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Abstract

While creating intelligent agents who can solve stochastic sequential decision making prob-
lems through interacting with the environment is the promise of Reinforcement Learning
(RL), scaling existing RL methods to realistic domains such as planning for multiple un-
manned aerial vehicles (UAVs) has remained a challenge due to three main factors: 1) RL
methods often require a plethora of data to find reasonable policies, 2) the agent has limited
computation time between interactions, and 3) while exploration is necessary to avoid con-
vergence to the local optima, in sensitive domains visiting all parts of the planning space
may lead to catastrophic outcomes.

To address the first two challenges, this thesis introduces incremental Feature De-

pendency Discovery (iFDD) as a representation expansion method with cheap per-time-
step computational complexity that can be combined with any online, value-based rein-
forcement learning using binary features. In addition to convergence and computational
complexity guarantees, when coupled with SARSA, iFDD achieves much faster learning
(i.e., requires much less data samples) in planning domains including two multi-UAV mis-
sion planning scenarios with hundreds of millions of state-action pairs. In particular, in a
UAV mission planning domain, iFDD performed more than 12 times better than the best
competitor given the same number of samples. The third challenge is addressed through a
constructive relationship between a planner and a learner in order to mitigate the learning
risk while boosting the asymptotic performance and safety of an agent's behavior. The
framework is an instance of the intelligent cooperative control architecture where a learner
initially follows a safe policy generated by a planner. The learner incrementally improves
this baseline policy through interaction, while avoiding behaviors believed to be risky. The
new approach is demonstrated to be superior in two multi-UAV task assignment scenarios.
For example in one case, the proposed method reduced the risk by 8%, while improving
the performance of the planner up to 30%.
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Chapter 1

Introduction

1.1 Vision and the Existing Gaps

Planning for teams of heterogeneous autonomous mobile agents in stochastic systems is a

challenging problem arising in many domains such as robotics, aviation, and military ap-

plications. While cooperative planners provide fast and reliable solutions to these problems

(Alighanbari, 2004; Alighanbari et al., 2003; Beard et al., 2002; Casal, 2002; Choi et al.,

2009; Ryan et al., 2004; Saligrama & Castafi6n, 2006; Wang et al., 2007; Xu & Ozguner,

9-12 Dec. 2003), their solutions are typically suboptimal due to the inevitable inaccuracy

of the model (e.g., the exact model is approximated by a linear system), or violation of

assumptions (e.g., the underlying noise in practice does not obey a Gaussian distribution).

Moreover, the output of cooperative planners are often nominal trajectories through a nar-

row part of the state space. The limited applicability of the solution requires recalculation

of the plan after a small deviation from the nominal path. By relaxing most assumptions

made by cooperative planners, online reinforcement learning (RL) techniques operate in

a more realistic framework where the system reasons about the open loop consequences

of its own actions and improves its future performance without the need of a third party.

Additionally, RL techniques provide global policies executable from anywhere in the state

space where not all planners are capable of doing so. However, applying RL methods to

multi-agent domains involves three important challenges:

(I) Sample Complexity For multi-agent domains, the size of the state space is often

very large as it is exponential in the number of agents. For example, a domain with 10

agents where each agent can take 2 modes and 50 positions has 1020 possible states. On

the other hand, the number of interactions required by RL methods to achieve reasonable

performance often grows with the size of the state space. Hence, scaling RL methods to



multi-agent domains is challenging.

(II) Limited Computation As this thesis focuses on lifelong learning which requires

embedding learning within the normal operation of the system (i.e., online setting), the

time allowed for learning on each interaction is limited. RL methods that have good sample

complexities often require expensive computation per-time-step that is not feasible for the

online setting.

(III) Safe Exploration While catastrophic outcomes provide learners with valuable in-

formation, sometime the loss involved in such feedback is not sustainable. For example,

crashing a fuel-limited unmanned aerial vehicle (UAV), while carrying the message that

running out of fuel is bad, costs a lot of money and potentially endangers the life of nearby

civilians. Avoiding such fatal states requires a robust learning scheme where the range of

exploration is bounded within some safe region.

Value-based RL techniques, a popular family of RL, calculate the optimal control pol-

icy by estimating the long term advantage of each action from every state and then acting

greedily with respect to those values. Approximation techniques have scaled RL methods

to large domains by reducing their sample complexity (Stone et al., 2005; Sutton, 1996), al-

lowing RL methods to exceed the human level of expertise in several domains (Silver et al.,

2008; Tesauro, 2002; Zhang & Dietterich, 1995). In particular, practitioners have favored

the linear family of approximators (Bowling & Veloso, 2003; Li et al., 2009; Petrik et al.,

2010; Ratitch & Precup, 2004; Sutton, 1996; Waldock & Carse, 2008) due to desirable

properties such as theoretical analysis (Tsitsiklis & Van Roy, 1997) and cheap computa-

tional complexity (Geramifard et al., 2006). A fundamental open problem in the realm of

RL is how to pick features (i.e., basis functions) for the linear function approximator in or-

der to make the task learnable with small number of samples. While, for most applications,
the domain expert selects the set of features through manual tuning (Silver et al., 2008),

in recent years a substantial body of research has been dedicated towards automating this

process, resulting in adaptive function approximators (AFAs) (Lin & Wright, 2010; Petrik

et al., 2010; Ratitch & Precup, 2004; Reynolds, 2000; Sherstov & Stone, 2005; Waldock &

Carse, 2008; Whiteson et al., 2007). Finding a computationally cheap AFA which scales to

large domains, provides convergence guarantees when combined with RL techniques, and

requires minimal design skill is still an open problem.



1.2 The Right Features

Many practitioners have focused their attention on feature expansion techniques (Lin &

Wright, 2010; Ratitch & Precup, 2004; Whiteson et al., 2007), as there is biological ev-

idence that humans tend to start from a coarse representation and move towards a more

detailed representation as they gain more experience (Goodman et al., 2008). For exam-

ple, human subjects were tested in a task of categorization of objects specified by a set of

individual features (e.g., is the object round? is the object colored?). In primary stages,

subjects relied mainly on individual features to assign objects to categories. Later, sub-

jects started to develop more detailed features built on top of individual features (e.g., is

the object both round and colored?) to correctly categorize objects which were miscate-

gorized previously (Goodman et al., 2008). Similarly, Ullman showed that a hierarchical

feature representation with intermediate complexity built on top of small fragments is op-

timal in the sense of correctly identifying faces in the task of visual classification (Ullman

et al., 2002). Motivated by this idea, Finlayson and Winston introduced the Goldilocks

hypothesis (Finlayson & Winston, 2006) in the analogical retrieval setting. They argued

that on average intermediate features are best as they maximize mutual information. While

these cognitive experiments are promising, they do not answer the following fundamental

question:

Question #1: What are the mathematical properties of good features?

The theoretical RL research investigating the answer to Question #1 is still young. Re-

cent studies have taken basic steps towards identifying features that will help reduce the ap-

proximation error (Parr et al., 2007). This thesis elevates the current understanding about

feature properties by mathematically introducing the notation of feature coverage which

plays a critical role in identifying good features for approximating the value function. Cov-

erage for a feature is the portion of states for which a feature is active (i.e., the value of the

feature is not zero).

For example, consider a simple planning scenario where a fuel-limited UAV performs

a mission. The UAV can be in 3 locations (A,B,C) and have 3 fuel levels (low, medium,

high) amounting to 9 states. The feature (fuel = low), has the coverage of 1/3, because this

feature is active regardless of the UAV's location. On the other hand, the feature (fuel = low

AND location = B) has coverage of 1/9, since it is active only in one state. It is clear that

changing the weight of features with more coverage affects the value function for larger

parts of the state space. This may suggest that having high coverage is a useful property for

features, as the value function can be approximated with fewer data points. Unfortunately,



while features with high coverage provide a fast approximation to the value function, the

resulting approximation is not necessarily useful. Going back to our example, suppose

that having low fuel translates into negative values except when the UAV is at location B

(Base). If the weight corresponding to feature (fuel = low) is set to a negative value, the

value function is pushed down for all parts of the state space where (fuel = low), including

location B. Hence providing a good approximation of the value function requires features

with less coverage that captures such dependencies (i.e., fuel = low AND location = B).

One may ask then, why not take an opposite approach and include only features with

the narrowest coverage so that any improper information transfer in the value function is

avoided? While asymptotically such a representation provides a perfect approximation,
it requires a plethora of training samples to capture the shape of the function, because

the number of parameters (i.e., weights) equals the number of possible states, which is

exponential in the number of state dimensions. So the next immediate questions are:

Question #2: What is the right amount of coverage for features and how can

an algorithm expand suchfeatures?

This thesis answers both these questions by first providing a theorem that identifies fea-

tures with guaranteed convergence rate in terms of approximation error reduction. Based

on these results, incremental feature dependency discovery (iFDD) is introduced as a novel

feature expansion technique that has both theoretical and empirical support. The core bene-

fit of iFDD over related feature expansion techniques is its ability to consider features with

better coverage values, while other methods reduce the coverage of features they consider

in a faster rate, eliminating many promising features along the way. This part of the the-

sis addresses the sample complexity challenge. Using sparsification techniques, iFDD is

simplified and applied to the online setting, where the per-time-step computational com-

plexity of online iFDD (i.e., the complexity of executing iFDD on every interaction with

the world) is independent of the total number of features. This property hedges against the

limited computation challenge. Empirical results in several domains, including two UAV

mission planning scenarios, demonstrate the sample complexity advantage of online iFDD

over two fixed representations and two state-of-the-art feature expansion techniques. The

extra computation time consumed by the C++ implementation of online iFDD to add new

features was less than 4 milliseconds in all experiments run on an Intel Xeon 2.40 Ghz with

4 GB of RAM and Linux Debian 5.0.



1.3 Safety

Exploring the environment while avoiding catastrophic states is critical for learning in do-

mains involving expensive hardware. This constraint is another hurdle that practitioners

come across when applying RL to realistic domains. Existing methods for safe exploration

either behave too pessimistically (Heger, 1994), lack convergence guarantees (Geibel &

Wysotzki, 2005), and/or provide no safety guarantees (Abbeel & Ng, 2005). While RL

methods assume no prior knowledge about the model, for most practical domains, an ap-

proximate model can be obtained through domain experts or model estimation. Moreover,

as mentioned earlier, there is a rich body of literature on planning methods that provide

sub-optimal solutions for large control problems. The solutions generated by such planners

are often safe because they take conservative measures. Now the question is:

Question #3: How can learning methods take advantage of existing plan-

ners and approximated models to improve the safety of the system during

the learning phase?

In the presence of a safe sub-optimal policy (mentor) built on top of an estimated model,

the learner (prot6g6) can take advantage of the mentor's wisdom in two ways. First, the

mentor can guide the protegd in promising parts of the state space where suggested by

mentor's sub-optimal policy. This guidance often reduces the sample complexity of learn-

ing techniques (Knox & Stone, 2010) which is important when dealing with large state

spaces. Secondly, the proteg6 can probe the mentor before taking any actions in order to

ensure the safety of the action it is about to take. This safety checking can be done by

projecting the action through the estimated model and verifying the existence of a safe

policy from one step ahead using the mentor policy. The resulting methods are coopera-

tive planners introduced in this thesis that address both the safety and sample complexity

challenges. Empirical results in UAV mission planning scenarios with more then 9 billion

state-action pairs are presented to demonstrate the applicability of cooperative planners in

large domains.

1.4 Thesis Statement

This thesis introduces iFDD as a novel feature expansion technique with cheap per-time-

step complexity to provide RL practitioners using linear function approximation with a

useful tool for tackling large MDPs. This thesis also demonstrates how inaccurate models

and existing planning methods can be integrated with learning approaches to reduce the

risk involved in the learning process.



1.5 Thesis Structure

The structure of this thesis is as follows: Chapter 2 reviews Markov Decision Processes

as the framework that formulates the sequential decision making problem under uncer-

tainty. It then provides a solution trend starting from Dynamic Programming methods to

Reinforcement Learning (RL) methods including the use of linear function approximation.

Chapter 3 defines good features for linear function approximation in the context of RL, and

takes a theoretical approach to finding such features with a guaranteed rate of convergence

in terms of the error reduction in value approximation. Chapter 4 takes a practical approach

to finding good features by approximating theoretical algorithms using online techniques.

It provides an extensive set of experiments showing the advantage of iFDD over related

approaches. While Chapters 3 and 4 focus on sample complexity and computational com-

plexity, Chapter 5 switches the main focus to safety. In particular this chapter explores

how prior knowledge and existing planners can mitigate the risk, and reduce the sample

complexity involved in learning, while boosting the performance of planners. Highlighting

the main contributions and pointing out promising future works, Chapter 6 concludes the

thesis.



Chapter 2

Background

This chapter reviews the preliminaries of this thesis consisting of Markov Decision Pro-

cesses (MDPs), linear function approximation, model-based MDP solvers, and model-free

MDP solvers. Readers seeking more detail are encouraged to read fundamental text books

on these topics (Bertsekas & Tsitsiklis, 1995; Bugoniu et al., 2010; Sutton & Barto, 1998)

2.1 Markov Decision Processes (MDPs)

A Markov Decision Process (MDP) (Sutton & Barto, 1998) is a tuple defined by

(S, A, 7Z, IS,) where S is a set of states, A is a set of actions, 'P,,, is the proba-

bility of getting to state s' by taking action a in state s, Rka, is the corresponding reward,

and y C [0, 1] is a discount factor that balances current and future rewards . A trajectory is

a sequence so, ao, ro, si, ai, ri, S2, ... , where the action at E A is chosen probabilistically

according to a policy 7 : S x A -± [0, 1] mapping each state-action pair to a probability.

The agent selects the action in each specified state using its policy. Every consequent state

is generated by the environment according to the transition model (i.e., i > 1, si1 Pa").

For every state s E S, 7r(s, .) forms a probability distribution:

Vs E S, Z 7(s, a) = 1.
aeA

This thesis focuses on deterministic policies 7r : S -- A, which is a special case of general

policies with binary probabilities:

7r(s) =a-r(sa) { =h .
10 otherwise



Given a policy 7, the state-action value function, QT(s, a) of each state-action pair, is the

expected sum of the discounted rewards for an agent starting at state s, taking action a, and

then following policy 7r thereafter:

oo
Q"(s, a) = E, [ Ytrt so = s, ao = a . (2.1)

t=O

In finite state spaces, Q"(s, a) can be stored in a table. The goal of solving an MDP is to

find the optimal policy which maximizes the expected cumulative discounted rewards in all

states. In particular, the optimal policy 7r* is defined as:

Vs,7r*(s) argmaxQ"*(s,a). (2.2)
acA

The state value function, called the value function, for a given policy 7 is defined as:

V'(s) = max Q'(s, a) (2.3)
aEA

o0

= E 7, tre so = S. (2.4)

t=o

The optimal value function is defined accordingly as:

V*(s) = (s) = max Q'* (s, a) = Q'* (s, gr*(s)).
aEA

The optimal value function satisfies the Bellman Equation:

Vs E S V*(s) = max E, Ra + s± V*(s') s' ~psa1

aE A pa a -Y*('

= max P", Rsi, + yV*(s')]. (2.5)
s'ES --

2.2 MDP Solvers at a Glance

This section provides an overview of existing MDP solvers. The goal of this section is to

show how the complexity reduction of MDP solvers provides a path from dynamic pro-

gramming methods towards reinforcement learning algorithms.

MDPs are generally tackled by two approaches (Bertsekas & Tsitsiklis, 1995): 1) value-

based methods and 2) policy search techniques. Value-based methods solve MDPs by find-

ing the state-action (Q) values defined in Equation 2.1. The optimal policy for each state is
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Figure 2-1: Policy Evaluation - Policy Improvement Loop: The convergent policy is guar-
anteed to be optimal, if the Q or V value function is represented exactly.

then calculated by taking the action which maximizes the value over all possible actions as

shown in Equation 2.2. Policy search methods avoid the calculation of the value function

all together by searching directly for policies with high cumulative discounted rewards. To

do so, they assume a parametric form for the policy function with an initialization point. On

each iteration, policy search methods improve the policy parameters using gradient descent

methods, ensuring convergence to a local optimum.

