prefix before their names in Figure 5.4b. Note that, because
they do not carry weights, pooling layers and the Flatten layer are not in binarised
forms in bLeNet. The only layers that are not binarised despite carrying weights are
the BN layers in the architecture. Finally, the reason for the InputLayer attachment in
Figure 5.4b following the input is to normalise the input data coming from the datasets
to fit the BNN model.

5.3.2 Merged Neural Networks Experiment: Fashion-MNIST and
Sound20 on a Modified LeNet

nLeNet-Image 

nLeNet-Sound 

mLeNet 

m
e
r
g
e

Figure 5.5: Illustration of the merge operation: nLeNets building the neural reuse ar-
chitecture.

We apply the same architecture that was used by Chou et al. for the neural reuse
experiments that merges two CNNs: one recognising images and the other recognising
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sounds. The backbone of this architecture is a modified LeNet which is one FC layer
shorter than oLeNet. Additionally, it does not contain any BN layers. After this point,
the aforementioned singular LeNet model will be called as nLeNet considering it is
used in the neural reuse experiment; and the overall neural reuse architecture will be
called as mLeNet because it merges two nLeNet models. We illustrate the merge lead-
ing to mLeNet in Figure 5.5, and the interior of mLeNet13 is displayed in Figure 5.6.

Figure 5.6: The interior of mLeNet constructed by two nLeNets.

nLeNet has more units and kernels in the convolutional and FC layers than oLeNet
does, which makes nLeNet computationally more intense and more expensive. The
numerical details of the nLeNet architecture, e.g., kernel counts, are showcased in
Table 5.7. We also showcase the numerical details of oLeNet in Table 5.6 and discuss
our reasons to choose nLeNet over oLeNet to be used in the mLeNet architecture in
Section 5.6.

Considering mLeNet is a “merger” that combines two separate CNNs in one body,
it has two inputs and two outputs. Both inputs have the same dimensions, 32× 32×
1. Fashion-MNIST comes with 28× 28× 1 data format in TF. However, because
Sound20 holds 32× 32× 1 data, in order to keep them aligned, the merger design
is fitted towards the larger data format. The outputs also differ in size, as Fashion-
MNIST has 10, and Sound20 has 20 output classes. The graphics of Figure 5.6 is
aimed to reflect these features of the neural reuse architecture.

5.4 Training Details of the Singular Networks

Only singular CNNs, oLeNet and bLeNet, are trained within this research. We use
the MNIST dataset for the training. Because energy-efficiency is the main goal of this

13The stacked layers o nLeNet and mLeNet are the same.



94 CHAPTER 5. EXPERIMENTAL SETUP

research, our aim is to preserve energy as much as possible, thus we have taken some
precautions to shorten the training period.

Along with preserving the energy, keeping the learning levels of the model high is
also paramount. A threat towards a healthy learning in ANNs is known as the “-fitting”
problem including over and under fitting. Over-fitting occurs when the learning level
of the model is unsatisfactory in a sense that it does not learn, but memorise on the
training data, hence can not generalise its knowledge on unseen data. The outcome
of over-fitting can be observed as while the model produces high accuracy results on
training data, these results get lower on test data. While over-fitting causes undesired
results on the test data, under-fitting causes the same results on both training and test
data. Under-fitting comes along with both low accuracy and high error rates on the
overall dataset. Therefore, in order to avoid over and under fitting of the data, we have
taken some precautions as well. The precautions taken to avoid both of them are listed
below.

BN layers. Because BN, as its name implies, normalises the critical information in an
ANN, it is seen as an inner shield towards the “-fitting” risks. However, adding
BN layers has more advantages than to solely avoid the “-fitting” risks for ANNs.
It is known to fasten the training, hence to reduce the training time which is a
crucial factor in energy-saving. Due to these advantages, we apply BN to oLeNet
and bLeNet.

Validation data. We use validation data along with training-only data when training
the networks. The validation data is supplied from the training data itself in the
amount of 20%. During the training, the validation data offers more options
to the neural network to make more comparisons and update itself via back-
propagation after every epoch, thus limits the chances of memorisation of data.

Early stopping in training. We use a fail-safe mechanism when training the CNNs,
i.e., EarlyCallback mechanism in Keras, which halts and concludes the training
if/when above aforementioned risk cases appear. This mechanism, by using the
validation data, keeps track of the training loss (see Chapter 6 - Section 6.1.1.2)
of a model. If the loss gets to increase after a certain point, the mechanism
interrupts the training and finalises it. If such aforementioned risk cases do not
appear, the training continues as long as the number of epochs assigned in the
beginning of the training.
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5.5 Pretrained Model Conversions

We explain conversion details of the pretrained models in this section. The start point
of every conversion is pretrained FP-CNNs in this scope. In Section 5.5.1, conversion
into SNNs; and in Section 5.5.2, conversion into QNNs are discussed.

5.5.1 Conversion of Full-Precision Neural Model into a Spiking
Model

We experiment with both a rate coding, (Wu et al., 2022), and a temporal coding,
(Stöckl and Maass, 2021), conversion techniques for our SNNs conversion experiments
as illustrated in Figure 5.7. We paid attention to their claimed SotA performances and
also evaluated them for ourselves based on the metrics we use that are mentioned
in Section 6.1 when choosing these two representatives among the available research
over ANN-SNN conversions. Note that, as we support the open-source projects, the
straightforward usability and trivial adaptability of both techniques to our code also
appealed to us from the software engineering point of view.

CNN I+II 
SNN-I 

SNN-II 
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temporal coding

Figure 5.7: Pretrained FP-CNN to SNN conversions.

The rate coding based SNN converter by Wu et al. works on the high-level API
of TF, Keras. It takes a trained CNN model and its training dataset as the input. The
trained model could be fed as a pretrained and stored network model in the format of
.h5, or as a freshly trained one in the same run-time. We apply the former method.
The dataset is used to regulate the activation function of the new SNN model in this
converter as the used images are always in discrete format. ReLU activation function
regulator is readily built-in within the converter. The output of the converter is a Keras
model with custom, spiking layers.
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The temporal coding based SNN converter by Stöckl and Maass works on the low-
level API of TF and on the functional API14 of Keras. As the converter only processes
and makes changes on the activation layers of a given neural network, it only requires
a run-time call to its main function prior to uploading (solely) the weights of the pre-
trained model. Sigmoid and ReLU activation function examiners are readily built-in
within the converter. The output of the converter stays the same as the input by appear-
ance, except the inner, i.e., numerical, changes in the activation layers.

Both of the converters are tested on oLeNet and nLeNet each of which comprises a
singular CNN. Thereafter, by examining the results in Section 6.2.2.2, we choose to use
the temporal coding based converter (Stöckl and Maass, 2021) during the experiments
that involve mLeNet.

5.5.2 Conversion of Full-Precision Neural Model into a Quantised
Model

We use TF-Lite which is an ANN optimisation module inside TF in order to convert
our FP models into QNNs. Since our research concerns utilising the pretrained neural
networks, the work of TF-Lite is to compress and hence to make the CNNs “lighter”
in size enabling them to fit in and run on computationally limited devices, e.g., mobile
phones, smart watches etc, in our research. TF-Lite makes such work possible by
converting ANNs into QNNs.

Quantisation is available in both floating point, float32, and integer, int8, data types
in TF-Lite15. A floating point quantisation refers to storing a 32-bit data, float32, in a
16-bit data format, float16. An integer based quantisation may refer to either degrading
a 32-bit integer data into 16-bit or a 8-bit data format. Quantisation methods that we
prefer to test in this research involves “from 32-bit float to 8-bit integer” quantisation.
In other words, the quantisation that we mention for our experiments comprises a full
integer, 8-bit, quantisation. This quantisation format stores the values in int8 data type
that otherwise would remain in type float32 and it restricts the data to fit the range of
[-128, 127]16.

We make our experiments over three quantisation formats as illustrated in Fig-
ure 5.8. All of them involve integer quantisation and two of them include floating

14Keras has two APIs to model ANNs: Functional and Sequential API.
15Resource for the information in this section: https://www.tensorflow.org/lite/performanc

e/model optimization
16This range is specific for activations and inputs of a model. The weights in the model are defined

within the range of [-127, 127] (Jacob et al., 2018).

https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
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Figure 5.8: Pretrained FP-CNN to QNN conversions.

point data. We apply Post-training integer quantisation onto pretrained FP-CNNs.
This quantisation method requires a sample of unlabelled training data and results
with only a small accuracy loss17, hence we prefer such method. The three quantisa-
tion method that we use during our experiments are explained below.

Degree I. Only the weights of the model are quantised into int8.

