10 research outputs found

    Reinforcement learning with misspecified model classes

    Get PDF
    Real-world robots commonly have to act in complex, poorly understood environments where the true world dynamics are unknown. To compensate for the unknown world dynamics, we often provide a class of models to a learner so it may select a model, typically using a minimum prediction error metric over a set of training data. Often in real-world domains the model class is unable to capture the true dynamics, due to either limited domain knowledge or a desire to use a small model. In these cases we call the model class misspecified, and an unfortunate consequence of misspecification is that even with unlimited data and computation there is no guarantee the model with minimum prediction error leads to the best performing policy. In this work, our approach improves upon the standard maximum likelihood model selection metric by explicitly selecting the model which achieves the highest expected reward, rather than the most likely model. We present an algorithm for which the highest performing model from the model class is guaranteed to be found given unlimited data and computation. Empirically, we demonstrate that our algorithm is often superior to the maximum likelihood learner in a batch learning setting for two common RL benchmark problems and a third real-world system, the hydrodynamic cart-pole, a domain whose complex dynamics cannot be known exactly.United States. Office of Naval Research. Multidisciplinary University Research Initiative (N00014-11-1-0688

    Look Before You Leap: Bridging Model-Free and Model-Based Reinforcement Learning for Planned-Ahead Vision-and-Language Navigation

    Full text link
    Existing research studies on vision and language grounding for robot navigation focus on improving model-free deep reinforcement learning (DRL) models in synthetic environments. However, model-free DRL models do not consider the dynamics in the real-world environments, and they often fail to generalize to new scenes. In this paper, we take a radical approach to bridge the gap between synthetic studies and real-world practices---We propose a novel, planned-ahead hybrid reinforcement learning model that combines model-free and model-based reinforcement learning to solve a real-world vision-language navigation task. Our look-ahead module tightly integrates a look-ahead policy model with an environment model that predicts the next state and the reward. Experimental results suggest that our proposed method significantly outperforms the baselines and achieves the best on the real-world Room-to-Room dataset. Moreover, our scalable method is more generalizable when transferring to unseen environments.Comment: 21 pages, 7 figures, with supplementary materia

    Efficient Deep Reinforcement Learning via Planning, Generalization, and Improved Exploration

    Full text link
    Reinforcement learning (RL) is a general-purpose machine learning framework, which considers an agent that makes sequential decisions in an environment to maximize its reward. Deep reinforcement learning (DRL) approaches use deep neural networks as non-linear function approximators that parameterize policies or value functions directly from raw observations in RL. Although DRL approaches have been shown to be successful on many challenging RL benchmarks, much of the prior work has mainly focused on learning a single task in a model-free setting, which is often sample-inefficient. On the other hand, humans have abilities to acquire knowledge by learning a model of the world in an unsupervised fashion, use such knowledge to plan ahead for decision making, transfer knowledge between many tasks, and generalize to previously unseen circumstances from the pre-learned knowledge. Developing such abilities are some of the fundamental challenges for building RL agents that can learn as efficiently as humans. As a step towards developing the aforementioned capabilities in RL, this thesis develops new DRL techniques to address three important challenges in RL: 1) planning via prediction, 2) rapidly generalizing to new environments and tasks, and 3) efficient exploration in complex environments. The first part of the thesis discusses how to learn a dynamics model of the environment using deep neural networks and how to use such a model for planning in complex domains where observations are high-dimensional. Specifically, we present neural network architectures for action-conditional video prediction and demonstrate improved exploration in RL. In addition, we present a neural network architecture that performs lookahead planning by predicting the future only in terms of rewards and values without predicting observations. We then discuss why this approach is beneficial compared to conventional model-based planning approaches. The second part of the thesis considers generalization to unseen environments and tasks. We first introduce a set of cognitive tasks in a 3D environment and present memory-based DRL architectures that generalize better to previously unseen 3D environments compared to existing baselines. In addition, we introduce a new multi-task RL problem where the agent should learn to execute different tasks depending on given instructions and generalize to new instructions in a zero-shot fashion. We present a new hierarchical DRL architecture that learns to generalize over previously unseen task descriptions with minimal prior knowledge. The third part of the thesis discusses how exploiting past experiences can indirectly drive deep exploration and improve sample-efficiency. In particular, we propose a new off-policy learning algorithm, called self-imitation learning, which learns a policy to reproduce past good experiences. We empirically show that self-imitation learning indirectly encourages the agent to explore reasonably good state spaces and thus significantly improves sample-efficiency on RL domains where exploration is challenging. Overall, the main contribution of this thesis are to explore several fundamental challenges in RL in the context of DRL and develop new DRL architectures and algorithms to address such challenges. This allows us to understand how deep learning can be used to improve sample efficiency, and thus come closer to human-like learning abilities.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145829/1/junhyuk_1.pd

    Practical reinforcement learning using representation learning and safe exploration for large scale Markov decision processes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-168).While creating intelligent agents who can solve stochastic sequential decision making problems through interacting with the environment is the promise of Reinforcement Learning (RL), scaling existing RL methods to realistic domains such as planning for multiple unmanned aerial vehicles (UAVs) has remained a challenge due to three main factors: 1) RL methods often require a plethora of data to find reasonable policies, 2) the agent has limited computation time between interactions, and 3) while exploration is necessary to avoid convergence to the local optima, in sensitive domains visiting all parts of the planning space may lead to catastrophic outcomes. To address the first two challenges, this thesis introduces incremental Feature Dependency Discovery (iFDD) as a representation expansion method with cheap per-timestep computational complexity that can be combined with any online, value-based reinforcement learning using binary features. In addition to convergence and computational complexity guarantees, when coupled with SARSA, iFDD achieves much faster learning (i.e., requires much less data samples) in planning domains including two multi-UAV mission planning scenarios with hundreds of millions of state-action pairs. In particular, in a UAV mission planning domain, iFDD performed more than 12 times better than the best competitor given the same number of samples. The third challenge is addressed through a constructive relationship between a planner and a learner in order to mitigate the learning risk while boosting the asymptotic performance and safety of an agent's behavior. The framework is an instance of the intelligent cooperative control architecture where a learner initially follows a safe policy generated by a planner. The learner incrementally improves this baseline policy through interaction, while avoiding behaviors believed to be risky. The new approach is demonstrated to be superior in two multi-UAV task assignment scenarios. For example in one case, the proposed method reduced the risk by 8%, while improving the performance of the planner up to 30%.by Alborz Geramifard.Ph.D
    corecore