The strength of value-based methods is in their policy representation power, meaning

that they can capture any form of optimal policy as long as the ranking of state-action values

are captured correctly through the value function. On the other hand, if an expert knows a

parametric form of the policy function in which good performing policies lie, policy search

methods can in practice find reasonable policies faster than value-based methods (Kohl &

Stone, 2004; Peters & Schaal, 2008; Sutton et al., 1999; Tedrake et al., 2004). This thesis

mainly focuses on the value-based methods, as 1) they are more general because the policy

is not assumed to have a parametric form and 2) calculating state values provides direct

insight into why the solver believes a particular policy is good. This section also covers the

actor-critic family of methods (Bhatnagar et al., 2007) which is the fusion of value-based

and policy search techniques.

Value-based solvers tackle an MDP in two phases shown in Figure 2-1: 1) policy eval-

uation and 2) policy improvement. In the policy evaluation phase, the solver calculates

the value function for all states given the fixed policy. In the policy improvement step, the

algorithm improves the previous policy by considering values obtained in the policy eval-

uation step. This process continues until either the policy function remains unchanged, a

time limit has been reached, or a certain accuracy for the value function is reached.

Figure 2-2 depicts the family of value-based MDP solvers, categorized based on their

knowledge of the MDP models (i.e., R and '), and the use of function approximation to
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Figure 2-2: Four types of value-based MDP solvers categorized based on their assumption
about the MDP model and the use of approximation methods.

represent the value function. The next four sections cover each family of the value-based

MDP solvers. The order in which this thesis covers these methods is highlighted by the

circled number in Figure 2-2.

2.3 Dynamic Programming

Dynamic Programing (DP) refers to a set of algorithms that solve a known MDP by finding

the optimal value function and its corresponding optimal policy (Bellman, 1958; Bertsekas

& Tsitsiklis, 1996; Sutton & Barto, 1998). First, let us observe that given an MDP, policy

evaluation (i.e., finding the value function under a fixed policy) can be done in closed form.

Looking back at the Equation 2.4, the value function can be derived recursively as:

oo
V'(s) E, E rt so = s

t=o
o0

- E, ro + " trt SO = s
t=1 ..

oc
=E, ro+y E t-1t so S

t=1 .
0o

t=o

=E, RI'() + _ V'(s') S-1 = s, So = s'



= S() s) + -YV (s') . (2.6)

Notice the difference between Equations 2.5 and 2.6. The former is the Bellman equation

which is independent of the policy while the latter is the recursive form of the value func-

tion depending on a fixed policy. The state values can be calculated by solving |S linear

equations each specified by writing Equation 2.6 for every state of the MDP. The solution

for a finite state MDP with S = {si, S2, -, S.SI} for which the vector V"si1)( represents

the value function of the policy r, can be calculated in closed form (notations may exclude

the 7 superscript for brevity, yet the policy dependency is always assumed implicitly). The

P matrix represents the transition model with Pi = Ps'(" , and the R vector is the reward

model, where Ri = ' Ps' ) Rs s4/. Hence Equation 2.6 can be written in the matrix form

as:

V = R+yPV,

= T(V), (2.7)

where T, defined here, is the Bellman operator applied to the value function. The output

of T is a vector with the same size as the input vector (i.e., T : RISI -+ RISI). It can be

seen that each element of T(V) is calculated by the Equation 2.6. The problem of policy

evaluation translates into finding the fixed point of the Bellman operator:

V = T(V)

- V (I - -P)--R, (2.8)

where I is the identity matrix. Following the Neumann series as suggested by Barto and

Duff (1994), it can be shown that the inverse always exists and can be calculated as:

00

(I - 1 P)-- = ' (Yp).
k=O

Equation 2.8 summarizes the policy evaluation step. As for the policy improvement, the

new policy is updated by selecting the action which is greedy with respect to the calcu-

lated values. Because the MDP is known, the best action can be found by maximizing the

expected one step look ahead estimation of values:

r(s) = argmax Ps [P R , + 'yV(s')]. (2.9)
aCA s'ES



Algorithm 1:Policy Iteration Complexity
Input: R, P, -y
Output: 7r

1 f(s) +- Random(A) for s E S
2 changed <- True
3 while changed do
4 V" <- (I - ?P")--1R" 8(|S13 )
5 for s E S do

7 changed<- (7r+ f 7f
8 7T <-_ 7T +

9 return 7

Putting these two phases together, we arrive at the Policy Iteration method shown in Al-

gorithm 1. The algorithm also shows the computational complexity of selected lines for

each iteration on the right side. The output of the algorithm is guaranteed to be the optimal

policy (Sutton & Barto, 1998). Note that the algorithm requires E( S13) calculations per

iteration to evaluate the policy (line 4) and 8(IAl S|2) to calculate the new policy (lines

5, 6). However, as long as the value function is getting closer to the exact solution, the

loop shown in Figure 2-1 still converges to the optimal solution (Sutton & Barto, 1998).

This idea leads to a process that saves substantial computation for finding a good policy,

because as long as the agent gets the ranking of actions in a state correct, the result of pol-

icy improvement yields optimal action selection. To accommodate this idea, line 4 can be

changed to the following update rule, known as the Bellman update:

Vs E S, V'(s) = max ZPsas,[a -+y V" (s')], (2.10)

where the value of each state is improved by one step lookahead. This change brings

us to the Value Iteration method shown in Algorithm 2. When the loop is finished, the

resulting value function satisfies the Bellman Equation (i.e., Equation 2.5). Coping with

computer precision limitations, practitioners often replace line 8 of Algorithm 2 with a

checkpoint verifying that the maximum change applied to the value function is less than a

small positive number (Chapter 4 of Sutton & Barto, 1998). The value iteration algorithm

eliminates the matrix inversion step that required O(|AllSI 2) computation per iteration.

Note that the inner loop requires a loop over all states.

For large state spaces, representing the value function using a lookup table is not feasi-

ble due to memory and computation restrictions. The next section describes DP methods



Algorithm 2:Value Iteration
Input: R, P, -y
Output: r

1 V(s) +- Random() for s E S

2 changed <- False

3 repeat
4 for s E S do
5 v +-V(s)
6 V(s) <- maxaEA Zs's' P [ HS
7 Kr(s) <- argmaxaEA ES P,'s/ a'RI -YV(S')1
8 changed +- changed or v * V(s)

9 until not changed

10 return 7

Complexity

0(JA ISI)
O(JA SI)

applied to such domains by trading off solution quality for lower memory and computation

requirements.

2.4 Linear Function Approximation

Holding a tabular representation of the Q function (i.e., storing a unique value for each

state-action pair) is impractical for large state spaces. A common approach to coping with

large state spaces is to use a linear approximation of the form QW(s, a) = 6 T#(8 , a). The

feature function # : S x A -± Rn maps each state-action pair to a vector of scalar values.

Each element of the feature function 0(s, a) is called afeature; #f (s, a) = c E R denotes

that feature f has scalar value c for state-action pair (s, a), where f E X = 1 ... , n). X

represents the set of features' ; the vector 0 E R" holds weights. As defined in Equation

2.2, finding the optimal policy requires the correct ranking of Q values in a given state.

Hence for any state s, practitioners often avoid approximating the value of Q(s, a) based on

Q(s, a'), where a' / a (Geramifard et al., 2006; Lagoudakis & Parr, 2003; Sutton, 1996).

This is done by first mapping each state to a set of features # : S -+ R' and then copying

the resulting feature vector in the corresponding action slot, while setting the features for

the rest of the actions to zero. This process separates the approximation for each individual

action, providing a more accurate ranking among various actions in a certain state. The

following example shows this mechanism for an MDP with 2 actions, where 3 x 2 = 6

'Properties such as being close to a wall or having low fuel can be considered as features. In our setting,
unless specified, we assume for each domain, all such properties are labeled with numbers and are addressed
with their corresponding number.



features are used for linear function approximation.

#1 0
- 2 0
#3 0

#(s) = 2 > (s, ai) = , #(,a)=(2.11)
0 #1

0 #2

For the rest of the thesis, #(s, a) is assumed to be generated from #(s) following the above

process. 2 Chapter 3 will describe useful properties of features and describe popular func-

tion approximators that have been favored by RL practitioners (Stone & Sutton, 2001;

Stone et al., 2005; Sutton, 1996). For this chapter the # function is assumed to be given.

2.5 Approximate Dynamic Programming

So far, for the policy evaluation phase V represented the value function of a fixed policy

as a point in an |S| dimensional space using |S| parameters (elements of the V vector).

The idea of approximate DP (ADP) methods is to approximate the value function by repre-

senting it in a lower dimensional space using n < |S parameters. In particular, this thesis

focuses on the linear family of approximators explained in Section 2.4, where:

- #T(si) -01

S OT (S2) -02V ~ V X . AISixnnx1.

- # (sisi) -n _J 6

When the value function is approximated using linear function approximation, the true

value function might not lie in the space spanned by the feature function (i.e., column

space of b). Hence a metric is required to define the best approximate value function in

the span of 4. There are two major metrics used in the literature (Bradtke & Barto, 1996;

Farahmand et al., 2008; Lagoudakis & Parr, 2003; Scherrer, 2010; Sutton et al., 2009) to

define the best approximated value function, namely: 1) Bellman residual minimization

(BRM), and 2) Projected Bellman Residual Minimization, also known as the least-squares

Temporal Difference solution (LSTD e the value of each state is being approximated, a
2The size of the action space (i.e., |Al) is assumed to be small enough so that n |AI is always maintainable

in memory.



weight vector is also required to highlight our concerns with respect to the resulting error

in each state. Intuitively, states that are visited more often should have higher weights,

penalizing the error correspondingly. This intuition is captured through the steady state

probability distribution for a fixed policy defined as a vector dixa, where

dP = d (2.12)

s.t. |dle, = 1, (2.13)

ViE (1,.. , |S},di '> 0, (2.14)

where di is the ith element of d. Essentially, the steady state probability distribution is the

eigenvector of pT, representing a probability distribution over states that is invariant to

the transition model.3 For mathematical purposes Dis1 ixisi is defined as a matrix, with d

on its diagonal (D = diag(d)). Figure 2-3 shows a simple example of an MDP with two

states (shown as white circles) and the fixed policy shown as arrows exiting each state. The

outcome of actions (filled black circles) are stochastic and shown as probabilities on the

top of each resulting transition. For this domain:

0.7 0.3
P=

0.5 0.5

Fdd ]r 0.7 0.3 d d

dP =d 4 (1d1  0.5 0.5 = [d1  d2

|1dlle =1 3di -5d2 =0
d1 +d 2 =1

[0.625 0.375] D 0.625 01
0 0.375

This means that in the limit of following the above policy in this MDP, regardless of the

starting distribution, the probabilities of being at states 1 and 2 are 0.625 and 0.375, corre-

spondingly.

Figure 2-4 depicts a geometric view of the optimal value function (V) and its projection

into the span of <b, using the orthogonal projection operator, H. Unfortunately V is not

known, but the value function which has zero Bellman error for all states (i.e., T (V)-V =

0) is guaranteed to be optimal. Hence both the BRM and LSTD approaches minimize a

term defined with respect to the Bellman error with the desired goal that the resulting

solution is close to HV. In particular BRM minimizes the norm of the Bellman error

3Notice that the transition model, P, already included the fixed policy 7r.
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Figure 2-3: A simple MDP with two states. The fixed deterministic policy is shown as
arrows exiting each node. The outcome of actions (filled black circles) are stochastic shown
as multiple arrows exiting each action.

shown as the solid green vector, while LSTD minimizes the projected Bellman error shown

as the dashed blue line.

2.5.1 Bellman Residual Minimization

As the name suggests, the Bellman residual minimization (BRM) approach to solving for a

policy minimizes the cost function C, the E2-norm of the Bellman Residual error weighted

by the steady state distribution. From this point, the term "norm" will be used for 2-norm

weighted by the steady state distribution. Hence, ||xl| = ||x||2. The solution of the BRM

method is calculated by:

C(6) =|T(V) - V||

= (T() - V) T D(T(V) - V)

(R + (yP@ - 4)6)T D(R + (yPD - 4)0)

A ETDE.

Taking the derivative with respect to 6 and noting that DT = D, results in:

OC _ 9E &C

2(-yP4 - D)T D(R + (yPI' - D)6)
DC
DO= 0 (yP4 - 4) D(R + (-yP - 4))) = 0



T(V)

HT(v)

Figure 2-4: A geometric interpretation of what Bellman Residual Minimization (solid
green) and Projected Bellman Residual Minimization (dashed blue) minimize (akin to
Lagoudakis & Parr, 2003). H is the projection operator, mapping every point to its or-
thogonal projection on the span of 4D shown as the 2D plane. T is the Bellman operator.

1

>0 = (b - _P4)T D (4) -RPM)

ABRM

(4b- p4)TDR

bBRM

(2.15)

A'BRM BRM

Note that inverse of ABRM always exists (Scherrer, 2010). A simpler derivation can be

obtained by setting the Bellman error to zero in the approximated case:

T(V)= V

(4 - P4)6 = R

= ( - YpJq)TDR

= 4 - - yP4)] ( -byPp)T DR

= A-'MbBRM

In the case of a tabular representation, where 4 = I, Equation 2.8 is retrieved:

0 = [(I - _P)T - P)]1 (I -- yp)TDR

= (I - P D ((- ,p)T)-1(I - _p)T DR

= (I - yP)-'R.

The motivation for minimizing the Bellman error stems from the following bound (See

(4 - _P()TD((k- -7P4)6



Scherrer, 2010):

1~||V - o Y||IT(V - C.

This bound has been also extended to the f2-norm (Scherrer, 2010):

v-V~~ /K(D)~(~
|1V -Y| Vi || K()JT(Y) -Y||,I

1 - -

K (D) =max ,
i,j Dii'

where '(D) represents the stochasticity of the transition model, capturing the deviation of

the transition probability distribution from a uniform distribution (Scherrer, 201 0).4

2.5.2 Projected Bellman Residual Minimization

The second major metric for finding the best approximation stems from minimizing the

Projected Bellman Residual vector on the span of 4, which is shown as the dotted blue

vector in Fig. 2-4. The projection operator, H, maps each point V E R ISI to V E span(<D),

minimizing the projection norm:

C(6) =|V -V||
(V - V) T D(V - V)

(4D8- V)TD(<D - V)

= E DE,

0C OE OC
0 - OE

(DT =D) = 2<DTD(0P - V),
OC= 0 > = (<DTD<D)-<DT DV,
00

= <(TD<D)-l'bTDV,

1 f = <D(<DTD4)-<DTD. (2.16)

It is easy to show that H is a projection matrix by verifying U2 = H:

H2 
= <D(<DT D4D)-<DT D<D(<DT D<)-l<DT D

=<(<DT D b)-l<DT D

4 More information about s(D) can be found in Munos' work (2003)



=fl

Notice that,

HV = (<T D})l<DT Db6 =

meaning that, as expected, the H projects every point in the span(<b) to itself. The LSTD

(Bradtke & Barto, 1996) solution minimizes the norm of the projected Bellman error:

C(O)

(Sutton et al., 2009) HIDH

a C(6)

(BT = B, BRM derivation)

L

M

X
0 6

=H||UT(V) - VI|

=H||(T(V) - V)||

(T(V) - f ] DH (T(V) -

=( (<p<DDD(k) DT D )T D<D (<pT D<4D) -'(p TD

Db(<D 4b) <TD(bTD<)l bTD

= D T (<TDD) - D A B,

=(T(V) - V) B (T(E) - E),

=[(< - _P4))T B(b- P b)]' (<b - _P4)T BR,

S(I -yP),

A Dk<T D<)1 4 B = M(bT D,

A kTL I M

= [X<DT DL 1 ']-IX~pT DR

[<ITDL<] l-IXXTDR

[<)TDLI1 ]-lkTDR

= [<T D(<b - _YP)]- 1 <bT DR (2.17)

ALSTD bLSTD

LSTD LSTD-

A is full rank except for finitely many values of 'y (Lagoudakis & Parr, 2003). Notice that

again if <D = I, Equation. 2.8 is retrieved:

o (DL)-DR

= (I -yP)-R.