Degree II. The input and output of the model remain as float32. Everything else in
the model is quantised into int8.

Degree III. All the features of the model are quantised into int8.

5.5.2.1 An Attempt to Convert a Full-Precision Model Directly into a Binarised
Model

There hasn’t been any tool or research that targets directly converting a FPs-CNN into
a BNN in the literature so far. BNNs are trained from scratch to make the most of them.
Moreover, conversion into binary directly from full-precision results in a great deal of
accuracy loss when such a conversion occurs. However, for the sake of showing how
much accuracy loss occurs and to show the ineligibility of such conversions, we added
these results of a BNN conversion experiment. Therefore, we make an attempt for a
direct translation between CNNs and BNNs.

xb = Sign(x) =

+1 if x≥ 0,

−1 otherwise.

17Model optimisation — TF-Lite: https://www.tensorflow.org/lite/performance/model o
ptimization, final access on 04/10/2022.

https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
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We use the deterministic formula by Hubara et al. that is shown above to convert the
pretrained data values of a model into binarised format. The above formula converts a
FP value, x, into a binarised value, xb, resulting the value to be either +1 or −1. We
exclude the BN layers and bias values in the CNN when converting, which naturally
occurs in any BNN training. However, such conversion results with a significant loss in
both accuracy and measured error of the model. The experiment results are showcased
and discussed in Chapter 6 - Section 6.2.2.1.

5.6 Discussion of Full-Precision Model Architectures

In this section, we would like to highlight the reason of choosing two different LeNet-
like network models, i.e., oLeNet and nLeNet, for the experiments explained in the
previous sections. oLeNet, described in Section 5.3.1.1, and nLeNet, described in Sec-
tion 5.3.2, are the shortened names of the LeNet models to enable distinction between
them. We summarise the characteristics of the two aforementioned FP LeNet architec-
tures in Table 5.5 below.

Table 5.5: Summary of the FP-LeNet architectures that constitute the topic of this
section.

Alias Meaning
Origin

(in Section)

Illustration (in Figure)

Layer-wise Numerical

oLeNet
our LeNet architecture

which approximates to the original LeNet-5 architecture
5.3.1.1 5.2 5.4a

nLeNet
a LeNet like singular architecture

that is used in the neural reuse experiment
5.3.2 5.6 6.2a

The initial decision that we made was choosing a neural reuse experiment archi-
tecture and we chose the network that was used by Chou et al. because it was readily
available, i.e., pretrained. In other words, nLeNet emerged earlier than oLeNet did in
this research. We then chose not to use nLeNet during our singleton experiments that
require training from scratch considering the following examinations.

The “Layer-wise” column under the title “Illustration” on Table 5.5 refers to the
illustrations of the models that display how their layers are stacked. Furthermore, the
“Numerical” column next to “Layer-wise” on Table 5.5 refers to the architectural dis-
play of the two LeNet models including numerical information supported with figures.
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Table 5.6: Analysis of oLeNet that is described in Section 5.3.1.1.

Weights
Layers Data Dimensions

(N) (%)

Input · · · 28×28×1

Conv2D (C1) \|/ −−−−−− 156 0.2
... 28×28×6

BN + ReLU µ|σ −−−−−− 24 0.0
... 28×28×6

Avg Pool2D (S2) Y −−−−−− 0 0.0
... 14×14×6

Conv2D (C3) \|/ −−−−−− 2,416 3.9
... 10×10×16

BN + ReLU µ|σ −−−−−− 64 0.1
... 10×10×16

Avg Pool2D (S4) Y −−−−−− 0 0.0
... 5×5×16

Flatten ‖‖‖ −−−−−− 0 0.0
... 400

Dense (F5) X −−−−−− 48,120 76.9
... 120

BN + ReLU µ|σ −−−−−− 480 0.8
... 120

Dense (F6) X −−−−−− 10,164 16.2
... 84

BN + ReLU µ|σ −−−−−− 336 0.5
... 84

Dense (Output) X −−−−−− 850 1.4

Softmax · · · 10
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Table 5.7: Analysis of nLeNet that is described in Section 5.3.2.

Weights
Layers Data Dimensions

(N) (%)

Input · · · 32×32×1

Conv2D (C1) \|/ −−−−−− 832 0.0

ReLU
... 32×32×32

Max Pool2D (S2) Y −−−−−− 0 0.0
... 16×16×32

Conv2D (C3) \|/ −−−−−− 51,264 1.2

ReLU
... 16×16×64

Max Pool2D (S4) Y −−−−−− 0 0.0
... 8×8×64

Flatten ‖‖‖ −−−−−− 0 0.0
... 4096

Dense (F5) X −−−−−− 4,195,328 98.5

ReLU
... 1024

Dense (Output) X −−−−−− 10,250 0.2

Softmax · · · 10
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For the purposes of examining the models in terms of their computational overhead
in this section, network architectures including their weight distributions are detailed
in Table 5.6 and 5.7 respectively. Note that both tables display the layer names, in
the column “Layers”, as they are in Keras. The architecture of nLeNet is layer-wise
smaller compared to oLeNet as seen in Table 5.7. However, it is densely packed, and
overall has more weights than oLeNet. Its input dimensions, 32× 32, is larger than
the dimensions of oLeNet which is 28× 28 and that aspect solely puts ≈ 1M18 extra
weights, and ≈ 8.5M19 more FLOPs onto nLeNet.

The neurons of nLeNet, a.k.a units in Dense layers and kernel counts in Conv2D
layers in ANNs, are also larger in quantity compared to oLeNet which is the root cause
of overhead in any given ANN. The kernel counts of Conv2D layers are displayed
as the third dimension from the left side, and the units of Dense layers are displayed
solely in the “Data Dimensions” column of Table 5.6 and 5.7.

Layer F5 holds the most of the weights in both architectures as shown in the Tables
5.6 and 5.7. We see that the share value of F5, 98.5 %, is even larger in nLeNet. How-
ever, from the FLOPs point of view which is the metrics of computational complexity,
F5 is not the heaviest layer in neither of the models. The top three layers in FLOPs is
listed in a descending order and shown in Table 5.8. C3 has the most computational
complexity in both LeNet models according to results in the Table 5.8.

Table 5.8: Top three layers in FLOPs in oLeNet and nLeNet.

oLeNet nLeNet
Layer FLOPs Layer FLOPs

1 C3 480.00 K C3 26.21 M
2 C1 235.20 K F5 8.39 M
3 F5 96.00 K C1 1.64 M

Table 5.9: Top two operational results based on FLOPs in oLeNet and nLeNet.

Operation
oLeNet nLeNet

FLOPs % FLOPs %
1 Conv2D 715.20 K 83.14 27.85 M 76.60
2 MatMul 117.84 K 13.70 8.41 M 23.13

We also examined the operations that have the most computational complexity, and
hence, that cause the overall overhead in both LeNet architectures. These operations

184,257,674 (current weights) − 3,274,634 (weights to be with 28×28 inputs) = 983,040
1936,361,276 (current FLOPs) − 27,844,156 (FLOPs to be with 28×28 inputs) = 8,517,120
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are revealed as convolution operation, Conv2D, and matrix multiplication, MatMul,
and shown along with their costs as FLOPs in Table 5.9. Both Conv2D and MatMul

are the node names in the TF graph and hence portrayed as such in the table. Conv2D
operations are caused by the convolutional layers, and MatMul operations belong to
the FC layers in the architectures. Although, they seem light in terms of weights,
convolutional layers, as being the backbone of any CNNs, are also the lead overhead
which is seen clearly in Tables 5.8 and 5.9.

Table 5.10: The computational and memory complexity of the used CNN models.

Weights
Model FLOPs

Total Trainable Non-Trainable
Model Size

oLeNet (Section 5.3.1.1) 860.28 K 62,610 62,158 452 242.80 KiB
nLeNet (Section 5.3.2) 36.36 M 4,257,674 4,257,674 0 16.24 MiB

All our examinations proved that computationally nLeNet has more complexity
over oLeNet which makes it more expensive to train and test which includes inference
stage as well. The overall complexity values are summarised in Table 5.1020. Because
of such overhead, we chose to use oLeNet in singleton experiments in which we needed
to train the networks from scratch.

5.7 Summary

In this chapter, we have presented our setup, showcased the CNN architectures, de-
tailed the datasets to be used with the CNNs, and explained the experiments. At the
same time, we have also discussed our reasons to prefer any aforementioned piece over
other available options.

Table 5.11: Description of LeNet architectures that are used in the conducted experi-
ments in this chapter.

Alias Meaning
Origin

(in Section)
oLeNet our LeNet architecture which approximates to the original LeNet-5 architecture 5.3.1.1
bLeNet our binarised LeNet architecture 5.3.1.2
nLeNet a LeNet like singular architecture that is used in the neural reuse experiment 5.3.2
mLeNet two merged nLeNet models comprising the neural reuse experiment 5.3.2

We use the LeNet-like architectures during our experiments since the variety in
their layers and model size make them perfect fits to test our approach in this thesis.

20Note that the “Non-Trainable” parameters in Table 5.10 come from BN layers in the oLeNet.
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Table 5.12: Summary of the experimental setup of this research.

CNN

Architecture

Experiments
Datasets

Training from scratch
Pretrained Model Conversions

into SNNs into QNNs into BNNs MNIST Fashion-MNIST Sound20

oLeNet X X X X X

bLeNet X X

nLeNet X X X X

mLeNet X X X X

We have mentioned four different LeNet architectures in this chapter differentiated by
prefixes. We summarise the aforementioned LeNet architectures in Table 5.11 along
with the sections in this chapter that introduced them. Additionally, we overview the
architectures along with the datasets and the details of the experiments in Table 5.12.
In the next chapter, Chapter 6, we proceed to report and evaluate the experiments that
are introduced in this chapter.



Chapter 6

Evaluation and Results

We consider not only raw accuracy, but also rejection, training time,

recognition time, and memory requirements.

LECUN ET AL., 1995

Previously, we gave an overview of the problem in the domain of CNNs in Chapter 2
and described our hypothesis as our solution offer to this problem, firstly in Chapter 3
theoretically, then in Chapter 4 algorithmically. Additionally, we explained the tech-
nical setup for our experiments that will help us prove our hypothesis in Chapter 5. We
evaluate the hypothesis via experiments in this chapter.

We aim to provide as much detailed and well-measured research as possible, espe-
cially in the evaluation part. During the literature review for this thesis, we observed
that earlier papers had a tendency to be more transparent. For example, the authors
report the “computational complexity” in the earliest form of a trained ANN paper,
NETtalk (Sejnowski and Rosenberg, 1986). The overall hours that took to train the an-
cestor of the modern CNNs were reported in the LeNet-5 paper by LeCun et al. (1998).
Nowadays, we always come across solely the “accuracy” metric, which is, without a
doubt, a crucial metric to measure the success of ANNs. However, the vital question
here is: is it enough? Therefore, we use two sets of metrics when evaluating our hypo-
thesis: one set to measure the success of CNNs as usual in the ML domain including
accuracy, and another set to measure their energy efficiency. Even though we don’t
come across large metrics sets as widely used in today’s research, they were indeed an
integrated part of the metrics in the early days of CNNs as LeCun et al. mentions. That
is what inspires our evaluations as we believe it contributes to the transparency of any
research.

104
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6.1 Metrics

We divide the metrics into two sub-groups. On one hand, since our hypothesis is over
CNNs which is a field under ML, ML and specifically ANN related metrics are used.
On the other hand, because “the energy” is the main concern in the hypothesis, energy-
specific metrics are used as well.

We have two aspects regarding our metrics usage. Firstly, we do not measure
energy consumption in this research. We run all our experiments on a conventional
machine which solely has a CPU; accordingly, we measure metrics which indicate
energy consumption of the network models for better comparison in between them
and for understanding the models. Secondly, we do not report all the metrics for all
the neural networks. Metrics will be reported based on applicability which will be
elaborated in the following sections.

6.1.1 On Evaluation of Artificial Neural Networks

Metrics that are used to evaluate the experiments in Section 6.2 are categorical accur-
acy, loss, and error rate. They are all calculated via Python library TF when evaluating
the networks on the test datasets. An important note here is that, the accuracy is the
higher, and the loss and error rates are the lower, the better.

We choose accuracy as the lead metric in this research. We believe that any metric
should not be employed solely to evaluate a research, and should be accompanied by
other metrics as we did so in this thesis. However, regardless of how small in size,
how fast in inference, or how less computationally complex a neural model may be, if
it is not accurate, then the model needs to be reconsidered before applying to the real
world. Therefore, we firstly check accuracy levels of any model that is used in this
research, before checking other metrics. The ultimate goal is maintaining the accuracy
as high as possible and finding the best fit concerning energy efficiency for the end
device.

i = index of test set,

n = total number of data in the test set,

t = target output in the test set; true value,

o = predicted output by our system.

(6.1)
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In Equation 6.1, we define the common symbols that take place in the formulas
(Mitchell, 1997; Fürnkranz et al., 2011) of the metrics in this section. i, t, and o values
vary in the formulas. However, n is a fixed number and its value set was shown in
Chapter 5 - Table 5.3 earlier. For instance, if the evaluation runs on Sound20 dataset,
the corresponding n value is going to be 3727.

6.1.1.1 Accuracy

Accuracy is the most common metric among the experiments as it is the mostly pre-
ferred in the literature to evaluate CNNs. It has a Top-k category as well, e.g., Top-1
and Top-5 categorical accuracy, that is showcased in the benchmarks, such as the ILS-
VRC. k symbolises the top label count in which the correct category label is found to
classify the given instance. Top-1 accuracy basically returns a True or False answer
to the classification problem; when the accuracy is used solely, it means the Top-1
accuracy. Top-5 indicates that the true label is among the first 5 returned answers by
the network which obviously increases the accuracy levels of the model in evaluation.
Top-1 and Top-5 are the mostly referred ones among the accuracy metrics, hence we
use both of them to showcase our results.

A(t,o) =
1
n

n−1

∑
i=0

k

∑
j=1

1(ti = oi j)

Above formula is used to calculate Top-k accuracy in our research. When k in the
second part of the formula equals to 1, the overall formula turns into calculating the
traditional accuracy that is Top-1.

6.1.1.2 Loss

The loss is the result of a differential function which determines the fitting value
between a network model and a dataset, and produces their corresponding misfit value.
As our tests are over the classification problem in this thesis, the loss function we
refer to is Categorical Cross-Entropy which is also recommended for efficient use in
calculation by Byerly et al..

L(t,o) =−
m−1

∑
j=0

t j · logo j

We compute the loss value whose formula is shown above via TF-Keras. m rep-
resents the output size of a model, and j is the index of the output set in the formula.
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We summarised the models along with their corresponding datasets in Chapter 5 -
Table 5.12. To illustrate, given the model is nLeNet and the dataset is Sound20, based
on Table 5.3, the corresponding m value would be 20.

6.1.1.3 Error Rate

The error rate metric refers to the (%) proportion of the miscategorised results by the
neural network. Mean Squared Error (MSE) is used as the error rate function in this
thesis. We observe in the literature that all the early neural network papers share their
MSE results and that includes the famous LeNet papers since MSE has always been a
crucial metric to evaluate the ML techniques. Therefore, we also share the MSE results
as the error rate of our networks. The below formula is used to calculate MSE in our
experiments.

E(t,o) =
1
n

n−1

∑
i=0

(ti−oi)
2

6.1.2 On Evaluation of Energy Efficiency

Because energy measurements vary based on the location on earth and the resources
that are used for such measuring, we choose to use energy-efficiency indicator met-
rics rather than using formulas leading to measured energy results in joule (J) or
kilowatt/hour (kWh). Considering their relation to the energy consumption of ANNs
today, discussed in Chapter 1 - Introduction, especially big technology companies, e.g.,
Google, aims to be more transparent, and shares their use of energy in their world-wide
distributed data centres1,2. Such numerical data shows even for the same company,
variety occurs in energy consumption and efficiency just based on placing. Green-AI
(Schwartz et al., 2020) principles also state the unreliability of metrics such as car-

bon emission due to its being location-reliant; and electricity usage due to its being
hardware-reliant, despite formulas are offered (Patterson et al., 2021) to encourage
such metric usages.

The lead metrics that we use to evaluate energy efficiency are Multiply and AC-
cumulate operations (MACs) and FLOating-Point operations (FLOPs) in this research.
Such metrics are considered as the most reliable and accurate indicators over other met-
rics towards energy efficient systems in the literature (Schwartz et al., 2020). As our

1https://www.google.com/about/datacenters/efficiency/
2https://cloud.google.com/sustainability/region-carbon

https://www.google.com/about/datacenters/efficiency/
https://cloud.google.com/sustainability/region-carbon
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research emphasises the energy efficiency, our metrics include the measured time and
model size in the machine’s memory as well. The comparisons based on time meas-
urement are over x-times of the base value within that category. We use binary-byte

format to report model sizes, specifically Kilo Binary Byte (KiB) and Mega Binary
Byte (MiB) as the sizes of the models used in this research do not exceed MiBs.