Algorithm 3:V-based Approximate Policy Iteration (V-API) Complexity
Input: R, P, 7
Output: r

1 -r(s) <- Random(A) for s E S
2 changed <- True
3 while changed do
4 Calculate A and b using Equation 2.15 or Equation 2.17 8(n| S|2)
5 6 <- A-lb (Use regularization if the inverse does not exist) 6(n 3 )
6 V" <- 4D6

7 for s E S do
8 L r+(s) + argmaxa1A E,'ES Ps', x [ ± '(S')1 O(K SI)
9 changed <- (7r # ir)

10 7T 4- 7+

11 return 7

The LSTD solution can be derived in a simple form by forcing the Bellman equation in the

span of 4):

V =fHT(V),

6) = <b (<bT D) -'4T D(R + -P46),

6 = (@TD4P)R- T D(R+ Pb),

(@pT D<>)6 =D <T D (R + -yP46),

(4T D(<D - 7PD)) 0 = DT DR,

6 [<DT D(<D - yP4b)]-I<DT DR

- ALTD LSTD.

While the LSTD solution can be far from V, it has been shown that the approximation

error is bounded (Parr et al., 2007):

1-||V - ||l < ||V - UiV||.
/1- 72

2.5.3 Using BRM and LSTD for Control

So far, BRM and LSTD were introduced as two approaches for policy evaluation. This

section describes how these two methods can be integrated with the policy improvement

step to solve MDPs. The first immediate algorithm shown in Algorithm 3 is the result

of using Equation 2.9 as the policy improvement step. By comparing Equations 2.15 and



2.17 with Equation 2.8, one can see the benefit of using approximation methods over the

tabular representation: the policy evaluation phase now requires E(n| S 2 +n 3 ) =(nIS 2)

computation.5 Note that calculating the new policy still requires 8(|Al lS|2) computations.

Moreover calculating the steady state distribution (D) is not always trivial (See Chapter 4

of Gallager, 2009).

Thus, compared to Algorithm 2, Algorithm 3 is not attractive, because it 1) requires

additional computational complexity of e(n|S12), 2) requires extra calculation of D, and

3) finds an approximate solution. In order to resolve this issue, the policy improvement

must be calculated with complexity less than 8(1 A lS 2 ). This can be done by using Equa-

tion 2.2. If the policy evaluation phase calculates the Q" rather than the V', then the policy

improvement requires (1 A ISI).
Now consider the extra calculation involved in computing Q" rather than V" using

linear function approximation. Similar to the derivation of Equation 2.6, Q' can be written

recursively as:

Q"(s, a) = ZJ ",[R', + -yQ'(s',r(s'))] . (2.18)

Given that A = {ai,--- alAi}, the above equation can be written in the matrix form.

Symbols with the bar sign hold extra information required to calculate the Q values rather

than the V values:

Q = R+-YPQ,

where,

Q(si, ai)

QisIlAix = Q(si, aA)

Q bs (si, a,) _Za

- T (si, ,) -41

t ASISI

5 Calculating A requires (n IS I') due to P4P.



- -P as , isi, alAi)

[P(sis as,, aA, s a -) P(sisi, alAi, si, alAi) -.. P(sis, alAl, siSi, alAi)

Ra= psak I ai=,s)

~Sp/a

P(si, aj, sk, a,) = Pai', Ifal = 7(Sk)
0 Otherwise

In the tabular case:

Q = (I - )-1.

By extending the definition of steady state distribution in Equations 2.12 and 2.14 to include

the P matrix, D is |S |AI x |S l|A. Hence all derivations of LSTD and BRM remain intact,
calculating QW instead of V":

ABRM ( - P4)Tfb(4 - _yP4), bBRM - YP4)'DR (2.19)

ALSTD P D(4 - -/P4), bLSTD DR (2.20)

Q r

Algorithm 4 shows the result of integrating these policy evaluation schemes with policy

improvement according to Equation 2.2. While the new formulation reduces the cost of

policy improvement from 0(IS |AI2 ) to 0(a|S|), it still increases the cost of policy eval-

uation from 0(n| S 2) to 8(n| S |A2) due to the calculation of P .6 Moreover, using

approximation techniques to represent Q instead of V, and performing the Bellman update

only increases the computational complexity of the value iteration shown in Algorithm 2.7

In order to further reduce the complexity of each iteration, sampling methods are used
61n general this calculation requires 8(n|S|2 A 3), but because of the deterministic policy assumption

and the way #(s, a) is constructed out of #(s) (Equation 2.11), each row of P and 4 has at most |SI and n
non-zero elements correspondingly. Hence the complexity drop to O(n|S|2 AJ).

7Calculating the value of each state requires 0(n) rather than 0(1), hence the complexity of each iteration
is raised to 8(n|S12 A|).

'P(si, a1, si, ai) --- P(si, ai, si, alAi)



Algorithm 4:Q-based Approximate Policy Iteration (Q-API) Complexity
Input: R, P, -
Output: r

1 7(s) <- Random(A) for s E S

2 changed <- True
3 while changed do
4 Calculate A and b using Equation 2.19 or Equation 2.20 8(n|Al lSI2 )
s 0 <- A 1b (Use regularization if the inverse does not exist) 8(na Al 3 )
6 Q" +- <kB

7 for s E S do
8 L r+(s) <- argmaxa1A Q7(s, a) 8(|Al)

9 changed W- (7r+ 7)
10 7F <- 7r+

ii return 7

to estimate values of A and b for both BRM and LSTD approaches (e.g., Lagoudakis &

Parr, 2003). Given the fixed policy r, samples are gathered in the form of (si, al), i C

{1,-..- , L 1}, where si is the initial state, ai = r(si), and sj+1 ~ Pa" . This generative

process assures that in the limit of infinite samples, averaged state visitations will converge

to the steady state distribution under policy -r (Lagoudakis & Parr, 2003). Let us estimate

A and b in Equations 2.19 and 2.20 using L1 obtained samples:

P'L 1 xniA

o(sj, aj)

~ a~

RL 1 xl

pQsj, aj)

-- pT(si, ai)--
-- pT (S2, a2)

--- T (sL1 , aL1J -

p(si, a,)

p(S2, a2)

psL1 aL1 _

s S

(2.21)



Approximating the feature matrix by

- #T(si, ai) -

~T (8 2, a2)
"(Lixn|Al =s. (2.22)

S T(sL1 aL1 )

the approximated A and b are:

1 -T
ALSTD - O - -yPD) (2.23)

L1
1 -T

bLSTD - 4 R (2.24)
L1I

ABRM (4) - 7 pb)T ((D - TYP4D) (2.25)
L1

bBRM = - 7P TR. (2.26)

As the number of samples goes to infinity, the estimated values become exact if the pol-

icy is ergodic, meaning that in the limit all state-action pairs are visited infinitely of-

ten (Lagoudakis & Parr, 2003):

lim ALSTD ALSTD
L 1 -oo

lim bLSTD = bLSTD

hlm ABRM = ABRM
L1 -oo

lim bBRM bBRM-
Li-oo

Figure 2-5 demonstrates the effect of non-ergodic policies through an example. The

MDP has 3 states and 2 actions. Assume that r(si) = ai and 7r(s 2) = a 2. Rewards are

highlighted as scalars on the right side of action labels located on arrows. Samples gathered

by following -r will not go through any of gray arrows, excluding the +10 reward. Hence

using a tabular representation, matrix 4b will have only two distinct rows8 corresponding to

8While more samples can have been obtained (i.e., Li > 2), yet the resulting value function does not
change due to the use of the tabular representation.



ai,+1

a2,0

ai,o

a2,+10

Figure 2-5: An MDP highlighting the importance of ergodicity for the policy. Gray actions
are not chosen by the policy. The result of policy evaluation assigns highest values to

Q(si, ai) and Q(s2, a2). The greedy policy with respect to this value function is sub-
optimal because it ignores the +10 reward.

#(si, ai)T and #(s2, a2 )T:

1 0 0

0 0 0

0.5000

0

0
0

-0.4500

0

0
similarly P(b = I

-0.4500

0

0
0

0.5000

0

bLSTD =

0 0

0 0

0.5000

0

0

0

0

0

0
0

Given -y = 0.9, and using regularization,

~ - 1 ~
Q = ALSTDbLSTD

5.2532

0

0

0
4.7269

0

While ALSTD is not full-rank, any non-zero regularization value leads to zero value esti-

mates for all unseen state-action pairs. Applying policy improvement on the new Q func-

tion leads to the same policy ir, which is sub-optimal, as it ignores the +10 reward. A

workaround for this problem is to make sure that the agent keeps exploring by using a pol-

-+ALSTD



Complexity
Input: R, P, 7
Output: r
6 - Random()

r(s) +- Random (A) for s c S
changed <- True

while changed do
Create L1 samples (si, a) by following policy wr'

Calculate A and b using Equations 2.23-2.26

6 <- A b (Use regularization if the inverse does not exist)

for s E S do

L 7+(s) argmaxes QT(s, a)
changed <- (7+ 7r)

7 <- 7F+

13 return 7

Table 2.1: Computational Complexity of Calculating A and b
Calculation Complexity Comment

7r(si) 8(1) Policy is saved explicitly.
o(sj, aj) O(n|S|) #(s, a) has at most n non-zero elements (Equation 2.11).

P@ 41D(nL1IS|)
~ T ~~~
4( - 'yPG) E(n 2 L1) Both D and (1 - yP4) have 6(n) non-zero columns.
ALSTD, ABRM E(nL1 S|) Assuming n < |S|.
bLSTDbBRM E(nLI|S|)

icy that is ergodic at all times. There are various ways to facilitate ergodicity; the easiest
one is to introduce a random action with a small probability on every action selection. This
mechanism is known as c-greedy action selection, where c is the probability of taking a
random action. Hence an c-greedy policy is defined as:

7 (S) =argmaxa Q (s, a)

Random(A)

With probability 1 - c

With probability c
(2.27)

Algorithm 5 reflects the use of the above policy evaluation scheme for solving an MDP.
Table 2.1 shows the computational complexity involved in calculating A and b (line 6)
in detail. The total complexity for each iteration of Algorithm 5 is (nL1 |S| + | S |A +

8(L1 )
e(nL1 |S|)
8(n3 A13)

Algorithm 5: Sampled Q-API-1I



Algorithm 6:Sampled Q-API-2 Complexity

Input: R, P, -y
Output: r

1 6 <- Random()

2 while time left do
3 Create L1 samples (si, ai) following policy wr e(nL1 |Al)

4 Calculate A and b using Equation 2.19 or Equation 2.20 8(nL1L 2 + n2 LI)

5 6 +- A b (Use regularization if the inverse does not exist) 6(n 3 A 3)

6 Q

7 return 7 greedy w.r.t. Q

n3 A13). Note that the complexity is linear in |SI as opposed to all previous algorithms

which were at least quadratic in IS|. To eliminate the dependency on |S| all together,

two steps are mandatory: 1) o in Equation 2.21 should be calculated using sampling tech-

niques, and 2) The policy must not be calculated explicitly for all states. To realize the first

requirement, p can be calculated using L 2 samples9 instead of the exact expectation:

(p(si, a ) ~- I I (sy, 7(sj)), Si ~P. (2.28)

jE{12 L

By calculating the policy on demand using Equation 2.2, the second requirement is satis-

fied, although the implicit policy improvement increases the complexity involved in cal-

culating r(s) from 6(1) to 8(n|AI). Algorithm 6 shows the resulting algorithm. Notice

that the condition on the loop on line 2 can no longer depend on maintaining a fixed policy

for all states. An alternative way to break the loop is to check if the policy for a fixed

set of states remains unchanged after one iteration. The computational complexity of each

iteration of Algorithm 6 is 0(nL1|AI + nL1L 2 + n2 Li + na3 A13).

All improvements so far were made to the Policy Iteration method to reduce its com-

putational complexity, so it is natural to think about improving the complexity of Value

Iteration. The first step is to integrate function approximation with the algorithm. Consider

Value Iteration as shown in Algorithm 2. While the new value function can be calculated

at line 6 using V(s) = #(s)TO, there is no guarantee that the new value function lies in

the span of (D. There are two ways to mitigate this problem: 1) use a gradient descent

technique to update 6, in the direction which reduces the error between the current value

estimate and the resulting value estimate after applying the Bellman update or 2) project

9As a reminder, L1 is the length of the trajectory simulated to approximate A and b. L2 is the number of

states sampled after taking action ai at state si to estimate <p(si, ar).



the new calculated value estimate in the span of 4) using orthogonal projection (i.e., linear

regression). Both these approaches have been used in the literature (Szepesvairi & Munos,

2005; Wu & Givan, 2007).

Consider the gradient type methods through a mathematical example. Given a vector

X and its approximation X = (D, how can 0 change slightly in order to get X closer to X
in the E2-norm? The answer is to move it in the opposite direction of the gradient:

C = ||X - X|| = ||X - 46|| = (X - 46)T(X - (6), (2.29)

a = -2(X - 6)l = -2(X -

0 = + a(X - X)1.

The a parameter is the learning rate. If the X and X vectors only differ in their ith element,
the above gradient decent is simplified as follows:

(X(i) - X(i) e74, (2.30)

where ei is a IS x 1 vector with all zero elements except for a 1 for its ith element. Hence
eT4D is the ith row of the P matrix. Algorithm 7 shows the integration of the above gradient

descent idea with value iteration. Note that the algorithm also shifts from calculating V

values to Q values to reduce the computational complexity of maintaining the optimal

policy on each iteration. Line 5 calculates the single element of the Q vector, Q+, which is

changed. Line 7 moves the 0 following Equation 2.30. The row of (D corresponding to the
changed value is #(s, a). Unfortunately this algorithm increases the iteration complexity

of Value Iteration, as it now requires O(n|Al2IS 2) computation.' 0 Yet, this formulation

allows for the use of sampling methods to further reduce the iteration complexity.

Similar to the Policy Iteration extensions (Algorithms 5 and 6), sampling can be used

both for (1) applying the update on line 5 selectively by obtaining samples in the form

(si, ai) instead of looping through all state-action pairs (lines 3 and 4), and (2) calculating

Q+(s, a) approximately on line 5. Algorithm 8 is the result of both these extensions (Wu
& Givan, 2007) which eliminates the dependency on the size of the state space all together.

Notice that, again, to make sure all state-action pairs are seen infinitely often the policy on

line 3 is ergodic through the use of E.

The above extensions of Value Iteration to incorporate linear function approximation

used a gradient descent technique. Another approach is to find the minimum of the cost

l0 Calculating Q(s, a) = #(s, a)T 0, requires 0(n) computation including the sparsity of #(s, a).



Algorithm 7:Q-Based Approximate Value Iteration (Q-AVI) Complexity

Input: R, P, y
Output: 7T

1 6 <- Random()

2 while time left do
3 for s E S do
4 for a E Ado

!f Q+(s, a) - Es'ES p'sa [Ra, + ymaXa' (s', a')] E A )
6 6<- Q+(s, a) - Q(s, a)
7 <- 5 + ao#(s, a) O(n)

8 return 7r greedy w.r.t. Q

Algorithm 8:Sampled Q-AVI Complexity

Input: R, P, -y
Output: 7r

1 0 <- Random()

2 while time left do
3 Create L1 samples (si, ai) following policy 7 E(nL1 |A )
4 for every sample (si, a ) do
5 Create L2 samples s' ~ pa,

6 Q+ s',ai __T1 ESamples ', + - maXa' iN a' Eij (nL2| AIB
7 6 Q(s, a) - QQ(s, a)

8 - + ao(s, a) O(n)

9 return 7 greedy w.r.t. Q

function mentioned in Equation 2.29 using linear regression:

aC
= -2(X - 4)4 = 0

80

4) = TTX

-> 0= (pT<)--l@TX (2.31)

The resulting X = 46 is the orthogonal projection of X in the column span of 4. This

will bring us to an algorithm known as Fitted Value Iteration (Justin Boyan, 1995) shown

in Algorithm 9. The only change, compared to Algorithm 8, is the use of Equation 2.31 to

find the best 0 rather than taking gradient steps for each sample. This new change increases

the computational complexity of the method by e(n 2L1 + n3 IA13) due to 4 (D calcula-



Algorithm 9:Fitted Value Iteration (FVI) Complexity
Input: R, P, -y
Output: ir

1 0 <- Random()

2 while time left do
3 Create L1 samples (si, ai) following policy 7' 8(nL1 |Al)
4 for every sample (si, a ) do
s Create L 2 samples s' 'Psa,
6 KQ(si, a) Z s'Sampes s + y maXa' Q(s', a') (nL
7 0 < (<P <)-<D Q+ 6(n 2 Li +ns1 3)

8 return 7r greedy w.r.t. Q

tion and matrix inversion respectively". While this increase would seem to be a major
drawback with respect to Algorithm 7, the extra computational cost provides a closed form
solution to finding the minimum projection error that often translates into better policies af-
ter applying the policy improvement step. Moreover, several probabilistic bounds has been
derived for FVI's performance with limited numbers of samples (Munos & Szepesviri,
2008; Szepesvairi & Munos, 2005).