We offer a description for MACs and FLOPs in Section 6.1.2.1. Thereafter, we
explain the measurements of time and model size in Section 6.1.2.2. Note that, all the
metrics in this set are the lower, the better. Finally, a reminder here is that we do not
apply all the metrics to all the comparisons in this research. For instance, if inference

time is the same for all the compared networks in an experiment, then we do not report
inference time since it loses its comparability value.

6.1.2.1 MACs and FLOPs

We use MACs and FLOPs as the main energy-efficiency references in this research.
MACs are equivalent to the half of the count of FLOPs in the FP-ANNs because they
comprise of two calculations in one: multiply and accumulate together. We report the
MACs for the BNNs and QNNs, and the FLOPs when the FP-CNNs are the main sub-
ject of the experiments in this chapter. We benefit from the larq (Geiger and Team,
2020) and TF (Abadi et al., 2016b) to measure MACs and FLOPs of the neural net-
works.

6.1.2.2 Time and Model Size

We measure training, conversion, and inference time of the CNNs during the exper-
iments. Because the machine we use for our tests include only a CPU and all the
metrics are measured on the same machine, we benefit from the traditional measure-
ment techniques to measure system time. The training time is the time passed during
the determination of the weights of a model. The conversion time comprises the time
when converting the pretrained CNN into other forms of neural networks, such as
QNNs and SNNs. The inference time is the time when applying the weights to the
model to determine the output. We report training and conversion times only in the
discussion section as they are realised theoretically once throughout the lifetime of a
neural network. We report inference time of the models whenever the comparison is
applicable. Note that, during the measurement of training time, training data is used,
and during the measurement of inference time, test data is used.
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Model size is measured in binary-byte format as the model takes place in the stor-
age. We use larq’s summary tool to measure model sizes for the tests in Sections 6.2.1
and 6.2.2. As the neural reuse test requires the usage of low-level TF which is not com-
patible with larq, we measure the model size of the outcome of the test in Section 6.2.3
directly via memory storage.

Note that, when presenting the measurements of time, we use x for the base value
instead of comparing the measured, real-number values. The reason behind this idea
is that the “time” is considered as being not as exact as other metrics in the literature
because the results may change when the tests are run on a different machine, or when
the same tests are repeated on the very same machine (Schwartz et al., 2020). Since
we use the same machine having only a CPU throughout the tests, running the tests
103 times and taking the average of the outcome, we find it appropriate to share our
measurements as x-times by comparing them to one another. We also provide our sys-
tem requirements in Chapter 5 - Section 5.1, and details of all the metric measurements
in Section 6.1. Overall, we hope that reporting the results of all our aforementioned
metrics will shed light for the reader and for researchers who would like to replicate
our experiments.

6.2 Experimental Results

This section will report the results of and evaluate the experiments divided into three
different sections: evaluating the outcomes of the models that are trained from scratch
in Section 6.2.1, converting the pretrained models into different forms for energy-
efficiency in Section 6.2.2, and the evaluation of the overall proposed approach in
Section 6.2.3.

The four over six of the LeNet models on which we run our experiments were
described and summarised in Chapter 5 - Section 5.7. Before elaborating the exper-
iments, we update the summary in Table 5.11, and add the two final LeNet models
that will be introduced in this chapter as displayed in Table 6.1. Both qLeNet and
sLeNet are obtained via conversion of a pretrained model and such pretrained models
are oLeNet and nLeNet in our experiments.

3Number 10 is chosen empirically here.
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Table 6.1: Description of LeNet architectures that are used in the conducted experi-
ments in this chapter.

Alias Meaning
Origin

(in Section)
oLeNet our LeNet architecture which approximates to the original LeNet-5 architecture 5.3.1.1
bLeNet our binarised LeNet architecture 5.3.1.2
nLeNet a LeNet like singular architecture that is used in the neural reuse experiment 5.3.2
mLeNet two merged nLeNet models comprising the neural reuse experiment 5.3.2
qLeNet a quantised LeNet model that is obtained via converting a pretrained LeNet model 6.2.2.1
sLeNet a spiking LeNet model that is obtained via converting a pretrained LeNet model 6.2.2.2

6.2.1 Training from Scratch: Full Precision vs. Binarised Neural
Model

The weights of a BNN comprise instead of conventional 32-bit Float weights, 4-bit

Integer weights which are either −1 or +1, ergo they offer solutions for edge devices
and micro-controllers. Although BNNs promise to deliver 4-bit weights, the micro-
controllers today do not include built-in 4-bit data storage units, hence instead they
store such values in 8-bit data types (Banbury et al., 2021). Keeping that in mind, and
considering our machine also stores such weights as 8-bit, we run our BNN experiment
on our CPU machine.

The only training that was made during this research is the training of the LeNet
model exploiting the fact that it is a small CNN model, compared to deeper and wider
CNNs today, since its being their forerunner. We train an FP-LeNet, oLeNet, and its
counterpart BNN, bLeNet, to compare their differences which are the most obvious
during training.

The main reason of such training is because when a direct conversion of CNN
to BNN occurs, valuable metrics described in Section 6.1.1 drops tremendously (see
Section 6.2.2.1 for the experimental details). Therefore, a BNN is only obtained by
training via the techniques available today. We demonstrate the overall training data
history of the two LeNets in Figure 6.1. Both models are trained and tested on MNIST
data for this experiment.

The data graphics that are displayed side-by-side in Figure 6.1 demonstrate the
fundamental differences between FP-CNNs and BNNs clearly. While the training pro-
cedure of oLeNet goes smoothly when both measuring the loss and accuracy, it is on
the contrary in the BNN equivalent version of the network, bLeNet. Maintaining the
loss metric especially pose a challenge for the bLeNet as we observe in Figure 6.1b. It
is important to remember that the metric loss, Section 6.1.1.2, measures the fitness of



6.2. EXPERIMENTAL RESULTS 111

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

/A
cc

ur
ac

y

loss
accuracy
val_loss
val_accuracy

(a) FP-CNN, oLeNet
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(b) BNN, bLeNet

Figure 6.1: Data history illustrations of a CNN and its equivalent BNN during training.
Metrics start with val in the graphics indicate validation data which we use during
both of the training sessions. (6.1a) illustrates the loss and accuracy values during the
training epochs of FP-LeNet, oLeNet. (6.1b) illustrates the loss and accuracy values
during the training epochs of binarised LeNet, bLeNet.

the model to the data. If Figure 6.1b were seen solely without a name tag, one might
easily assume that the data and the neural model are not a good fit. However, we know
that indeed they are by looking at Figure 6.1a which proves the hustle of training a
BNN which reflects to, and also sheds light onto the lower metrics results of bLeNet
in Table 6.2 against oLeNet.

Table 6.2: The metric results of FP-CNN and BNN on test data.

Model
Accuracy (%)

Loss Error Rate
Number of MACs

Model Size
Top-1 Top-5 1-bit 32-bit

oLeNet 99.17 99.99 0.03 0.0013 − 416,520 242.8 KiB
bLeNet 95.75 99.91 0.32 0.0075 298,920 117,600 9.27 KiB

The salient observation based on Figure 6.1 and Table 6.2 is the loss in the ANN
metrics, and the gain in the energy efficiency metrics when an equivalent BNN of a
FP-CNN is trained. On one hand, the accuracy of the model drops 3.45% and loss
becomes ≈ 11x more as seen in Table 6.2 in the case of bLeNet. On the other hand,
the network model shrinks ≈ 26x, and ≈ 72% of the MACs of the model becomes
1-bit operations in bLeNet. We do not showcase the inference time of the models in
Table 6.2 because we obtain almost the same measurements from both of them on our
machine. Although memory usage is not among our metrics in this research, during
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the experiments it was also observed that the memory usage of bLeNet during both
training and inference is ≈ 1.5x higher than the memory usage of oLeNet on the same
machine. Overall, we conclude that unless the highlights of BNNs, i.e., reduced MACs
and a small model size, are the best fit to the edge device, considering its computational
overhead, training a BNN from scratch would be up to user preference.

6.2.2 Converting the Existing Models

6.2.2.1 Quantisation of the Models

Binarisation and three degrees of quantisation of the pretrained models are experi-
mented in this section. All the experiments are realised over pretrained, ready-to-use
models, without any further training via conversion techniques. The degrees of quant-
isation concern the data precision. To elaborate, the original data type used in the
building blocks of FP-CNNs is float32. Because we apply a full integer quantisation,
the data types are quantised into either int32 or int8 depending on the quantisation
degree, or in some quantisation degrees remain as they are, in type float32.

Quantisation experiments are reviewed in three parts within this section. We detail
the changes in data types and in the architecture of the model when converted into a
QNN in Part I. Thereafter, we review the performance of the models after quantisation
in Part II and after binarisation in Part III. Throughout this section, the numerical levels
following QNNs, QNN-I-II-III, refer to the quantisation degrees of the models which
is defined in Chapter 5 - Section 5.5.2.

Architectural Aspects of the Quantisation We examine the changes that occur in
the model after quantisation in terms of its architecture and data types in this part.
We display a FP-CNN and three degrees of QNN counterparts in Figure 6.2 for that
purpose. The overall schema in Figure 6.2 reflects the changes on a FP-CNN as the
quantisation level increases with the degrees. The main CNN architecture chosen for
this examination is nLeNet. nLeNet has the most compact architecture among all the
architectures studied in this research. Because of its compactness, it would be more
straightforward to investigate the effects of the quantisation process on it, ergo we
decide on nLeNet.
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Figure 6.2: The nLeNet trained on image data and its quantised forms by three different
degrees.
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nLeNet has an output containing either 10 neurons or 20 neurons depending on the
classification task during our experiments. 10 neurons in case of image classification,
and 20 neurons in case of sound classification. The nLeNet, which is the image clas-
sification part of the mLeNet architecture, is the FP-CNN leg of the QNN schema that
displayed in Figure 6.2a. A reminder here is that, nLeNet and mLeNet were introduced
in Chapter 5 - Section 5.3.2. Additionally, the architecture of nLeNet was elaborated
in Section 5.6 - Table 5.7.

Figure 6.2b shows the 1st degree quantisation of the FP model, nLeNet. The archi-
tecture remains almost the same as before except the Flatten is turned into a Reshape

layer, and the inner Activation layers, ReLUs, are tucked into their preceding layers
by TF-Lite. Only the weights of the model are quantised into int8 within this degree.
However, as an exception to the situation, the weights of the first and last layers, which
are Conv2D and Softmax respectively in the Figure, are kept in type float32. Moreover,
all bias values in the model remain in type float32; the pooling layers are also real-
ised over type float32 within this degree. Overall, the new model, QNN-I, obtained
via quantisation degree I, comprises float32 and int8 data types. Making data type
alterations, i.e., using mixed data types, in the model to keep the accuracy as high as
possible, ergo to salvage the accuracy, is indeed a common application4 in quantisation.
We will discuss more mixed types in quantised models in the proceeding paragraphs.
As a note, we apply the 1st degree operation onto our pretrained models via the default

optimisation flag in the TF-Lite.

Figure 6.2c shows the 2nd degree quantisation of the FP model, nLeNet. All the
building blocks of the model, except input and output, are quantised within this degree.
Such quantisation is realised into type int8. However, as an exception to that, bias
values are quantised into type int32. Because the input and output remain in their
original data type, float32, the “Quantize” and “Dequantize” processes occur after the
input and before the output in Figure 6.2c. The new model, QNN-II, obtained via
quantisation degree II, comprises float32, int32, and int8 data types.

Figure 6.2d shows the 3rd degree quantisation of the FP model, nLeNet. All the
building blocks of the model are quantised into type int8 within this degree. However,
the bias values in the model, once more, remain in type int32. Because the input and
output are also quantised within this degree, we see only the “Quantize” process after
and before them in the Figure. The new model, QNN-III, obtained via quantisation
degree III, comprises int8 and int32 data types.

4This topic was also mentioned in Section 5.3.1.2 when introducing the BNNs into our experiments.
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The performance results of the three degree quantisation operations will be dis-
cussed in the following part. Such results belonging to the architecture in Figure 6.2a
can be found in Table 6.3 under the name of “nLeNet - Image”.

Performance Aspects of the Quantisation Our initial intention was to experiment
quantisation solely over oLeNet which was described in Section 5.3.1.1 and trained on
MNIST data, and is computationally the smallest and lightest CNN in this research.
However, the outcome we get from the aforementioned experiment did not deliver
identifying results in terms of accuracy as we expected. Therefore, we also experi-
ment with the nLeNet architecture with both image and sound data trained versions to
get more concrete and decisive outcomes. We run three experiments in total and our
experimental results are displayed in Table 6.3.

Table 6.3: Accuracy, model size, and comparative inference time of the three quantised
models.

(a) Accuracy and model size.

Model

Accuracy (%) Model Size

FP-CNN
QNNs

FP-CNN
QNNs

QNN-I QNN-II QNN-III QNN-I QNN-II QNN-III

oLeNet 99.17 99.18 99.16 99.20 242.80 KiB 68.62 KiB 66.45 KiB 66.54 KiB

nLeNet - Image 91.57 91.68 91.16 91.17 16.24 MiB 4.07 MiB 4.07 MiB 4.07 MiB

nLeNet - Sound 78.08 77.92 76.52 72.79 16.28 MiB 4.08 MiB 4.08 MiB 4.08 MiB

(b) Inference time.

Model
Inference Time

FP-CNN QNNs
oLeNet 15 x x
nLeNet - Image 15 x 3 x
nLeNet - Sound 15 x 3 x

Before moving to review the results on the Table 6.3, there are two notes that we
need to mention. Firstly, although the model sizes of QNNs seem the same for nLeNet
models in the Table, these sizes differ in precision. Their differences are in byte levels.
The real quantised size values of image and sound nLeNet are presented in 6.2 and 6.3
respectively.

4,268,288 −920−−−→ 4,267,368 +72−−→ 4,267,440 (6.2)
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4,278,560 −912−−−→ 4,277,648 +72−−→ 4,277,720 (6.3)

Secondly, the FP-CNN model sizes of both nLeNet models differ from the meas-
urements by Chou et al.. This goes to same for the merged model size as well. This
is because while we use KiB and MiB throughout our research as unit of information
measurement, they measure it via Kilobyte (KB) and Megabyte (MB)5. In this re-
search, the reported sizes of the FP-CNN models are measured over their Keras saved
.h5 files, and the sizes of their converted QNNs are measured over the saved TF-Lite
models.

Up to 4x times smaller model size is obtained via quantisation as the results are
displayed in Table 6.3a. Moreover, as seen in the quantised model versions of oLeNet
in the Table, and in numerical representations in 6.2 and 6.3 of the quantised nLeNet
models, the smallest model size is produced via QNNs degree II for all the models.
However, considering that the size difference between quantisation degrees is in the
byte levels, depending on the end device on which the model will run, size might not
be the decisive feature at this stage.

Table 6.3b exhibits the power of QNNs over inference time of the models. Up
to 15x times shorter inference time is obtained via quantisation of the models. Only
one inference time report is observed in the Table 6.3b rather than three, owing to the
fact that the metric resulted the same measurement for all the QNN degrees in this
experiment.

Unlike in cases of model size and inference time metrics, we observe an inconsist-
ency in the accuracy levels of the quantised models in Table 6.3a. To elaborate, oLeNet
reaches the highest accuracy in QNN-III; nLeNet - Image reaches the highest accur-
acy in QNN-I; and nLeNet - Sound reaches the highest accuracy when in the FP form
prior to quantisation. Under normal circumstances, a model is expected to achieve its
highest accuracy when in the FP format. nLeNet - Sound in Table 6.3a is the repres-
entation of the expected outcome based on accuracy levels of a quantised model in this
sense. The more a FP model is quantised, be it full integer quantisation or binarisation,
the less its accuracy is expected to be. Nevertheless, we do not observe the reflection
of such expectation on the QNNs accuracy outcome of oLeNet and nLeNet - Image in
the Table.

Achieving a higher accuracy after quantisation is uncommon for FP-CNNs, yet it
is still possible. We list the reasons below that may cause this situation.

5Such difference between the measurements is explained as byte ×1000−−−→ KB ×1000−−−→ MB and
byte ×1024−−−→ KiB ×1024−−−→MiB.



6.2. EXPERIMENTAL RESULTS 117

1. The model might not be fully converged prior to quantisation.

2. Training data might be out of the optimal search space of the overall data.

3. Reducing bit inferences during quantisation might fit the model better and help
the gradients to find their optimal point.

Because optimising the training process of ANNs is not within the scope of this
thesis, we only examined the item 2 in the above list. All the tests throughout this
thesis are done over test data; training and validation data are only used during training.
However, when a quantised version of a model resulted with a higher accuracy than
its original, FP, form, the other data performances also need to be reviewed. The
training data accuracy of oLeNet is 99.71% and of nLeNet - Image is 99.15%. Both
of the accuracy values are higher than the corresponding, test data accuracy, values in
Table 6.3a. This proves the existence of a higher possible accuracy value depending on
the data distribution when training with and testing on the data. Nonetheless, because
our aim is not to put forward a SotA result via accuracy levels within this research,
we do not apply complete search space operations over data to find a specific part that
would result with the highest accuracy.