2.5.4 Discussion

Table 2.2 provides an overview of the model-based MDP solvers discussed in this chapter
together with their iteration computational complexity. One might wonder which of these
algorithms are better than the others? The answer is domain-dependent, as these methods
trade off computational complexity with accuracy. Often the size of the state space, |S,
for real-world problems is very large, which eliminates methods with computational com-
plexity dependent on |S|. However, more assumptions about a certain domain can help
practitioners reducing the above complexities further. Also note that the main concern for
using approximation was to eliminate the dependency on |S|. While often JAI < |S|,
for some domains (e.g., controlling a helicopter with multi-dimensional continuous action
space), having a dependency on |Al is not sustainable either. Hence further approximation
is required to eliminate |Al from the above complexities. Finally it is critical to be re-
minded that this table merely states the iteration complexity of each method, yet it does not
say anything about the number of iterations required to obtain a reasonable policy. While
some methods might require more time to finish one iteration, they may require fewer iter-
ations in total to find good policies. Recent methods combined the idea of BRM and LSTD

'1As a reminder <1 is the features matrix defined in Equation 2.22.



Table 2.2: Model-based MDP solvers and their iteration computational complexity.

Algorithm Iteration Complexity Algorithm

Policy Iteration 8(|S|3 + Al S2) 1
V-API 8(n|S|2 + JAl lS 2) 3
Q-API 8(nAl S12 + n 3 A 3 ) 4

Sampled Q-API-l 8(nLI|S| +SAI + n A 3) 5
Sampled Q-API-2 e(nL1 |Al + nL1 L2 + n2Li +na3 A13) 6
Value Iteration 8(I A lS| 2 ) 2
Q-AVI e(n|Al2 S12) 7
Sampled Q-AVI 8(nLLL 2 JA|) 8
FVI 8(nLIL 2 AI + n 3 A 3 ) 9

with kernelized representations to achieve good approximation of the value function with

small amount of data (Bethke & How, 2009; Taylor & Parr, 2009).

2.6 Reinforcement Learning

In practical domains, often the MDP models (i.e., P and R) are not known and even for

some domains the dynamics of the system are too complicated to be captured analytically.

This problem setting can be addressed through the Reinforcement Learning (RL) frame-

work shown in Figure 2-6, where an agent (left) interacts with the environment (right) on

each time step, using a deterministic policy.' 2 The goal of RL methods is to solve MDPs

with unknown models solely by means of interacting with the environment. At first, RL

might look very different from model-based MDP solvers discussed in the previous sec-

tion. Yet, as we will see in this section, RL techniques can be seen as approximate dynamic

programming methods where samples cannot be generated arbitrarily

RL methods are organized similar to model-based MDP solvers: 1) value-based meth-

ods (e.g., Rummery & Niranjan, 1994) and 2) policy search techniques (e.g., Bhatnagar

et al., 2007). Since this thesis focuses on the first category, this section covers mostly

value-based RL techniques. Again, the core idea of value-based techniques is to follow the

policy evaluation-policy improvement loop, shown in Figure 2-1. Before continuing fur-

ther, let us step back and see what extra restrictions an RL agent has to overcome compared

to model-based methods:

e Restriction I: Since sampling from the environment is only available through inter-

12In general the policy can be stochastic.



St, rt
Figure 2-6: An agent interacting with an environment following policy 7r. The agent does
not know the underlying reward or transition models of the MDP.

action, samples can only be gathered in the form of trajectories. For example in a
navigation task, the agent cannot ask the environment about the consequence of turn-
ing left at arbitrary junctions; rather it can only obtain samples based on its current
location.

" Restriction II: In the RL setting, one-step look-ahead (i.e., Equation 2.9) cannot be
used for policy improvement since it requires knowledge of both P and 7z. Hence
calculating V values does not allow policy improvement.

* Restriction III: In some settings, the time between interactions is limited. For ex-
ample a flying robot can run out of power and crash while calculating the inverse of
a large matrix. Hence the per-time-step complexity of the RL agent plays a critical
role in its applicability to time sensitive domains.

The first restriction is addressed by learning schemes that do not require multiple sam-
ples from arbitrary states. In other words, learning is carried out by looking at sampled
trajectories. RL methods hedge against the second restriction by estimating Q values in-
stead of V and relying on Equation 2.2 to improve the policy. Finally, if interaction time is
limited, RL methods either provide computationally cheap learning during interaction with
the environment (i.e., online learning) or carry out learning after obtaining samples from
the environment (i.e., batch learning). The next section describes popular online and batch
RL methods and show that they can be viewed as ADP techniques.



Algorithm 10: Q-Learning Complexity

Input: R, P, y
Output: w

1 0 <- Random()

2 (s, a) <- (so, rE(so))

3 while time left do
4 Send action a and receive reward r and next state s'
5 Q+(s, a) -r + y maxa' Q(s', a') (n|A)
6 6<-Q+(s, a) -Q(s, a)
7 0 0 + ao(s, a) 0(n)
8 (s, a) <- (s', w (s')) 8(n|AI)

9 return w greedy w.r.t. Q

2.6.1 Q-Learning

While for model-based MDP solvers, P and R are known, due to high computational com-

plexity demands of using these models, they ended up being used as black boxes providing

samples (e.g., Algorithms 6, 8 and 9). Naturally, if these methods can accommodate the use

of trajectories rather than arbitrary sampling techniques, they can realize RL techniques.

Let us focus on Algorithm 8. Considering Restriction I, both L1 and L 2 must be 1 to

allow for learning from a trajectory. The resulting online algorithm is known as Q-Learning

(Watkins, 1992) and is shown in Algorithm 10. The complexities of online methods are

described in terms of per-time-step computational complexity. As expected, Q-Learning

has the same complexity as Algorithm 8 with L1 = L2 = 1 which is 8(nA). The 6

calculated on line 6 highlights the difference between the better estimate of the Q function

based on a single interaction, Q+(s, a), and the current estimate, Q(s, a). Hence 6 is called

the temporal difference (TD) error in the literature (Sutton & Barto, 1998). Unfortunately

this algorithm can diverge when function approximation is employed (Sutton & Barto,

1998).

2.6.2 SARSA

The divergence of Q-Learning stems from the fact that the policy that is used to gather sam-

ples (r6) is not the same as the policy used for learning (greedy w.r.t. Q values). Fortunately

matching these two policies will lead to a convergent online method named SARSA (state

action reward state action) (Rummery & Niranjan, 1994) shown in Algorithm 11. SARSA

has the same per-time-step computational complexity as Q-Learning: e(nJAl). Notice that

compared to Algorithm 10, Q+(s, a) is now calculated based on Q(s', 7r6(s')) rather than



ComplexityAlgorithm 11: SARSA
Input: -y
Output: r

1 0 <- Random()

2 (s, a) <- (so, 7 (so))
3 while time left do
4 Send action a and receive reward r and next state s'
5 a' <- 7r (s')
6 Q+(s, a) <- T + yQ(s', a')
7 6 <- Q+(s, a) - Q(s, a)

8 0 <- 6 + a#(s, a)
9 (s, a) <- (s', a')

10 return 7 greedy w.r.t. Q

maxa' Q(s', a'), making both the sampling and learning policies identical. This property is

know as on-policy learning, meaning that the agent learns about the same policy used for

generating trajectories. An alternative approach is off-policy learning (e.g., Q-Learning),
where the policy used for generating samples is different from the one the agent learns

about. In other words, the temporal difference error is calculated off-policy.

2.6.3 Actor-Critic

So far, all algorithms guaranteed visiting all state-action pairs infinitely often (i.e., ergod-

icity), by using an e-greedy policy. The state-action space can be explored more efficiently
by guiding the policy based on the past experiences. One such approach is to represent the
policy as a separate entity, referred to as the "actor", implemented as the Gibbs softmax
distribution (Sutton & Barto, 1998):

ep(s,a)/T

rb ep(s,b)r (2.32)

in which p(s, a) E R is the preference of taking action a in state s, and the variable T E
[0, oc) can be used to shift between greedy with respect to Q values and random action

selection. 7actor (s) returns the action a with probability 7ractor (s, a). The Q values can be
updated with an arbitrary RL update rule, and because the update rule essentially criticizes
the agent for the observed TD error, it is named the critic. Again, in domains with large
state-action pairs, preferences are represented using linear function approximation similar

8(n|AI)
8(n)

8(n)



ComplexityAlgorithm 12:Actor-Critic
Input: -y
Output: r

1 6 - Random()

2 w +- Random()
3 (s, a) +- (so, 7ractor (so))
4 while time left do
5 Send action a and receive reward r and next state s'
6 a' - 7actor

7 Q+(s, a) <- r + -- Q(s', a')

8 6- Q+(s, a) - Q(s, a)

9 0 <- 0 + a6o(s, a) (Critic Update)

10 o <- L + a 6O@(s, a) (Actor Update)

11 (s, a) <- (s', a')

12 return 7r greedy w.r.t. Q

to the approximation of Q values:

p(s, a) = wo@(s, a), (2.33)

where WmIAIxI is the weight vector and @b is a function mapping each state-action pair

to a feature vector with size m|Al akin to #. Note that V@ and # can be different func-

tions. 4'(s, a) is constructed based on $b (s) identical to how # using Equation 2.11 was

constructed.

There are various ways to update the actor (Bhatnagar et al., 2007; Peters & Schaal,

2008). Following the template of actor-critic methods (Bhatnagar et al., 2007), Algo-

rithm 12 shows the realization of the actor-critic, with a gradient descent update rule for the

actor update and on-policy TD error based learning (akin to SARSA) for the critic update.

The per-time-step complexity of the algorithm is 8(m|Al + n|AI) which is now dependent

on both m and n due to the use of two function approximators. There are several conver-

gence results for Actor-Critic learners (Bhatnagar et al., 2007). An interesting observation

is that these methods are the intersection of value-based and policy search RL methods,

because they both estimate the values, while representing the policy in a parametric form.

2.6.4 Least-Squares Policy Iteration

Policy Iteration methods can also be used in the context of RL by accounting for the 3

restrictions mentioned earlier. Let us revisit Algorithm 6. For now consider the use of

LSTD formulation (i.e., Equations 2.23 and 2.24). The next section discusses how BRM

O(n)

O(n)

0(m)
0(n)



can be employed in the context of RL. To address Restriction I, in Equation 2.28 L 2 has
to equal 1, since samples can be generated only by following a trajectory. Consequently,
samples are gathered in from of (si, ai, ri, s' , a'), where si+ 1 = s' and ai+1 = a'. L1 should
be large enough to provide enough samples to form reasonable estimates of A and b:

ALSTD =

bLSTD

- T 
1(s', a') -S #T (sI a/)

1 ~ T ~

1 2

L 1

VR=r1

r2

rL1

(2.34)

(2.35)

(2.36)

If the evaluation of a fixed policy is desired, the equations become:

- #T (s')
T (s') -

.I

ALSTD = -

bLSTD

-@ ( - yPG),
'1

'1

Again, in the limit of infinite samples, approximations become exact provided the sam-

pling policy is ergodic (Lagoudakis & Parr, 2003). The algorithm is already using Q values
to represent the policy, addressing Restriction II. Finally Restriction III is resolved by the
batch nature of LSPI; learning is done after the sample gathering phase. LSPI is shown in
Algorithm 13. This algorithm has O(nL1 A +n2 L1 +n 3 AI3 ) complexity per iteration. An
important fact about this method is that samples generated to estimate A and b are thrown
away after each cycle, making this algorithm inefficient for domains with an expensive cost
of sample acquisition (e.g., rescue civilians after a hurricane).

Least-Squares Policy Iteration (LSPI) algorithm (Lagoudakis & Parr, 2003) mitigates

- #T (si ai)

a2)

aL 1 )

_ O T (1)

- OT (8i) -

-OT (S2) -

r1

r2

.L

(2.37)

(2.38)

(2.39)



Algorithm 13:Trajectory Sampling Q-API Complexity

Input: -y
Output: 7r

1 6 +- Random()

2 while time left do
3 Create L1 samples (si, aj, ri, s', a') following policy 7 8(nL1 Al)

4 Calculate A and b using Equations 2.34-2.36 8(n 2L1 )

5 6 +- A b (Use regularization if the inverse does not exist) 8(nI A 3)

6 QeD (n 21AD
7 return 7T greedy w.r.t. Q

Algorithm 14:Least-Squares Policy Iteration (LSPI) Complexity
Input: -y
Output: ir

1 0 <- RandomO

2 Create L 1 samples (si, aj, ri, s' , a') following policy wr
3 while time left do

4 Calculate A and b using Equations 2.34-2.36 L(n2L1)

s 6 <- A b (Use regularization if the inverse does not exist) 0(nA 3

6 Q <-n 2 JI
7 a< argmax Q(s', a) For all i 8(nL1 AI)

8 return 7 greedy w.r.t. Q

this problem of sample cost by reusing the same set of samples over and over in each

iteration. On each iteration, LSPI biases the samples towards the new policy by switching

a' to r(s''), where 7 is greedy with respect to the most recent Q values. The result is

shown in Algorithm 14. While the per-iteration complexity remains unchanged, the same

set of data is reused through all iterations. Because the number of possible policies over a

fixed set of samples is limited, LSPI in the worst case will switch between policies. With

sufficient data, LSPI has been shown to work well in practice. The main drawback of LSPI

is its strong bias introduced by the initial set of samples. If the initial sample distribution

is not close enough to the sample distribution under the optimal policy, LSPI can perform

poorly. This drawback is currently handled by manual filtering of samples gathered by

a domain expert (Lagoudakis & Parr, 2003; Petrik et al., 2010), or by approximating a

policy-independent model using the gathered samples (Bowling et al., 2008).

Unfortunately, applying the BRM approach to the RL setting is not as straightforward

as the LSTD approach. To investigate this issue further, review Restriction II: samples can



only be obtained in forms of trajectories. Now consider the calculation of A in the BRM

approach:

1T
ABRM (D - -yP4 ). (2.40)

Given that samples are in the form of (si, ai, s'i I ), 4P, P4 and R have to be calculated

through Equation 2.34, yet this causes both P4) terms in Equation 2.40 to use the same

set of samples, leading to a biased estimate of ABRM (Lagoudakis & Parr, 2003; Sutton

& Barto, 1998). The solution to this problem is to calculate two P46 matrices built upon

independent samples. This independency constraint means samples should be gathered in

the form of (si, ai, s', a', s'', a'', ri), where both s' and s' are sampled independently from

state si after taking action ai. Given samples in the above form an unbiased estimate of

ABRM can then be formed:

- T(Si ai)

) #T (s2,a 2) -

@ = . ,(2.41)

-$T(sa )-

- O- # (s'2 a'2) -~ # (S'', a'2') -oT o T  a'1',
P i a2,P 2  a2, (2.42)

#T ( s' ,a' ) - - - T (S' a )

ABRM (4L - 1Yp4 - YP46 2)- (2.43)

The rest of the calculations for BRM remain unchanged:

Ti

,bBRM =(4 -'YP4 l) T R (2.44)

L FL 1 _

The BRM requirement for calculating two independent P4 estimations is known as the

double sampling requirement which makes the use of BRM challenging, because the ob-



Algorithm 15:LSPI-BRM Complexity
Input: -y
Output: r

1 0 +- Random()

2 Create samples in form of (si, ai, ri, s', a') following policy 76

3 Filter L 1 samples in form of (si, aj, ri, s', a's, s'/, a')
4 while time left do

5 Calculate ABRA and bBRA using Equations 2.41-2.44 0(n 2 L1)
_i~

6 0 <- ABRMbBRM (Use regularization if the inverse does not exist) 8(n 3  13)

7 Q (n 2A)

8 a'i <- argmax~g Q(s', a) For all i 8(nL 1 AI)
9 a<- argmaXaGA Q(s', a) For all i 8(nL1 AI)

10 return 7r greedy w.r.t. Q

tained samples have to be filtered. As a result, only those state-action pairs for which two

consecutive samples exist are used for learning. Algorithm 15 shows the use of the BRM

approach in the RL setting. Notice that creating L1 samples to satisfy the double sampling

requirement might be challenging in domains where the probability of visiting the same

state is very low (e.g., continuous state spaces). The iteration complexity of LSPI-BRM is

identical to LSPI. There have been several arguments towards the use of BRM vs. LSTD

in the literature (e.g., Scherrer, 2010; Sutton et al., 2009). In summary, BRM has superior

mathematical properties, while LSTD has been shown to work better in practice. For more

discussion, refer to Sherrer's work (2010).