Binarisation vs. Quantisation Earlier, we demonstrated the training of a BNN in
Section 6.2.1, discussed the results, and concluded that unless such a small model size,
≈ 26x smaller, is required to be used on the edge device, due to its computational over-
head, training a BNN would be up to user preference. In this section, we experiment
and observe the outcome of a direct conversion from FP-CNNs into BNNs. Table 6.4
displays the test results of oLeNet, a FP-CNN, along with its counterpart BNNs, one
is trained and the other one is converted; all runs over MNIST test data.

Table 6.4: The metric outcomes of trained and converted BNNs along with a FP-CNN.

Model
Accuracy (%)

Loss Error Rate
Top-1 Top-5

oLeNet 99.17 99.99 0.03 0.0013
bLeNet - trained 95.75 99.91 0.32 0.0075
bLeNet - converted 9.74 49.74 9.64 0.1759

There is a significant drop in the value of all the metric levels in Table 6.4. Because
the outcomes that are shown in the Table are sufficient for reviewing, we do not display
any inessential experiment results. Considering the unsatisfactory outcome of bLeNets
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in the above Table, we run the same experiment on other models that mentioned in this
chapter as well. Nevertheless, we observe that the more complicated a model gets, the
more metric levels suffer for both trained and converted BNNs during the experiment.
For instance, when we run the same experiment via “nLeNet - Image”, the loss value
of the conversion climbed up to 44.4 where it was 9.64 for the bLeNet - converted in
the Table. Overall, our experiment in this part proves that a rigorous formula is needed
for such a direct conversion into BNNs. The results also emphasise the significance of
the back-propagation algorithm, in other words the online training, for the BNNs.

∗ ∗ ∗

We experiment and evaluate the two integer quantisation techniques up to this sec-
tion: full integer quantisation involving the types int8 and int32, and binarisation in-
volving int8. We showcase the experiment results of the binarised and quantised ver-
sions of oLeNet in Tables 6.2 and 6.3 respectively. The results exhibit that QNNs,
regardless of the degree, result with higher accuracy compared to the BNN versions
of the same CNN, here oLeNet. The both quantisation techniques prove to produce
more energy-efficient neural networks than their FP-CNN counterparts based on their
energy-related metric results. Keeping that in mind and considering the accuracy drop
in BNNs even if trained from scratch, we decide that a full integer QNNs is the best
choice as long as the targeted edge device has enough memory and space. After all the
examinations and reviews throughout this section, we choose to continue with QNN-I,
considering its optimisation over model size, inference time, and accuracy values, for
our final experiment in Section 6.2.3.

6.2.2.2 Spiking Neural Network Conversions

Metrics results of the two chosen FP-CNN to SNN conversion algorithms, detailed
in Chapter 5 - Section 5.5.1, over oLeNet are evaluated and discussed in this section.
Apart from the metrics that were introduced in Section 6.1, we also measure an SNN
specific metric in this section, spike count. Spike count is seen as a energy-efficiency
indicator in SNNs that the less the spikes, the higher it gets to preserve the overall
energy in a system (Davidson and Furber, 2021). Thus, we also share the spike count,
as overall and also as average per neuron, for the reviewed SNNs in this section. Note
that, this metric will only be used in this section throughout this chapter where the
subject of the comparison is SNNs. The metrics results are showcased in Table 6.5.
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Table 6.5: Metrics based comparisons of FP-CNN to SNN conversion algorithms over
oLeNet6.

Model Accuracy (%) Loss
Inference

Time
Spike Count

Overall Average (per Neuron)
oLeNet 99.17 0.03 x − −
sLeNet via rate-coding 99.19 0.25 1.2 x 78,524 9.7
sLeNet via temporal-coding 99.17 0.03 3.4 x 12,520 1.2

We describe the architecture of oLeNet in Section 5.3.1.1. “sLeNet via rate-

coding” in Table 6.5 is achieved by applying the research of Wu et al.. “sLeNet
via temporal-coding” in the Table is achieved by applying the research of Stöckl and
Maass. The two conversion techniques differ in nature as how they approach to con-
verting from CNNs into SNNs. Temporal coding is considered to be more energy-
efficient, and rate coding is known for its more broad and straightforward applicability
in the literature; we explain such differences in Chapter 4 - Section 4.2.3. After experi-
menting both of the techniques on our representative CNN, oLeNet, we have made our
decision based on the outcomes in Table 6.5.

Both conversion techniques prove themselves not to hurt accuracy levels based on
the results in Table 6.5; the overall accuracy of oLeNet is preserved after FP-CNNs
are converted into SNNs. Even an increase is observed in the accuracy of rate-coded

sLeNet, 99.19%, which is unusual as the highest accuracy is expected from the original
FP-CNN. This topic was discussed in Section 6.2.2.1 since a quantised version of
oLeNet resulted with 99.18% accuracy. The reasoning of us back in the Section is
relevant here as well. Please see the first two items in List 6.2.2.1 for more information.

The difference between the conversion techniques is observed over all the metrics
except for accuracy in Table 6.5. On one hand, the loss becomes 8x higher, and aver-

age spike count gets ≈8 times more in case of rate-coded sLeNet. On the other hand,
the inference time takes ≈3x longer in case of temporal-coded sLeNet. As long as it
corresponds to 17, the average spike count per neuron in such converted SNNs is con-
sidered as ideal for the converted models (Davidson and Furber, 2021) which coincides
with the temporal-coded sLeNet in the Table. We should also note here that MaxPool

layers are not supported by the technique of Wu et al. which constitute an important
part in nLeNet, the subject of our neural reuse experiment. Due to all the aforemen-
tioned reasons in this paragraph, FP-CNNs to SNN conversion will be realised via the

6The loss values shown as 0.03 in the Table differ in precision. The FP values of loss in model
oLeNet is 0.0294, and in sLeNet via temporal-coding is 0.0288.

7The real value was calculated as 1.72 in the correspondent paper (Davidson and Furber, 2021).
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temporal-coding technique in the next section, Section 6.2.3.

Table 6.6: The metrics comparisons of CNNs and their correspondent (converted)
SNNs.

Model
Accuracy (%)

Loss Error Rate
Inference

Time
Average Spike Count

per NeuronTop-1 Top-5
nLeNet - Image 91.57 99.87 0.67 0.0144 x −
sLeNet - Image 89.64 99.84 0.46 0.0163 3x 1.2
nLeNet - Sound 78.08 94.69 1.65 0.0170 x −
sLeNet - Sound 77.57 94.74 1.61 0.0173 3x 1.3

Before moving to our final experiment, the neural reuse, in which two nLeNets

are firstly merged then converted, we display the spiking versions of such nLeNets
in Table 6.6. sLeNets in the Table are realised via the temporal coding technique of
Stöckl and Maass.

6.2.3 The Neural Reuse on Top of Everything

We use the merged LeNet-like model, mLeNet during our final neural reuse experi-
ment. The both models in the merged model, that are addressed as nLeNet by architec-
ture, were examined in Chapter 5 and experimented on during the previous sections in
this Chapter. These experiments involved conversion into different types of ANNs and
were grouped under two titles: QNNs in Section 6.2.2.1, and SNNs in Section 6.2.2.2
respectively.

Our final experiment comprises the conversion of mLeNet, a merged FP-CNN con-
sisting of two CNNs, into firstly an SNN, then a QNN. The SNN is converted via
temporal coding that were explained in Section 6.2.2.2, and the QNN corresponds to
“degree-I” full integer quantisation in Section 6.2.2.1. The results of the final experi-
ment is displayed in Table 6.7.

Before reviewing the results, we recap the models in Table 6.7 below.

– nLeNet is a FP pretrained CNN. nLeNet - Image is the image data trained version
of it, and nLeNet - Sound is the sound data trained version of it.

– qLeNet is the degree-I quantised version of nLeNet.

– mLeNet - Original is obtained via merging nLeNet - Image and nLeNet - Sound.
It is a FP-CNN.

– mLeNet - Spiking is an SNN converted over mLeNet - Original via temporal-
coding.
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Table 6.7: Neural reuse experiment results over FP, Spiking, and Quantised CNNs.

Model
Accuracy (%)

Model Size (MiB) Inference Time
Image Sound

nLeNet - Image 91.57 − 16.24 5 x
nLeNet - Sound − 78.08 16.28 5 x
qLeNet - Image 91.68 − 4.07 x
qLeNet - Sound − 77.92 4.08 x
mLeNet - Original 91.08 78.00 3.16 28 x
mLeNet - Spiking 89.27 67.45 3.16 33.5 x
mLeNet - Quantised 90.03 76.57 1.12 13.5 x

– mLeNet - Quantised is the degree-I quantised version of mLeNet - Original.

The metrics results of nLeNet and qLeNet models in Table 6.7 were also displayed
in Table 6.3a. We display them here as well for comparison including the mLeNet
models. In terms of accuracy results in Table 6.7, the values gradually drop from the
top to the bottom of the Table. The highest accuracy is obtained via the nLeNets and
the lowest via the spiking mLeNets with the difference between them being ≈2.6%.

As in case of accuracy, the model size gets smaller starting from the top to the
bottom of the Table 6.7 which is desired for the model size metric. The most important
part that we would like to highlight in the neural reuse experiment is the comparison
of quantising and merging of neural networks. Integer quantisation of a singular CNN,
qLeNets in the Table, results with only a little accuracy drop (in some cases accuracy
is preserved as it is), and up to a 4x model size compression as seen in the Table. This
is our solution offer for energy-efficiency in case of singular CNNs.

When working with multiple neural networks at the same time, merging reveals
promising outcomes: a smaller model size, and almost the same amount of accur-
acy drop compared to the singular QNNs. This is the reason that we start with the
“merge” for energy-efficiency in case of multiple CNNs. Where mLeNets come short
compared to qLeNets is the inference time metric. As illustrated in Figure 6.3 based
on the results shown in Table 6.7, while the model size becomes 10.3x8 smaller, the
inference time increases 2.89 times when the nLeNet’s are merged and they become
mLeNet - Original. Inference time is a vital metric in automated systems (Lenard

8Model size comparisons showcased in Figure 6.3 and 6.4 are made over the combined size of
nLeNets, i.e., CNN-I and CNN-II in the Figures, that is 32.52 MiB in total.

9Inference time of the two nLeNets combined is taken as 5x+ 5x = 10x based on Table 6.7. The
inference time of the mLeNet - Original is 28x which makes its inference time 2.8 times slower compared
to each of its parts, i.e., nLeNets.
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Figure 6.3: Final experimental results highlighting the difference in model size and
inference time between the nLeNets, mLeNet-Original, and mLeNet-Quantised.
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Figure 6.4: Final experimental results highlighting the difference in model size and
inference time between the nLeNets and mLeNet-Quantised.
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et al., 2018), thus, to obtain further optimisation resulting with faster inference in our
model, we quantise the mLeNet. With the quantisation of mLeNet, we achieve further
decrease in the model size, 2.8x, and obtain 2.1 times faster inference as displayed in
Figure 6.3. Overall, this experiment measures off and concludes our hypothesis that
we recommend merging and quantising for multiple CNNs. With this way, from the
two separate FP-CNNs to QNNs, our approach achieves 29 times smaller model size
with the trade-off of 1.5 times slower inference time in total. We illustrate the final
review of our experiment in Figure 6.4.

6.3 Summary and Discussion

We elaborate all the experiments within the thesis scope in an inductive manner in this
chapter. Every section comprises experiments of a specific type of ANNs, and the
following sections include the prior experiment results for the purpose of compare and
eliminate on the way of reaching the most energy efficient of them all. Note that, our
aim is to increase energy-efficiency in a multi-functional network, not in a singular
network.

BNNs are a special type of QNNs as only consisting of weight values of −1 and
+1. They were the topic of Sections 6.2.1 and 6.2.2.1 in this chapter. Because convert-
ing pretrained CNNs into BNNs is currently not a mature field, we firstly showcased
metric outcomes of a from scratch trained BNN in Section 6.2.1, then experimented
converting a pretrained CNN into a BNN in Section 6.2.2.1. Overall, we concluded
that BNNs are essential for edge devices where the small model size along with 1-bit
MACs has the uttermost priority.

Three degrees of integer quantisation is experimented in Section 6.2.2.1. Our ex-
periments in the aforementioned Section involve quantisation of the network elements
into the range of [−127,127]. Quantisation of ANNs is a frequently utilised technique
especially in the field of TinyML (Banbury et al., 2021; David et al., 2020) that getting
more attention by year due to the increasing demand of energy efficient systems. We
quantise the pretrained CNNs which delivers a more compact model, smaller in size,
faster in inference with a little drop in the accuracy metric.

We experimented and discussed converting pretrained CNNs into SNNs in Sec-
tion 6.2.2.2. Although SNNs are proved to be highly efficient on neuromorphic hard-
ware, on traditional hardware, regardless of training them from scratch (Hazan et al.,
2018) or applying the most efficient, lossless conversion techniques (Li and Furber,
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2021), they are still in their infancy (Pfeiffer and Pfeil, 2018; Davidson and Furber,
2021). Because our research targets efficient computation on conventional hardware
and edge devices, we did not run our experiments on neuromorphic hardware. Our
experiments show that quantisation is more favourable compared to SNNs in both sin-
gular and merged networks.

Our experiments show that providing multi-functionality to CNNs comes with a
performance cost as the inference time of a merged network is 5.6x slower compared to
the singular inference time of its parts, whereas merging networks provide substantial
decrease in model sizes. However, further steps are taken in this research to find a
better trade-off between accuracy, model size, and inference time where we applied
quantisation to the merged network. With this way, we further reduce the model size
while increasing the performance since quantised calculations are faster compared to
FP arithmetic. Our biggest contribution is that after we demonstrate the merging of
two networks, we then use quantisation onto the merged network as a next step, which
increases the performance while reducing the model size without significant loss to the
accuracy.

Table 6.8: Training and conversion time comparisons of oLeNet.

Model
Time

Training Conversion

FP-CNN oLeNet 264 x −

BNN bLeNet 203 x −

SN
N

s sLeNet via temporal-coding − x

sLeNet via rate-coding − 33 x

Q
N

N
s qLeNet - I − 1.2 x

qLeNet - II − 1.3 x

qLeNet - III − 1.3 x

Finally, in Table 6.8, we display the training and conversion time comparisons of
the CNN models used in this research. Because training is, unless TL is included, made
once, and then the inference occurs throughout the use of the neural network, we do
not use it as a metric in the previous sections. Nonetheless, we share this information
in the discussion part of the experiments considering it may be of interest to whom
wants to replicate the same experiments.



Chapter 7

Conclusion

The purpose -where I start- is the idea of use. It is not recycling, it is reuse.

ISSEY MIYAKE

We conclude by revisiting the research questions and objectives, besides discussing
our contributions to the existent literature in Section 7.1; offering a final overview of
the thesis in Section 7.2; and pointing to possible future directions of this research in
Section 7.3.

7.1 Revisiting the Research Questions and Objectives

We revisit the research questions and objectives that were introduced in Chapter 1 -
Section 1.3 in this section. The contributions of the thesis and the novelty statement
took place in Section 1.5. We also mention them in this section and link the contribu-
tions to each answer below.

RQ1. What are the efficient ways to work with multiple CNNs on conventional
hardware resources?

This research involves a multi-disciplinary literature review and inspirations
from several fields. The variety in our literature review can be seen in Chapter 1
- Section 1.1, Chapter 2, and Chapter 3. Most apparently, this research is in-
spired by the Neural Reuse theory that we discuss at length in Chapter 3. Neural
reuse theory investigates the functional structure of the brain, and suggests that
the same neural paths are used and then reused in the brain to realise some-
times seemingly unrelated functions in order to preserve energy within. This is
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where we get our inspiration to apply onto CNNs. We concluded our literature
survey by that both creating something new, ANN analogy → training f rom

scratch, and recycling, ANN analogy → T L, takes effort; while reuse remains
the best strategy for energy efficiency in, indeed, any domain in the world today.
Keeping that in mind, we utilised pretrained CNNs in this work. Within our
knowledge, this research is the first work to emulate the neural reuse theory by
using pretrained traditional ANNs, and it is the first research as “neural reuse in
the computational sciences” in this extent in the literature.

RQ2. How can we make multiple CNNs more energy efficient without losing their
effectiveness?

By emulating the developmental route of neural reuse discussed in Chapter 3, in
Chapter 4 we achieve multi-functionality by combining two pretrained CNNs.
Firstly, we merge the two separate CNNs based on their similarities. The merge
makes their overall size smaller as the similar parts are now combined and work
as one body. In addition to this, we convert the merged network into differ-
ent, more energy efficient sub-types of ANNs to fully emulate the neural reuse
theory. Several experiments were run in this research by utilising two genera-
tions and four types of ANNs in order to achieve efficiency in multiple CNNs.
2nd and 3rd generation of ANNs; and traditional FP-CNNs, QNNs, BNNs, and
SNNs were used during our experiments in Chapter 5. We compared and dis-
cussed the differences of such networks based on the results of the experiments
in Chapter 6. To the best of our knowledge, this is the first work that made such
extended comparisons between different ANNs types.