2.6.5 Discussion

Table 2.3 provides an overview of RL methods discussed in this chapter together with their

computational complexity. For the upper part of the table, complexities correspond to the

per-time-step computation, while for the bottom part, they highlight the iteration complex-

ity. In general, the first three online methods provide cheap complexity per interaction,

which is critical in dealing with domains where Restriction III allows for a short amount

of interaction time. On the other hand, the last three batch algorithms often require fewer

samples compared to online methods to produce good policies. Hence, if sample complex-

ity is the only concern, batch methods are often preferred over online methods. There are

still more RL algorithms in the literature not discussed in this chapter as they are not as

popular in the RL community. Interested readers are referred to more detailed references

(Bertsekas & Tsitsiklis, 1996; Bugoniu et al., 2010; Sutton & Barto, 1998; Szepesviri,



Table 2.3: RL methods and their per-time-step/iteration computational complexity.

Algorithm Per-Time-Step Complexity Algorithm Number

Q-Learning 8(n|AI) 10
SARSA E8(nJA|) 11
Actor-Critic e(m|A| + n|A|) 12
Algorithm Iteration Complexity Algorithm Number

Trajectory Sampling Q-API E(nL1 Al + n2 Li + n 3 A 3 ) 13
LSPI 8(nL1 Al +n 2L1 + n31A13 ) 14
LSPI-BRM E)(nL 1 |Al + n2Li + n 3 A 3 ) 15

2010)

2.7 Summary

This chapter reviewed MDPs as a suitable framework for sequential decision making prob-

lems with uncertainty. MDP solvers together with their computational complexities were

investigated in two major branches of model-based and model-free approaches. Using

linear function approximation and sampling techniques, this chapter demonstrated how

various DP methods are derived from Policy Iteration and Value Iteration by trading off

accuracy with computational speed. Finally, this chapter showed that RL methods are es-

sentially ADP methods, accommodating three extra restrictions.

While linear function approximation was introduced as one of the main tools to reduce

the computational complexity of MDP solvers, the problem of finding a suitable set of basis

functions (i.e., an appropriate feature function) was not discussed so far. The next chapter

focuses on this challenge.



Chapter 3

The Right Set of Features: A Theoretical

View

The previous chapter explained how, with a fixed set of bases functions (i.e., features),

existing RL methods using linear function approximation can tackle large MDPs. Yet it

did not answer a fundamental question: how to find the right set of features? This chapter

investigates the answer to this question from a theoretical perspective. First the notion of

the right set of features is defined, and then algorithms are derived to generate such features.

While this chapter provides insight on why the proposed algorithms should perform well,

readers seeking RL pseudo-code to tackle control problems should look at the next chapter,

as this chapter solely focuses on policy evaluation.

The structure of this chapter is as follows. Section 3.1 discusses the desirable properties

of features and representations that affect fast learning and cheap computational complex-

ity. This chapter reviews Tile Coding (Sutton & Barto, 1998), showing its desirable proper-

ties and how its initialization can be viewed as defining linear independencies among fea-

tures. Section 3.2 provides theoretical insights on why and how features should be added to

linear representations. In particular, when feature values only take binary values (i.e., a bi-

nary representation), this section provides theoretical results on how to select new features

as the conjunction of the previous features in order to facilitate the best guaranteed conver-

gence of the approximated value function. Based on these theoretical results, Section 3.3

introduces the incremental Feature Dependency Discovery (iFDD) family of representation

expansion techniques and empirically demonstrates their advantage over random expansion

methods. Section 3.4 highlights the computational demands of iFDD in its original form

and introduces a sparsification technique that substantially reduces the computational com-

plexity of iFDD. Section 3.5 wraps up this chapter by summarizing the contributions.



3.1 The Right Set of Features

The notion of right set of features can be defined arbitrarily based on some predefined

criterion of interest. This thesis is interested in finding features that allow the linear func-

tion approximator to learn the underlying value function with a small number of samples

(known as low sample complexity), and cheap computational complexity. This brings us

to three characteristics of representations affecting their sample complexity and computa-

tional complexity:

1. feature coverage

2. sparse feature functions

3. binary feature functions

3.1.1 Feature Coverage

In order to reduce the sample complexity of learning techniques, learned values (i.e., Q or

V values depending on the algorithm) should propagate to several states. When the weight

corresponding to a feature is changed, this change affects the value of all states for which

the value of the feature is non-zero (i.e., active). The larger the portion of the state space

for which a feature is activated, the better the resulting coverage. This thesis formally

defines coverage for arbitrary feature f, G(f), as its proportional state space coverage.

In particular, S is assumed to be defined over d-dimensional metric state spaces, where

S = Si x S2 x - x Sd and Vs E S, s = (si,- - , sd), where si E Si. For continuous

dimensions, we assume the state space is a hyperrectangle: Si E [li, uj], where 1i and ui

specify the lower and upper bounds on the 4th dimension respectively.

G(f) - , where S= {s= s s, #of(s) $ 0}. (3.1)

The . operator returns the number of elements for discrete spaces. For continuous spaces:

S = -... J I(#f (s))ds,

|Si = ui - li,

where E(x) = . (3.2)
10 X =0

Extending the definition of coverage to hybrid spaces (i.e., both discrete and continuous

dimensions constitute the state space) is straightforward. Features with high coverage will
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Figure 3-1: Three features defined over a one dimensional continuous state space. Features
with more coverage and more uniformity have higher coverage values.

have G values close to 1. For example a constant feature that is active for all states has

the G value of 1. On the other side of the spectrum are specific features with G values

close to 0. For example in a tabular representation, for each feature f, G(f) = . Figure

3-1 depicts an example where three feature functions: #f, #f2, and #f, are defined on a

bounded one dimensional continuous state space. It can be seen that:

G(fi) = G(f 2) = -, G(f 3 ) b
w w

Features with high coverage facilitate fast learning in parts of the space where propagating

learned values makes sense (i.e., changing the weight corresponding to feature f makes

the value function approximation more accurate for all states s E Sf). On the other hand,

certain small subsets of the state space may require specific features with corresponding

low coverage to capture the underlying shape of the value function. Section 3.2 theoreti-

cally shows how coverage plays a significant role in finding good features that reduces the

approximation error of the value function quickly.

Dimensional Coverage: The coverage of each feature within each dimension is defined

separately. In particular, the coverage of feature f at state s in dimension i is defined as

follows:

G,s(f) A '" (3.3)
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Figure 3-2: A two dimensional example illustrating the notion of coverage. Feature f is
defined by two circles over the rectangular state space S. Feature f has value 1 inside
circles and 0 outside.

where s = = (si,S-l , si1, ii, -- sn) |#f(x) W 0, Xi C Si}.

Similar to feature coverage, for continuous domains:

/Ui
Si| =ui - li,

Figure 3-2 illustrates the concept of dimensional coverage through an example. The 2D
state space, S, is specified by the rectangle, while feature f is defined by two circles.

Feature f has value 0 for states inside either of the circles and zero otherwise. Notice

that in this example, the # values are in the third dimension, as both x and y dimensions

represents the state space S. Hence:

G(f) = ± 2
hw

GX', (f = W1 + W2

w
Gy~51 (f) =0



3.1.2 Sparse Features

A vector is sparse if the number of non-zero elements, k, is much less than the size of

the vector, n (i.e., k < n). In order to approximate the value of each state-action pair,

the inner product of the existing weight vector, 6, and the corresponding feature function,

#(s, a), has to be calculated. While in general this calculation requires n multiplications

and n summations, if either of these two vectors are sparse, this calculation drops to k

multiplication and k summations.

The weight vector is often the free parameter adjusted through learning, yet the family

of feature vectors is often selected by the user and thus can be forced to be sparse.' More

formally, the sparsity for representation # is:

sparsity(#) - kn

k max I(#f(s)),

For sparse representations, sparsity(#) is close to 0, while for dense representations, this

value is close to 1. In general the per-time-step computational complexity of the approxi-

mation is 8(sparsity(#)n) = 6(k) multiplications and summations.

3.1.3 Binary Features

Of special interest is the set of feature functions # where the output is a binary vector

(# : S x A -+ {0, 1}). In this case, not only can the estimated values be computed

efficiently, since there is no need for multiplication (Buro, 1999), but each learned weight

also indicates the importance of the corresponding binary feature. It is interesting to note

that, if # contains a unique feature for each state-action pair that is active only for that

state-action pair, then the function approximation is reduced to a lookup table, assigning a

separate value to each state-action pair (Equation 2.1). The next subsection describes Tile

Coding as one of the most popular forms of generating sparse and binary features.

3.1.4 Tile Coding

Discretizing continuous state spaces into several layers (tilings) was first introduced by Al-

bus (1971) as the Cerebellar Model Articulation Controller (CMAC) and was later named

'There are also methods that focus on calculating sparse weight vectors using f1 regularization. Chapter
4 will cover such methods.



Tiling #1 x

Tiing #2

Tiling #2 Tiling #1

Figure 3-3: Tile Coding for a two dimensional space from top view (left) and side view
(right). Note that tiling #2 is slightly shifted in the 2D space with respected to tiling #1.

Tile Coding (Sutton & Barto, 1998). Figure 3-3 illustrates how a two dimensional contin-

uous space can be discretized into uniform grids along two layers. The left figure provides

a view from the top, while the right figure illustrates the concept from the side view. Each

tile represents a binary feature. Figure 3-3 shows how Tile Coding maps a point from the

state space to a set of active features by locating the corresponding region (highlighted tile)

within each layer. In this example, #(s) has 32 elements corresponding to 32 tiles over

the 2 tilings. #(*) has 30 zeros and two Is corresponding to the two activated tiles. In

general tiles can be arbitrary shaped, yet tiles defined as hyper-rectangles, the focus of this

thesis, are mostly favored in practice due to the ease of implementation and cheap compu-

tational demands. Tile Coding has been also used with arbitrary boundaries (See Chapter

8 of Sutton & Barto, 1998).

For a binary feature f defined as a hyper-rectangular tile, the definition of dimensional

coverage can be simplified because:

VX, y E S, Gi,(f) = Gi,(f), <-> #f (x) = #f (y).

Since the focus of this thesis is on such features, the term Gi(f) will be used instead

of Gi, (f), where f (s) = 1. Moreover, hyper-rectangular features have the following



Figure 3-4: Feature f is defined by the inner cube. The state space is the larger cube. The
Wf if

coverage of feature f in dimensions x, y and z are -, -, hf
and h~ respectively.

property:

(3.4)

Figure 3-4 provides an example of a feature f defined by a cube in a bounded 3D space,

where,

In this case:

1 if s is inside the inner cube

0 otherwise

G(f)

Gx(f)

GY(f)

Gz(f)

if Wf hf
lwh

if

1'
hf

h

When a hyper-rectangular feature f fully covers dimension i, meaning that Gi(f) = 1,

then feature f ignores dimension i. In other words, feature f is a sub-dimensional feature

G(f) = l-lf,,ii,.ayGi(f)



because the value of the state in dimension i does not affect #f (s). More formally:

dimensions(f) G i i E {,... , d},Gi(f) 1 (3.5)

dimensionality(f) A dimensions(f) , (3.6)

feature f is sub-dimensional e dimensionality(f) # d. (3.7)

Practitioners have favored Tile Coding due to its successful results and ease of use (Leng
et al., 2007; Stone & Sutton, 2001; Stone et al., 2005; Sutton, 1996; Torrey et al., 2005),
yet there are two categories of manually tuned parameters: 1) number of tilings and 2) tile
widths. The first parameter specifies the number of layers used for Tile Coding. Using more
layers provides better resolution while increasing the memory requirement. The second set
of parameters defines the width of each tile in each dimension of the state-space, controlling
the coverage of tiles. The wider the tiles in each dimension, the higher their corresponding
dimensional coverage will be.

Figure 3-5 depicts 8 types of uniform tilings covering a finite 3D state space specified
by a cube. Figure 3-5(a) depicts three different tilings in which each tile corresponds to
one of the dimensions, ignoring the other two dimensions. Figure 3-5(b) shows the same
concept for tilings where tiles ignore one of the dimensions. Figure 3-5(c) corresponds
to the unique tile/tiling which ignores all three dimensions. Finally, tiles in Figure 3-5(d)
correspond to all 3 dimensions. A d-dimensional state space can be tiled using 2 d types
of uniform hyper-rectangular tilings. Notice that similar to Figure 3-3, often more than
one instance of a tiling type is used for better resolution. For example, in a 4-dimensional
problem, Sutton used 48 tilings defined by 15 tiling types (1996).

Consider a d-dimensional continuous state space defined by a hyper-cube (i.e., all
dimensions have identical bounds), tiled with function # using k tilings.2 Each tiling
i E {1,-... , k} consists of ni uniform hyper-rectangular tiles, where forj E {1, 2, ... , ni},
tile tij has dimensionality dij. Also assume that all tiles have equal widths in all
dimensions(tiy). Then:

k
(total number of features) n = Z nk

i=1

sparsity(#) = k
n

2Notice that defining tiles for Tile Coding is equivalent to defining features for a linear function approxi-
mator, where each tile is a feature.



(a) dimensionality(tile) = 1

(b) dimensionality(tile) = 2

(c) dimensionality(tile) = 0 (d) dimensionality(tile) = 3

Figure 3-5: Eight Tiling Types for Tile Coding of a 3D

z

x

state Space



1
G(tij) =

1 if u ( dimensions(tij)
Gu (t2 ) { otherwise

dXn

For example if a 3D state space is tiled with all eight tilings shown in Figure 3-5, then:

8 1
n = 64, spars ity(#) 64 8*

Furthermore, for tiles in Figure 3-5(b), tiles in the middle tiling have the following coverage

values:

1 1 1
G(f) =1, Gx(f) = -, Gy (f) 1, Gz (f)=-

9 3 3

There have been several attempts to reduce the number of parameters by automating

the process, and these methods will be reviewed in Chapter 4. In summary, none of the

current methods autonomously adapt both tiles and tilings simultaneously. Moreover, to

the best of our knowledge, no one has addressed the problem of autonomously identifying

important dimensions on which tilings should be defined. The next section describes why

expanding the representation is necessary for a better approximation of the value function,
and how such an expansion can be viewed as adding new tiles and tilings to a Tile Coding

framework.

3.2 Expanding the Representation

Given a fixed set of binary features, this section investigates why and how new features

should be added to the set of features.

3.2.1 Why Expand the Representation?

One may wonder, given a set of binary features, why expanding the representation is nec-

essary. Figure 3-6 depicts two discrete functions V and V2 defined over a two dimensional

space (x, y). The value of the function for each state is written in the grid cell corre-

sponding to that state. For example, V1 (0, 1) = 2. Now, given the ordered set of features

X = {fi, f2, f3, f4} where

4Of (X, y) = I(x = 0),
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(b) V2 (x, y)

Figure 3-6: An example of two functions defined over two dimensional spaces. V (x, y)

and V2(x, y) are shown as the values inside the corresponding grid cell. The left function

(a) is linear in the set of features (x = 0, x = 1, y = 0, y = 1) with the corresponding

weight vector (0, 2, 0, 2). The right function (b) is not.