RQ3. How do we measure energy efficiency in comparison to others without re-
quiring specialised devices?

In Chapter 6 we introduced and applied two sets of metrics to evaluate our ex-
periments in order to address the research question. The main metric we used in
every experiment was accuracy as obtaining “accurate” results for any ANN has
the utmost value. However, because our ultimate aim is to increase efficiency
of the neural models, we firstly assessed the performance/efficiency trade-off by
making use of and value other metrics results. The metrics we used to measure
energy efficiency is our second set of metrics as described in Section 6.1.2 in
Chapter 6. Such metrics are MACs, FLOPs, model size, and time, i.e., train-
ing, conversion, and inference time. We do not report all the metric results for
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every experiment we run in this thesis. This is because not all metrics offer com-
parable results in every experiment. We also do not report the overall energy
consumed by the models in joule (J) form within this research. The metrics we
choose for our research is the result of our literature survey involving Green-AI
that represents the energy efficient AI.

7.2 Summary of the Thesis

The increased usage, availability, and the promising results obtained via the synthetic
datasets and benchmarks of ANNs resulted with Jevons Paradox (Giampietro and
Mayumi, 2018) especially during the recent years (Strubell et al., 2020; Patterson et al.,
2021). Moreover, necessitated by the increased mobility of our day, the ANNs count
per device, e.g., mobile devices, robots, and autonomous cars, is also multiplied which
also implies the multiplication in their computational cost. Considering the undergo-
ing, we targeted to make multiple CNNs, one of the most widely utilised type of ANNs,
more energy efficient in this thesis.

We utilised and compared three, that we see as fundamental, energy saving methods
in this thesis: neural reuse, quantisation&binarisation, and SNN conversion from the
FP-CNNs. Furthermore, we used two separate metrics set, seven metrics in total to
evaluate our hypothesis as we aim to deliver our research as transparent as possible.
Our first metrics set comprise conventional ML metrics, such as accuracy, loss, and
error rate. Our second metrics set comprise metrics that indicate energy consumption
of CNNs. Such metrics include MACs, FLOPs, model size, and inference time. In
our research, we did not measure energy directly in J or kilowatt/hour (kWh) as such
measurements are reliant to their location and the computational resources that are
used regarding that. Instead, we reported numerical values that are constant within the
model. Inference time, because it is also reliant to the computational resource on which
it is obtained, is less common to report compared to the other aforementioned metrics.
However, considering the importance of the “time” factor today, we wanted to report
it based on x times values for the comparison purposes. Because not all the metrics
contribute to differentiating between the models, all the metrics were not reported for
all the experiments in the thesis.

Neural reuse is a theory aiming to shed light onto energy efficiency of the human
brain (Anderson, 2010, 2015). It reflects such efficiency as reusing the built-in, innate,
appropriate paths in the brain to realise new functionalities. In other words, neural
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reuse suggests that the brain, rather than building new paths, utilises the old ones, as
much as possible, to preserve its energy. Inspired by the neural reuse theory, we made
use of the pretrained CNNs and merged them (Chou et al., 2018) in this work. We
obtained both a smaller model size, compared to the sizes of the two singular neural
networks combined, and multi-functionality in the networks via the merge. Merging
the CNNs resulted with ≈10x smaller model size against the total sizes of the separate
models. Moreover, the highest accuracy loss of the merged model, compared to the
original accuracy of the models, was 0.5%. However, the model was slow in inference:
the total inference time of the merged model got increased ≈3 times. Therefore, we
applied further techniques to lighten and accelerate the merged model.

Binarisation requires a from scratch training to work effectively. Otherwise, mo-
numental losses in metrics rates occur as shown in Chapter 6 - Table 6.4. FP-CNN to
SNN and QNN conversions allow us to use pretrained networks with a dispensable loss
over the original metrics rates. Among the aforementioned techniques, we achieved the
most efficient results via the QNN conversions which lowered the inference time of the
model ≈2x along with providing further decrease in model size in the rate of ≈3x. We
discussed the results of our experiments at every step in Chapter 6. In conclusion, we
showcased and elaborated the final results in Section 6.2.3 and 6.3 in Chapter 6. The
end result we achieved is a trade-off between the size and inference time, that is 29x

smaller model size with 1.4x higher inference time after the quantisation of the merged
model. The thesis outputs “a case study”. The overall technical product is a prototype,
not a general framework with dynamical inputs.

7.3 Future Directions

The future directions of the thesis are grouped and discussed as follows:

Compile, optimise, and accelerate the ANNs. accelerating the runtime of ANNs is
targeted by many since it represents a significant bottleneck for the future of AI.
One way to accelerate ANNs is going through the compiler level by examining
the operations that are underneath the ANNs. An initiative launched for this
purpose is ApacheTVM1, an open-source ML compiler framework (Chen et al.,
2018a,b; Zheng et al., 2020). TVM (Tensor Virtual Machine) works end to end;
and analyses, optimises, and deploys models into desired end machines, e.g.,

1https://tvm.apache.org/

https://tvm.apache.org/
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CPU, GPU, by accelerating the tensor operations constituting ANNs. A recent
publication by the ApacheTVM showcased 3.8x faster performance execution
obtained on Intel CPU (Zheng et al., 2020) which was the mainframe we used in
this research.

Approximate computing. Another way to accelerate ANNs is to lighten, ergo, ac-
celerate the calculations underneath the ANNs. We applied quantisation for
this very purpose to our work. There are also other flourishing opportunities
to make the ANNs more energy efficient from this perspective. One promising
approach is approximate computing. According to the current SotA in approx-
imate computing that targets matrix multiplication, experiments from diverse do-
mains exhibited up to 100x acceleration compared to exact computation, which
is achieved via vector quantisation without using multiply-adds (Blalock and
Guttag, 2021).

Energy measurements. We do not directly measure energy consumption in this re-
search in J or kWh values. Many research attempted or directly measured the en-
ergy consumption via specialised devices, e.g., GPU and edge devices (Rodrig-
ues et al., 2018; Garcı́a-Martı́n et al., 2019; Wang et al., 2020; Sun et al., 2021).
We report “energy-focused” metric results, such as MACs, FLOPs, model size,
and inference time. Such metrics we measured can be used to measure energy
consumption when this research is combined with an energy-specific hardware
device. The three of the former aforementioned metrics report numerical, within
their model, constant values. On the other hand, the latter among them, infer-
ence time is reported as the mean result of over 10 experiments. We observed
that the difference between the runs were not significant. However, as future
work, statistical data, such as standard deviation and standard error of the mean

(SEM) will also be reported along with mean results to demonstrate the differ-
ence between the runs.

Working on more ANN types. CNNs were targeted in this research considering their
being widely used. Transformer type networks emerged as a forthcoming source
to solve NLP problems via ANNs in the recent years (Vaswani et al., 2017). They
reached the highest accuracy values in this domain and proved themselves to stay
in the area as being the future of the topic as well. CNNs were the remaining
and only solution in the image domain until so far. However, recently emerged
vision transformers currently hold the Top-1 accuracy in ImageNet dataset (Dai
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et al., 2021). Considering the high cost of transformer networks, discussed in
Chapter 1 and displayed numerically in Table 1.1, more research including trans-
formers and other costly ANNs is necessary in our field.

A collective framework approach. We prototyped our hypothesis with a case study
and a working example. The next step for such a research would be generating
a framework which will automatically merge appropriate ANNs partially or as
a whole with the support of “accelerating” the network accompanied by the ne-
cessary techniques. The framework should also report necessary metrics such as
accuracy, model compression size, and inference time comparisons.

More inspiration from nature. With the ongoing advances in the computational neur-
oscience, the more brain atlases get published, the more the chances that theories
like neural reuse would emerge. Replicating the exact same spiking neural con-
nections by examining such atlases2,3,4 would not be far away under the light of
the upcoming evidences (Scheffer et al., 2020).

2Mouse Visual Cortex: https://www.microns-explorer.org/cortical-mm3
3Fruitfly connectomics: http://www.virtualflybrain.org/
4Various animal connectomes: https://neurodata.io/project/connectomes/

https://www.microns-explorer.org/cortical-mm3
http://www.virtualflybrain.org/
https://neurodata.io/project/connectomes/
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