#f 2 (x, y) =-

$f 4 (x,y) =

and ordered states (si, s 2, S3, S4) = ((0, 0), (0.

using a linear combination of features:

1 0

1 0
V, 0 1

0 1

I(X = 1),

I(y = 0),

I(y = 1),

1), (1, 0), (1, 1)), V1 can be captured exactly0 0
2 2

0 2

JL2 L4

On the other hand, it is easy to verify that V2  span(P), hence it cannot be represented

with such features. In other words, V2 is not linear in the set of features x, or V2 has

nonlinearities with respect to features in x. Given A as the logical AND operator, if feature

f5 is added to X with the following definition:

#f, (X, y) = I(x = 1) A I(y = 1) = I(x = 1 A y = 1),

y

1

0

y

x1
(a) V1(x, y)



then V2 becomes representable in the new feature set:

1 0 1 0 0 0
2

1 0 0 1 0 2
V2=D0 = .

0 1 1 0 0 2
2

L0 1 0 1 1 L 4J L0

Feature f5 covers the nonlinearity of V2 in the previous set of features, allowing it to be
represented exactly using one additional weight. Note that the new -4 weight negates the
+4 value accumulated for state (1, 1), setting V2(1, 1) = 0. Going back to the Tile Coding
example (i.e., Figure 3-5), assume a 3D state space is tiled using three tilings shown in
Figure 3-5(a). Figure 3-7 depicts how features (tiles) defined in dimensions x and y shown
in tiling (3-7-c), can be constructed by applying the conjunction operator to every pair of
features, where one selected from tiling (3-7-a) and the other one is selected from tiling
(3-7-b). If the conjunction operator is further applied to the resulting tiling (3-7-e) and the
z-dimensional features (3-7-f), then tiling (3-7-g) is retrieved. If the granularity of splits
for each dimension is fixed to three uniform buckets, tiling (3-7-g) represents a tabular
representation, because each combination of dimensional values are captured through a
unique feature.

So why not start with a powerful representation which makes the value function linear
in those set of features? For a value function defined over |S| states, why not pick a <D

matrix with a column rank |SJ? To answer this question, consider a simple multi-UAV
mission planning scenario with 5 UAVs where each UAV has to track its 10 fuel levels and
100 locations. For this domain |S| = 1015. To learn a value function in this scenario, 1015

parameters must be learned. Assuming each parameter is stored as 2 bytes, 2 petabyte of
memory is required to store the value function. Furthermore, as the number of parameters
(i.e., the size of 0) grows, the amount of data required to find a reasonable approxima-
tion of the function increases correspondingly. Using a tabular representation challenges
practitioners both in terms of memory consumption and sample complexity.

In general for an d dimensional state space where each dimension is split into b buck-
ets, a lookup table representation including all linear independencies requires bd features,
known as the curse of dimensionality (Sutton & Barto, 1998). From an opposite perspec-
tive, the representation may ignore all possible linear independencies among the features.
With the same definition of b and d, this representation requires bd features. Unfortunately,
the resulting representation is extremely underpowered in terms of value functions it can
represent. Hence, covering some linear independencies is often critical for representing the



(a) (b) (c)

(e) (f) (g)

Figure 3-7: Two examples of creating features with higher dimensions using the conjunc-
tion operator.

value function of interest (e.g., Figure 3-6). But how should such linear independencies
be added? We observed including all of them is intractable. These two approaches are the
extreme cases of feature selection. In practice, domain experts often move away from these
extreme cases by manually adding important feature dependencies (e.g., Silver et al., 2008;
Sutton, 1996; Sutton & Barto, 1998). The next section answers the question of how to pick
important feature dependencies from a theoretical perspective.

3.2.2 How to Expand the Representation?

Assuming an initial set of binary features (e.g., |X| = bd) is given, we would like to expand
the representation by taking into account linear dependencies using the conjunction opera-
tor.3 This chapter focuses on the policy evaluation case, that is, given a fixed policy 7r, we
will examine how to expand the representation in order to provide a good approximation
of V". Since the policy is assumed to be fixed, the 7r term is often dropped, and included
implicitly.

3While dividing each dimension of the state space is a simple idea to create features, there are other tools
for generating binary features for MDPs (See Sutton & Barto, 1998).



In order to be able to use the conjunction operator to define new features, we redefine the
notion of a feature. More formally, given an initial feature function # outputting vectors
in R", we address each of its n output elements as an index rather than afeature from this
point on; #i(s) = c denotes index i of the initial feature function has value c in state s. 4

(set of indices) B = {1, ... , n}, (3.8)

(an index) i E Bn.

A feature is redefined as a set of indices:

(a feature) f C n,

Of (8) A 0
ief

1 if Vi E Bn, qi(s)= 0
0 otherwise

For example #{ 1,3 1 (.) =0 1 (-) A #3 (.). Notice that a single index can constitute a feature
(i.e., f = {1}). This thesis assumes that all sets are ordered based on the cardinality
size of each element in ascending order, unless specified. Given a set of features x =

{fi, f2, .. fN} , the definition of <b is extended as follows:

#fl (s1) #f 2 (Si) - - fN (S 1
Oi(82) #f2 (S2) - fN (S2)

#fl(SISI) #f2(sIs|) ... #fN (SO) - SxN

For brevity, we define #f as a column of feature matrix <bx that corresponds to feature f.

Of (Si)

Of = 4f} = #f (82)

L Of (sm) .

Also, define:

(set of features with cardinality less than 2) Bn A {0, {1}, {2}, ... ,n

4Notice the switch in the subscript from f (feature) to i (index).



(set of all possible features) FT p(Bn),

(arbitrary set of features) x C Tn, (3.9)

where p is the power set function (i.e., the function that returns the set of all possible

subsets). Also define operator pair : Xi - x 2 , where Xi, X2 C Fn:

pair(x) Ugf,gEXfUg x

pairk (X) Apair(pair(- - (pair(X)))),

k times

pair"(X) X,

f ull(X> U pair'(Bn>.
i=0,---,n

Essentially, the pair operator provides the set of all possible new features built on the

top of a given set of features using pairwise conjunction. The full operator generates all

possible features given a set of features. It is easy to verify that:

pair(Yn) = full(Fn) = n

Vx,BnCGx->full(X) = Fn

Now, given an MDP with a fixed policy, the feature expansion problem can be formulated

mathematically. Given y as a set of features and the corresponding approximation of the

value function under the fixed policy, Ex =<xO, find f C pair(X) that maximizes the

following error reduction:

ER =|V - Vx| - |V-V xuf}1| (3.10)

The following corollary provides an analytical answer to the above problem. The proof

will follow.

Assumptions:

" Al. The MDP has a binary d-dimensional state space, d c N+ (i.e., |SI = 2d).

Furthermore, each vertex in this binary space corresponds to one unique state; s C

{o, 1}d.

" A2. The agent's policy, ir, is fixed.



TT

Figure 3-8: The structure of the analytical proof

* A3. Each feature corresponds to a coordinate of the state space (i.e., #(s) s).

Hence the number of indices, n, is equal to the number of dimensions, d.

Assumption Al is a more specific form of a general assumption where each dimension

of the MDP can be represented as a finite vector and each dimension has finite number

of possible values. It is simple to verify that such an MDP can be transformed into an

MDP with binary dimensions. This can be done by transforming each dimension of the

state space with M possible values into M binary dimensions. The MDP with binary

dimensions was considered for brevity of the proofs.

Corollary 3.2.1 Given 1) Assumptions A I -A3, 2) a set offeatures x, where B, C X C Fn,

and 3) the definition of Tf in Theorem 3.2.7, if 7f > -y, then feature f* G pair(x) with the

maximum guaranteed error reduction defined in Equation 3.10 can be calculated as:

4f(S)=1 d(s)3(s)

f argmaxf pair(x) (3.11)

f(s)=1 d(s))

where 3 = T(Vx) - Vx is the Bellman error vector, and d is the steady state distribution

defined in Equation 2.14.

The proof structure is shown in Figure 3-8. The rest of this section provides the building

blocks of the proof, followed by a discussion of the theoretical result. Lemma 3.2.2 shows

how matrices with linear independent columns can constitute larger matrices with linear

independent columns. Theorem 3.2.3 states that the feature matrix corresponding to the full

feature set is full column rank. Corollary 3.2.4 concludes that given an initial set of features,



the feature matrix is always full column rank through the process of adding new features

using the pair operator. Lemma 3.2.5 provides a geometrical property for vectors in d

dimensional space under certain conditions. Theorem 3.2.6 provides a general guaranteed

rate of error reduction for adding arbitrary features to the representation. Theorem 3.2.7

narrows down Theorem 3.2.6 to the case of binary features, where new features are built

using the pair operator. Finally Corollary 3.2.1, as stated above, concludes that given

the set of potential features obtained by the pair operator, the one with the maximum

guaranteed error reduction is identified by Equation 3.11.

Lemma 3.2.2 Given m, n E N+ and m < n, if Xmxn and Zmxn are full

X
matrices with real elements and Ymn is arbitrary matrix, then matrix [
column rank matrix.

Proof Matrix U is full column rank if UD = 0 4 D = 0. Consider

column rank

0
z is a full

0 A

Z B

UD=4X A
Y Z B

Since X is full column rank, A = 0 4 BZ 0. No

A
assumption. Therefore B = 0. Hence D = 0

AX=0

AY + BZ = 0

w Z is also full column rank by

E

Theorem 3.2.3 Given Assumptions A]-A3, Vn E N+, 'Iy, is invertible.

Proof First note that IPjF is a square matrix as |Tnj = |S| = 2". Hence it would be

sufficient to show that Ij,, has independent columns. The rest of the proof is through

induction on n:

(n = 1): The MDP has two states. Hence Q 1 ] , det('f'y1 ) = 1. Notice that
0 1

the first column corresponds to the nullfeature (i.e., {}) which returns l for the single

state with no active feature.

(n = k): Assume that ' 1 yk has independent columns.

(n = k + 1): Based on the previous assumption, Q_, has linear independent columns.

X 0
Hence it is sufficient to show that QD-,,, can be written as , where X=



Xk+1

{}I 1 I' y{,-,}
Xk+1

4N{k+1}:N{k+1,1} '' sN{k+-1,1,---k}

0

Z

Figure 3-9: Depiction of <bk+, using <b J, as the building block. Note that features are
not sorted based on their cardinality order, but it does not change the rank of the resulting
matrix.

Y = (bFk, and Z has linear independent columns. Lemma 3.2.2 then completes the

proof

The new added dimension, k + 1, doubles the number of states because |S| - 2k+1

The new dimension also doubles the total number of possible features, as for any

given set with size k, the total number of its subsets is 2 k. Divide states into the two

following sets:

Sk+1 = {S|4{k+ 1}(S) = 1},

Sk+1 = {S #{k+1}(s) = O}.

Similarly, divide features into two sets:

Xk+1 = f fCFk+1 k+IGf},

kk+1 fff k+1, k + I 1.

Construct rows and columns of 4 y. 1 , following Figure 3-9. The values of the top left

and bottom left of the matrix is <brk, and the value of the top right of the matrix is 0.

+
ICrj

+



As for the bottom right (Z), note that for all the corresponding states, #{k+1}() 1.

Hence,

(#{ k+1} (S), O{k+1,1} (S)), '. ' ' k+1,1, --,k}(S)) = II41(S), * Of 4 1 -,}3 0

We know from the induction assumption that except for the first column, all other

columns are linearly independent. Finally observe that the first column is the only

column within Z, with a 1 corresponding to the state with no active feature, hence

independent of all other columns.

Corollary 3.2.4 Given Assumptions Al-A3, Vx C F, 'x has full rank.

Corollary 3.2.4 highlights the fact that if feature expansion technique starts with the set of

features with cardinality less than 2 (i.e., B,) and adds unique conjunctions incrementally,

the resulting feature matrix always has full column rank. If after each feature expansion

the weight corresponding to the new feature is set to zero, the approximate value function

(V) remains unchanged.

Insight: Theorem 3.2.3 shows that the conjunction operator creates a matrix 4
j, that

forms a basis for RIsI (i.e., P will have ISI linearly independent columns). The I matrix is

another basis for RISI, yet no information flows between states (i.e., the coverage of each

feature is restricted to one state). When sorting columns of t4y, based on the size of the

features, it starts with features with high coverage (excluding the null feature). As more

conjunctions are introduced, the coverage is reduced exponentially (i.e., the number of

active features are decreased exponentially by the size of the feature set). Next, we explain

how adding binary features can lead to guaranteed approximation error reduction. First, we

extend Theorem 3.6 of Parr et al. (2007) by deriving a lower bound on the improvement

caused by adding a new feature.

Definition Define the angle between two vectors X, Y c Rd, d E N+ as

Z(X ,Y) = arccos ( Y).

Note that 0 Z(X, Y) < ir.

Lemma 3.2.5 Let L be the plane specified by three distinct points P, Q, C G Rd, with

a = Z(CQ, CP) > 0. Assume that the additional point X E Rd is not necessarily in

L. Define the angles 0 = Z(CX, CQ) and w = Z(CX, CP). Now let CP' denote



X

Figure 3-10: A 3D visualization of d dimensional points L 1
the center. ||PP'll is maximized when w = a + 0.

and Q and vector X with C as

the orthogonal projection of CP on CX. If a + # < E, then ||PP'|| is maximized when

CX E L.

Proof Let us first assume that CX ( L, hence there exists a three dimensional subspace

defined by CX and L. Figure 3-10 depicts such a space. Then,

argmax||PP'll = argmax |CPl sin(w) = argmaxsin(w).

Since 0 < |a - #| < w < a + / < ', then argmax IPP'll = a + 0, which implies that

CX E L and thus is a contradiction.

Theorem 3.2.6 Given an MDP with a fixed policy, where the value function is approxi-

mated as V, define 3 = T(V) - V, where T is the Bellman operator defined in Equa-

tion 2.7 and ||V - V| = x > 0, where V is the optimal value for all states. Then

V4f E RISI : / = Z(f, 3) < arccos(y)

3](E R : ||V - VI| - ||V - (V + #f)| ;> (x, (3.12)



where -y is the discount factor and

(=1- y Cos(#3) - ys' 2 Sin (#) < 1.

Furthermore, if these conditions hold and V = (6 with #of V span((b) then:

JIV - HV|| - ||V - 'V l> (X (3.13)

where H and H' are defined by Equation 2.16 using (D and ' = [4 #5 ] respectively.

Proof Consider both cases of the orientation of points V and T(V) with respect to each

other:

* (T(V) # V): Due to the contraction property of the Bellman operator, if ||V -

VI| = x, then ||V - T(V)|| < yx. Define a as the k(V - V, 6), then

sin (a) V ->T() < z < arcsin(-y)
|1V - i||

Furthermore, by assumption 0 < 3 < arccos(y)= 7/2- arcsin(y). Combined, these

conditions indicate that a + / < r/2.

For the next step, given ( > 0, mapping the points V, V, T(V), V + &#f to

P, C, Q, X in Lemma 3.2.5 shows that the orthogonal projection length of vector

V - V on V + # - V is maximized when all four points are coplanar and

W = Z(V - V, (#f) = aZ + .

Notice that the coplanar argument is implicit in the proof of Theorem 3.6 of Parr

et al. (2007). Figure 3-11 depicts the geometrical view in such a plane, where (* =

argmin, ||V - (V + (#f)ll, x' = x sin(w). As shown above, a < arcsin(y) and

0 < c + # < E, thus

sin(a + ) < sin(arcsin y + /) =y cos(#) + sin(/) V/1 - y2

Hence

v' <; o(7 cos(/)+ 1- 2sin(#))

->X - X' ;> X (1 - -y COS(# - /1 - -y2 Sin (#)) (X



TV

a

V+*V

Figure 3-11: Geometrical view of V, V, T(V), and #f. As # shrinks x' gets closer to 'yx.

Looking at Figure 3-11, it is easy to verify that x-x' = ||V-V||-||V-(V+(P )|,
which completes the proof for the case T(V) # V.

* (T(V) = V): This means that o = 0. If #f crosses V, it means 3 0 and
V V. Hence( 1 -ycos(#) - A/1- 7

2 sin(3) = 1 -- yand ||V -

V|| - ||V - (V + (*#f||| =|V - V|| = x > (x. When #f does not cross V,
together they form a plane in which:

||V - V||-||V -(V +V(*#g||| = xI - sin(#3)

In order to complete the proof, a lower bound for the above error reduction is derived:

0 < / < arecos(y) =w/2 - arcsin(-y), 0 < y < 1

0<#+arcsin(-y)<7/2

= sin(#) < sin(# + arcsin(y)) - y cos(#) + \/1 - y2 sin(#)

= (1 - sin(o))x > (1 - y cos(#) - V/1 -y2 sin(#))x = (x

In order to prove the second part of the theorem, the argument has to be specialized to
the linear function approximation case, meaning V = (6. Since the first part of the
proof holds for any approximation, lets consider the case where V = HV. Showing
V + = 'V completes the proof as substituting V and V + *#of to HV and H'V
turns Inequality 3.12 to Inequality 3.13.

To proceed, decompose #f into two vectors # and #-, where # span(D) and
# I _L span(4). Note that since of ( span(@), then #- is not a null vector. The proof



V
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Figure 3-12: Increasing the dimensionality of the projection operator: #f I span(4).

proceeds by showing V + *#f = H'V with the assumptions of # = 0 (i.e., #f ) =#),

but this assumption will be relaxed shortly thereafter. Notice that ' = [4P of] has one

extra column rank defined by #f, which is perpendicular to the span(4b). Figure 3-12

provides a geometric view of the situation. The blue line and the green plane highlight

span(4?) and span(V') correspondingly. Both H and H' are orthogonal projections into

these subspaces hence have the same span as 4? and ' respectively. Therefore:

span(H') = span(H) + span(#f).

For any given value function V, because #f I span(H):

H'V = HV+U*#f,

where, o* - argmin |(V - HV) - Orf11,

( HV= V) argminV - (V + }f)|
01

-> 'V =HV + *#f,

=V + *#g

The extension to the case where # # 0 is straightforward. Consider a subspace defined by

two representation matrices (b1 and (P2 (i.e., span(4i) = span(4?2)), and corresponding

orthogonal projection operators H1 and 12 as defined in Equation 2.16. Since both opera-

tors provide the solution to the same convex optimization (i.e., mino ||V - Vl l), where both

domain and target space are identical, hence their outputs are equal (i.e., V1 = HIV =



U 2 V = V 2 ).5 Consequently if 4 is added as the last column of ', it does not change
span(('). Hence the result of the projection remains intact.

The previous theorem provided a general guaranteed rate of convergence for feature expan-
sion techniques in the context of linear function approximators. The next theorem special-
izes the above result to the case of binary features, where new features are built using the
conjunction operator.

Theorem 3.2.7 Given Assumptions A]-A3, X C Fn,V = X0, 6 = T(V) -fV, and
||V - V|| = x > 0, then

Vf E pair(X), if TI f d(s)6(s) >j f Z (s)=l d(s)) ( EZes d(s)62(s)

then

3 c R : ||V - V|| - ||V - (V + 4,||| > (x, (3.14)

||V - 17V| - V- I'VH| > (x, (3.15)

where 1-y77f- /- y 2  1- = (3.16)

Proof Theorem 3.2.6 provides a general rate of convergence for approximation error, when
arbitrary feature vectors are added to the feature matrix. Hence it is sufficient to show that
the conditions of Theorem 3.2.6 holds in this new theorem, namely: 1) # = Z(#f, 6) <
arccos(-y) and 2) Orf span((x) . The latter is already shown through Corollary 3.2.4.
As for the former:

cos( ) 
= d(s)6(s)

( E/ ('s) i d(s)) ( Es S d(s)2( s))
# = arccos(y).

By the assumption made earlier, rgf > -y. Hence # < arccos(7). Satisfying preconditions
of Theorem 3.2.6, both Equations 3.12 and 3.13 are obtained. Switching cos(3) with ?Jf
completes the proof:

|V - HV|| - ||V - 'V|| > (x

No e R : inV - casa - V -- (V + r$ul|| > (x,

5Note that the corresponding coordinates, 0, in each case can be different, yet the resulting V are identical.



where,

-y - 1 -- < 1

Theorem 3.2.7 provides sufficient conditions for guaranteed rate of convergence of the

value function approximation by adding conjunctions of existing features. Hence the next

corollary identifies the new feature, facilitating the best guaranteed rate of convergence of

the value function.

Corollary 3.2.8 Given Assumptions A]-A3, X C F,V = <kx0, 6 = T(V) - V, and

|V - V1 = x > 0, then the feature f E pair(x) with the maximum guaranteed rate of

convergence is:

$ (s)=1 d(s)6(s)
f argmax (3.17)

fEpair(X),rjf>'y d f(s)-1d(s)

Insight: This result shows how feature coverage affects the rate of convergence of the ap-

proximation. Equation 3.17 shows how the feature coverage is a double edge sword; while

more coverage includes more weighted Bellman error (i.e., the numerator) resulting in a

higher convergence rate, it also contributes negatively to the rate of convergence (i.e., the

denominator). The ideal feature would be active in a single state with all of the Bellman

error. Intuitively this is expected, because adding this feature makes the approximation

exact. When the weighted sum of Bellman errors is equal for a set of features, the feature

with the least coverage is preferable. On the other hand, when all features have the same

coverage, the one with the highest weighted Bellman error coverage is ideal.

Another interesting observation is the difficulty of finding features that give the guaran-

teed convergence rate with respect to -y. In general, larger values of -y makes the task harder

since the constraint 77 > -y rejects more features in the set pair(x).

Finally, this theorem provides insight on why adding features with large coverage in

early stages of learning and specific features later during the learning process would be

beneficial. In the beginning of the learning process where feature weights have not been

adjusted, the Bellman error is generally large everywhere. Therefore features with large

coverage have higher chances of having good convergence rates due to the numerator of

Equation 3.17. As weights are updated, the Bellman error is reduced correspondingly. This

will make the denominator of Equation 3.17 the deciding factor, rendering features with

large coverage ineffective. This transition in the effect of feature coverage may explain the

empirical results of Whiteson et al. (2007), where the agent starts with one big tile and



adaptively increases the number of tiles, learning faster compared to it starting with a fixed
learned representation.

Can Assumption A3 be relaxed? One may wonder about the final result of this feature
expansion scheme started with an arbitrary feature function which does not comply with
Assumption A3. While Assumption A3 is a sufficient condition for realizing the best repre-
sentation (i.e., the representation that assigns one unique feature to each state) in the limit,
we conjecture that this assumption is not necessary. More specifically, we conjecture that
given an arbitrary initial features X C FC, the following assumption, which is more general
than assumption A3, is sufficient to reach the best representation:

full(X) = En.

Assumption A3 is equivalent to B, C X, which immediately satisfies the above condition.

3.3 Incremental Feature Dependency Discovery

Corollary 3.2.8 forms the theoretical foundation of the family of incremental Feature De-
pendency Discovery (iFDD) algorithms. The general process of iFDD methods is to start
with an initial set of binary features and expand the representation by adding new fea-
tures that approximate f* in Equation 3.17. The 6 can be calculated using the BRM or
LSTD methods explained in Chapter 2. There are two problems in calculating f* exactly:
1) calculating d(s) and the Bellman error 6(s) is not possible without knowing the MDP
completely, and 2) calculating rf requires a sweep through the whole state space, result-
ing in computational complexity dependent on |S|. Sampling techniques mitigate the first
problem. In particular, L1 samples in the form of (si, ri, s') are obtained through executing
the fixed policy 7. Consequently the Bellman error is replaced with the temporal difference
error. To address the second problem, the f > -y condition is dropped from the maximiza-
tion. This exclusion brings no harm, as long as one feature f c pair(X) exists for which
,q > -y. Taking both these modifications into account, Equation 3.17 can be approximated
as follows:

~,EiE{1--,1}#(si)=1 ri -[ TgS)O(~f

f argmax . (3.18)
fEpair(X) ,L1},#f(si)=1 1



Figure 3-13: The feature discovery/policy evaluation loop. Note there is no control in-

volved, so the output of the loop is an approximate value function for a fixed policy 7r.

Empirically, the following approximation of the f* also has been shown to yield good

results in the online control case (Geramifard et al., 201lc):

= argmax Srj + [_Y#(s') - #(si)]T6I (3.19)
f Epair(X) iE{1,...,L1},#f (si)=1

Both these approximations will be empirically probed in the policy evaluation case in Sec-

tion 3.3.1. Given 6, the above equations add a new feature to the representation. To close

the loop, a policy evaluation technique should be employed to find the new 6, as shown in

Figure 3-13. Algorithm 16 shows the corresponding pseudo-code for combining iFDD and

LSTD, named FDLSTD. 6 Each iteration of the loop realizes the feature discovery (lines

5-6) / policy evaluation (lines 7-8) loop. The feature discovery step requires inspecting all

pairs of features, incurring (8(n2) complexity, where each inspection requires E(nL1 ) com-

putation, leading to e(n 3 L1 ) total complexity. Note that n is increased on every iteration

by one.

3.3.1 Empirical Results

In order to empirically evaluate the performance of FDLSTD, this algorithm was used

to evaluate the value function corresponding to a fixed policy for the classical pendulum

domain with a fixed number of samples.

Inverted Pendulum Following Lagoudakis and Parr's work (2003), Figure 3-14 depicts

the problem. The system's state is the pendulum's angle and angular velocity, (0, 6), actions

are three different torques, episodes last up to 3,000 steps, and -y = 0.95. The initial

6The BRM approach can also be used, yet the double sampling requirement should be handled carefully,
akin to Algorithm 15.



Algorithm 16:Feature Discovery LSTD (FDLSTD) Complexity
Input: 7r,X C F

Output: 9W
1 Create L1 samples in the form of (si, ri, s') following policy -r
2 Calculate A and b using Equations 2.37-2.39 and <bX 8(n 2 L1 )

3 6 +- A b (Use regularization if the inverse does not exist) O(n 3 )
4 repeat
5 Calculate f* using Equation 3.18 or Equation 3.19 8(n 3 L1 )
6 X <- X U {*

7 Calculate A and b using Equations 2.37-2.39 and <Dx E(n 2 LI)

8 0 <- A b (Use regularization if the inverse does not exist) E(n3 )
9 until maximum iterations is reached

io return V = <D 0

features consisted of discretizing each dimension into 20 buckets (for 120 features total).
The policy 7r was fixed to apply the torque in the opposite direction of 0. Algorithm 16 was
implemented with four types of feature expansion techniques (i.e., line 5):

" Random: f* random{f f E pair(X), Is c Samples, #f(s) 4 0}. This random
expansion method ignores features that are inactive for all samples, because they
cannot improve the approximation.

* FDLST: Equation 3.19.

* FDLST+: Equation 3.18.

" Best: f* argminfspair(x) EsCsampies(V - Vxu{f}) 2, where V was calculated
by running LSTD on 100,000 samples using a tabular representation with 1, 200 fea-
tures.

The "Best" method is not feasible in practice as it requires access to the true value function,
yet it provides the best feature conjunction that minimizes the optimization criteria. The
number of samples was fixed to 1,000, 2,000, and 5,000 for 3 set of batch experiments.
The performance of each method was calculated based on the RMSE of V and V. Results
were averaged over 20 runs. The random seed was fixed among all methods, resulting in
identical set of data across all expansion techniques.

Figure 3-15 depicts the results of running these four algorithms. Shaded areas around
each plot show 95% confidence interval regions. The X-axis corresponds to the number
of iterations (i.e., number of features added to the representation), while the Y-axis depicts



Figure 3-14: The inverted pendulum domain
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Figure 3-15: The accuracy of policy evaluation results of Random, iFDD and iFDD+ ap-
proaches compared to the Best possible feature expansion. All methods add a conjunction
of two existing features to the pool of features on each iteration.

the RMSE of the resulting value function approximation with respect to V. As expected,

both FDLSTD and FDLSTD+ methods provided much faster convergence rates than the

Random approach. Another interesting observation is that FDLSTD+, which provided a

better approximation of Equation 3.17 , yielded better convergence compared to FDLSTD.

As the number of samples is increased, the sub-optimality of FDLSTD and FDLSTD+

became more evident. It is important to understand that Equation 3.17 identifies the feature

with the best guaranteed convergence rate in the worst case scenario. Hence in practice, for

a specific MDP. a different feature may yield better convergence result. In other words, if a

new feature was generated by solving Equation 3.17 exactly for the Pendulum domain, the

resulting learning speed could be still slower than the best plot shown here as black.



3.4 Reducing the Computational Complexity of iFDD

As mentioned in the previous section, executing both versions of iFDD (i.e., Equation 3.18
and 3.19) requires e(n3 L1) complexity, where n is the total number of features, increased
on each iteration by one. Since, the goal is to use iFDD in large state spaces, this section
focuses on reducing this complexity.

With the use of initial set of features with sparsity of k/n, the complexity of iFDD
is reduced to 8(n 2 kL 1 ) due to the fast calculation of #(s ). To accommodate the time
dependency of features, define kt and nt as the maximum number of active features and
total number of features at iteration t. Hence the complexity of feature discovery can
be written as 0(nktL1 ). It is easy to verify that if iFDD starts with B, as the initial
representation, then

lim k = 2, (3.20)
tnoo

lim nt = 2^0
t-* c

Hence,

lim E(n 2ktLi lAI) = 0(2 2no+koL 1 ).

This complexity poses a challenge for online methods because even for small number of ko
and no, 2 2no+ko can be computationally intensive.

The next chapter explains how, by incrementally estimating the optimization criteria in
Equations 3.18 and 3.19, the worse case complexity of iFDD can be dropped to 8J(k)
E(23ko).7 It would be ideal if feature values are changed in a way so that kt is not increased
on each iteration, resulting in the complexity of iFDD to be 6(k0). But what is the cause
for kt parameter to grow? The answer is: new features added to the representation do not
change the existingfeature values. For example, if feature f = g A h is active, then features
g and h must also be active. Hence in the limit where all combinations are covered, the
number of active features becomes exponential in the number of initial active features.

In order to break this trend, a greedy activation mechanism is employed to create a
sparse set of features that provides a summary of all active features. In general finding the
minimum covering set is NP-complete but greedy selection gives the best polynomial time
approximation because the set coverage problem is submodular. For example, if initial
features g and h are active in state s and feature f = g A h has been discovered, then for
state s feature f is activated, while both features g and h are deactivated since g and h are

7Note that kt is upper bounded by 2 ko due to Equation 3.20.



Algorithm 17:Generate Sparse Feature Vector (#) Complexity

Input: 0(s), x C T,
Output: O(s)

1 # (S) <- 0
2 activeInitialFeatures <- {i 43(s) = 1}
3 Candidates <- SortedPowerSet(act iveInitialFeatures) 6(2ko)

4 while activeInitialFeatures o 0 do
s f &- Candidates.next()
6 if f E x then
7 activeInitialFeatures <- activeInitialFeatures x f 8(ko)

8 f (s)

9 return 0(s)

covered by f. Algorithm 17 describes the above process more formally: given the initial

feature vector, # (s) and the current pool of features x, candidate features are found by

identifying the active initial features and calculating the power set (p) sorted by set sizes

(lines 2,3). The loop (line 4) keeps activating candidate features that exist in the feature set

x until all active initial features are covered (lines 5-8). The outer loop of Algorithm 17

requires 0( 2k0 ) operations in the worst case and each iteration through the loop involves

8(1) lookup (using a hashing mechanism) and e(ko) set difference. While the result of this

algorithm is a sparse set of features, running the algorithm requires 8(ko2ko) complexity.

The next chapter shows how this sparsification plays a critical role in creating an online

iFDD process with the worst per-time-step complexity of 8(k3 2 ko). The next section in-

vestigate the theoretical consequences of applying the sparsification to the representation.

3.4.1 Sparsifying <P: Theoretical Implications

In order to investigate the effects of sparsification of <b theoretically, Algorithm 17 is de-

fined in a matrix form. Define:

XY 4 XAY,

X+Y XVY.

The abjunction operator on two binary scalar variables x and y is defined as: x -',+ y = xy.

For binary vectors the operation is performed bitwise: X -** Y = XY. Algorithm 17 in

the matrix form is defined through the U operator shown in Algorithm 18. For any given



Algorithm 18:U
Input: X= {fi, f2- , fN}

Output: 'bAxn

1

2 for i <- n downto 2 do
3 for j <- i - 1 downto 1 do
4 if fi n fy #0 then
5s )ej< (Dej ->- (Pei

6 return 4I

set of features B C X C FC , the 6 operator creates a sparse feature matrix <D. Note that
the original matrix 4) is not necessarily sparse. Hence the o notation highlights sparsity
of the feature matrix 1D. The (Pei in the algorithm selects the ith column of 4L. On each
iteration of the outer loop, 6 picks a column starting from the right (4ei) and applies it to
every column on its right (<bej) using the abjunction operator, only if both fi and f, share
a common index.

Remark For any X, Y c {0, 1}, X, Y # 0, then if Z = XY # 0, then Z is not
orthogonal to both X and Y.

Proof (Z,X) = (Z,Y) = ||XY llf # 0

This highlights the fact that the new feature built using the conjunction of two feature
vectors is not orthogonal to the span of the existing set of features. On the contrary, as it
will be proved in Theorem 3.4.3, when sparsification is applied to the matrix D, it forms a
full-rank matrix with orthogonal basis.

Lemma 3.4.1 For any X, Z E {0, 1}", X, Z h 0, X # Z, then Z L (X -> Z).

Proof (Z,X -> Z) = ||Z(X-> Z)1| = ||ZXZ| =0.

Inner product

Fig. 3-16 provides a geometrical interpretation of the abjunction operator in 2D (a) and 3D
(b) spaces. In Fig. 3-16(a),

Q= IV= [] ,Q-=Q->/V= K .
1 0 1
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Figure 3-16: A geometric interpretation of the abjunction operator applied to vectors in 2D
(a) and 3D (b) spaces.

Notice how the one dimensional subspace defined by Q, shown as the dark transparent
line, changed to the red transparent line, turning it orthogonal to V. Fig. 3-16(b) depicts
another example in a 3D space where,

Q QV HI1 0 0 Q =LV 0J
Q= 0 ,P= 1 ,V= 0 0-

~P--* =P +>V = I
0

The black transparent plane shows the subspace spanned by P and Q. The red plane
shows the transformation of the space after applying the abjunction operator to P and Q
(i.e., the black subspace).

Lemma 3.4.2 Given Assumptions AJ-A3, En C F, - Bn, X = B, U En, then, matrix
(= U (f ) has no zero column vector

Proof Given any feature f E X, there exists at least one state for which #f(s) # 0. Find
state s for which only indices covered by f are active (i.e., Vf E f, of (s) = 1, Vf

f, #f (s) = 0). It is sufficient to show that #f (s) remains unchanged after applying the U
operator. Since X is sorted in ascending order based on feature sizes, Vg E X, |g| > |f lI
g f f #>.9 (s) = 0. Hence #f (s) -+> g (s) =1 I,+ 0 = 1.



Theorem 3.4.3 Given Assumptions A] -A3, E, C F - Bn, x = B, U E, then, matrix
= U( yx) has full rank.

Proof We apply induction on the dimensions of the state space (n)
we can write X = [4)B, 4E and) ['IBn En -

(n = 2) : The MDP has two states. Hence B 2  {0,

when E2 = {{1, 2}}, Hence:

0 1 1 1

4 0 1 0 0

0 0 1 0

1 0 0 0

to prove this. Note that

{1}, {2}}. The non-trivial case is

0

0

0

1

0 0

1 0

0 1

0 0

1
0

0
which has linear independent columns.

(n = k) : Assume that for any Ek C Fk - Bki (=
columns.

[PB, 4E] has linear independent

(n = k + 1) : Divide the set of states into two sets: S which includes states that does not
activate feature k + 1 and S+ S - S-. The new features matrix with the additional
dimension can be decomposed into 4 = [ Bk1Ek+1]. Following Theorem 3.2.3,

By0
(I'Bk~l -[Bk 1

where the top and bottom rows correspond to S- and S+ and the last column cor-
responds to the feature k + 1. Similarly, define the following three extended feature
sets:

E7 {fff E Ek+1,k+1 V f},

E+1 = (ff CEk+1,k+1 c f},

E = {f - {k + 1}f C E+ 1 .

Notice that, the subscript k is used to highlight the fact that feature k+ 1 in not present
in either of Et and E sets. Following the same row ordering used for #Bk+lmatx

) with the column reordering of {Bk, E, k + 1, E+ 1 . {k + 1}} can be written



as:

b kDE- 0 0l

k k

Similarly matrix <b, =3(X) can be written as:

[ ' 13Bk (DE- 0 01
o o/ k

Bk 4E- q E+_

Define X [4Bk'kY [=] (PE- [q EDE+ if both X and Z have linear

independent columns then Lemma 3.2.2 completes the proof.8 X and <"E+ have full

rank due to the induction assumption. So it is sufficient to show that q does not lie in

the column space of <DE+4 Similar to Lemma 3.4.2, consider state s for which only

feature k + 1 is active. Since Vg c X, Ig| > |{k + 1}| -> 9 (s) = 0. Hence the row

corresponding to state s in vector q has one unique 1, while the same row in matrix

<i>+ is 0. Therefore Q is not in the span of <Ei>
k k

Remark Given Assumptions Al-A3, E, C F7, - Br, x = B, U En, then for any f E

pair(X), the column spaces of <ixufI = ?(x U {f}) does not necessarily cover the

column space of 1D = U(x).

Proof We provide one example where a column of xuff} does not lie in the column

space of <D . Consider an MDP with 3 binary dimensions, where f {1, 3}, B3

{0, {1}, {2}, {3}}, E 3 = {{1, 2}}. Hence:

0 1 1 1 1 0 1 1 1 1 1

0 1 1 0 1 0 1 1 0 1 0

0 1 0 1 0 0 1 0 1 0 1

0 1 0 0 0 1 0 0 0 0
~xu{f }=

0 0 1 1 0 0 0 1 1 0 0

0 0 1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 1 0 0

100001 0 0 0 0 0

8The values of ' Bk and E- does not affect the proof.



I fru{f} =

Let A = [e I NXe21 = det(A'A) = 3 > span(&,) ( span(4XU{f})

The U operator retains the full rank property of 'X. The columns of IDX form an orthog-
onal basis. Unfortunately as shown by the above counter example, the resulting subspaces
after adding the new feature do not cover the previous subspace. As a result the rate of
convergence results derived in Corollary 3.2.8 does not hold when sparsification is applied.
Theorem 3.4.4 provides an upper bound on the maximum number of states for which their
values are not necessarily retained after expanding the representation and applying the spar-
sification method.

Theorem 3.4.4 Given Assumptions AJ-A3, E_ C T - B, X = B, U E, | = n, and

f, g E X, h G pair(X) = f U g, where f, g and h have order numbers i, j and k in the

ordered set x U { h} correspondingly, considering the following two representations:

* R1: D = 6 (x) where #p(s) return the value offeature p at state s.

e R2: 1 = U (x U {h}) where #p(s) return the value offeature p at state s.

VO c R", Vs E S, if #f(s) =_g(s) = 1 orkh(s) = 0, then #(s)T 6 = O(s)T 6 ', if

01

0 k-1

'= Oi + o
Ok+1

On

Proof Let us consider the two cases mentioned in the theorem separately:



* {s|S E S, Oh(s) = 0}: it is easy to see that Vu c h, 0,, (s) = d(s) because x -,-> 0 =

x. Furthermore, based on our assumption, the value of the new feature at state s is

zero. Hence the new added weight is ignored, resulting in #(s)'O = 0(s)TO.

" {sIs C S, Of (s) =g(s) = 1}: In this case, #h(s) = 1, and due to sparsification

Of(s) = 0g(s) 0. Because the weight corresponding to 01(s) includes the sum

of weights corresponding to #f (s) and #g(s), it is sufficient to show that Vu E X x

(f U g), #u (s) = q(s). This is proved by contradiction. Assume 3u E X - (f U g),

where #S (s) # 4u(s). Because the U3 operator cannot turn a zero value to one for the

previous feature columns9, then ou(s) = 1 and #(s)= 0. Hence h n a f 0. On

the other hand, by the definition of U3, Vx, y E X, Ox(s) = 4(s) =1 -> x n y = 0,

otherwise one would have eliminated the other. This case assumed #f (s) =g (s)

1. Therefore:

unf = 0,ung=0,

u n (f U g) = 0,

u n = 0,

which contradicts the earlier statement.

Corollary 3.4.5 Given Assumptions A1-A3 and X ; Tn, 0 E R", 4J = U(X), 'xu{f} =

J (X U {f }), and 0' built according to Theorem 3.4.4, if the portion of elements of vectors

V = (0 andV' =4xu{5 0 that are not identical is defined as 3, then 0 < ];*

Proof Theorem 3.4.4 shows that for all states that #f (s) = 0, the value function remains

the same. For an MDP with n binary state variables, the minimum number of states for

which of (s) = 0 is 1 - G(f) = 2--I 1. 10 Hence p is bounded by 2 --fI1.

Note that in our setting If ;'> 2, which means in the worst case / is and it drops expo-

nentially fast because the coverage of new features exponentially decays with the number

of conjunctions. Figure 3-17 depicts this concept in a graph. The next chapter empirically

investigates online control methods built on top of iFDD using the sparsification technique

combined with the temporal difference learning.

90 -'- x = 0

'0The ?5 operator can also remove some of the activations, hence the term minimum is used.
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Figure 3-17: The upper bound on the portion of the state space for which the resulting
value functions can disagree if sparsification (U) is used and the weight vector is changed
according to Theorem 3.4.4.

3.5 Contributions

This chapter provided a theoretical analysis on the notion of right set of features used for

approximating the value function of a fixed policy in a linear form. We introduced the no-

tion of feature coverage and showed that coverage plays a fundamental role in identifying

features with a guaranteed rate of convergence in reducing the approximation error. The-

orem 3.2.6 provided a generic convergence rate for feature expansion techniques. Corol-

lary 3.2.8 yielded a closed form solution to identify new binary features using conjunctions

of previous features with best guaranteed convergence rates. This theoretical result formed

the core idea of the incremental Feature Dependency Discovery (iFDD) family of feature

expansion techniques. Empirical results in a batch setting demonstrated faster convergence

rate of the value function using iFDD techniques over a random approach in the task of

inverted pendulum. Finally in order to reduce the complexity of iFDD methods, a sparsifi-

cation technique was introduced and its theoretical consequences were probed.



Chapter 4

The Right Set of Features: An Empirical

View

The previous chapter introduced the family of iFDD feature expansion techniques for solv-

ing the policy evaluation problem and derived several theoretical results. This chapter

empirically investigates the use of iFDD for online control. The structure of this chapter is

as follows. Section 4.1 introduces the online iFDD family of expansion techniques. Com-

bined with temporal difference learning, new methods are examined in control problems

including large scale UAV mission planning scenarios. Section 4.2 extends iFDD by relax-

ing the dependency on the initial feature set. Section 4.3 reviews existing adaptive function

approximators and relates iFDD with discussed methods within the big picture. Section 4.4

provides a summary of the contributions. Portions of this chapter have been published as a

conference paper (Geramifard et al., 2011 c).

4.1 Online iFDD

This section shows how iFDD can be used online. Since the focus of this chapter is the

practicality of the algorithms in large domains, cheap computational complexity is a major

concern. Reviewing from the previous chapter, given a set of L1 samples, the current

weight vector 0, and the current set of features X, a new feature can be constructed using

the following optimization:

f* argmax p)f (Samples, 0, X), (4.1)
f epair(x)



where <, which is defined as relevance from this point on, was implemented in two forms

r, + [7#O(s ) - #(si)]T O

of (Samples, 0, X) = (4.2)
if {1 L1, (si)=1

b (Samples, 0, X) = iE{1-- ,L1,4.s)=)

ViE{1,7,L1},4og(si)=1

This chapter focuses on the control problem. As seen in Chapter 2, value-based RL tech-
niques require access to Q values to solve control problems. Hence, from this point the
temporal difference is defined based on Q values rather than V values. Hence:

6i = ri + [yq(s', a') - #5(si, ai)]T0. (4.4)

Notice that if the underlying policy changes during feature expansion (which is often the
case in the control case), theoretical results do not immediately apply, yet they suggest
the resulting control algorithms will perform well in practice. To proceed, define each
f c pair(X) as a potential feature with of as its corresponding relevance. The iFDD al-
gorithm seeks to add the potential feature with the highest relevance to the representation.
The main insight in iFDD to reduce the complexity is the creation of an online process
that calculates the relevances defined in Equations 4.2 and 4.3 incrementally. Given that
the representation has sparsity kt/nt at time step t, then the total number of pair combi-
nation of active feature is bounded by 0(k), hence the feature relevance of at most k'
potential features can be updated on every time step. This observation is one of the key
concepts in major complexity reduction of iFDD. Furthermore, from this point, all feature
vectors will be sparsified using Algorithm 19 discussed in the previous chapter, hence we
use the o notation (i.e., # is used for function approximation instead of #). Notice that
this change will again move the algorithm further away from the main theoretical results
(i.e., Theorem 3.2.7) because the span of the feature matrix after feature expansion does not
necessarily include the previous span (i.e., Remark 6). Yet from the practical viewpoint, it
reduces the computational complexity of iFDD substantially.

The process begins by building a linear approximation to the value function online us-
ing the initial set of binary features. It tracks the relevance measure for all simultaneously
activated feature pairs (i.e., potential features) for every visited state. On every time step,
Equation 4.1 can be used to discover the potential feature with the maximum relevance
value, but this approach will generate one feature on every time step, exhausting the mem-



Algorithm 19: Generate Feature Vector (#) Complexity

Input: #0 (s), x
Output: #(s)

1 (S) & 0

2 activeInitialFeatures &- {i (s) 1}
3 Candidates <- SortedPowerSet(activeInitialFeatures) 8( 2k0 )
4 while activeInitialFeatures 5 o do
5 f <- Candidates.next()
6 if f E x then
7 activeInitialFeatures - activeInitialFeatures f 8(ko)

8 f ( <

9 return 0(s)

ory space quickly. To circumvent this problem, a thresholding mechanism replaces the

argmax operator in Equation 4.1. In particular, whenever the relevance for a potential fea-

ture exceeds a user-defined threshold, it will be discovered and added to the representation,

capturing the nonlinearity between the corresponding feature pair. Note that stochastic

transitions may introduce some complications that will be discussed later in Chapter 6.

The algorithm proceeds in three steps:

(i) Identify potential features that can reduce the approximation error,

(ii) Track the relevance of each potential feature, and

(iii) Add potential features with relevance above a discovery threshold to the pool of fea-

tures used for approximation.

Figure 4-1 shows online iFDD in progress. The circles represent initial features, while

rectangles depict conjunctive features. The relevance of each potential feature f, #f, is the

filled part of the rectangle. The discovery threshold (, shown as the length of rectangles,

controls the rate of expansion and is the only parameter of online iFDD. This parameter

is domain-dependent and requires expert knowledge to set appropriately. However, intu-

itively, lower values encourage faster expansion and improve the convergence to the best

possible representation, while higher values slow down the expansion and allow for a better

exploitation of feature coverage. While the ideal value for ( will depend on the stochasticity

of the environment, empirical results were robust to the choice of the discovery threshold

value. Section 4.1.4 covers the details.

Online iFDD can be integrated with any value-based RL method. This thesis inves-

tigates the integration of online iFDD with TD learning due to its simplicity, speed, and
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Figure 4-1: A snapshot of online iFDD: Initial features are circles, conjunctive features
are rectangles. The relevance of of a potential feature f is the filled part of the rectangle.
Potential features are discovered if their relevance 4 reaches the discovery threshold (.

its previous empirical results in the literature (Geramifard et al., 2006, 2007; Sutton, 1996;
Sutton & Barto, 1998). It will be shown that for the policy evaluation case, the online iFDD

algorithm with TD learning will converge to the best possible function approximation given

an initial set of binary features. We note that, if the initial features are such that no function

approximation - linear or nonlinear - can satisfactorily approximate the underlying value

function, then applying online iFDD will not help. For example, if a key feature such as

a UAV's fuel is not included in the initial set of features, then the value function approx-

imation will be poor even after applying online iFDD. For more discussion, refer to the

discussion of relaxing Assumption A3 in Section 3.2.2.

4.1.1 Algorithm Details

For simplicity, first assume that the relevance of a potential feature is defined by Equa-

tion 4.2. The use of Equation 4.3 for calculating relevances will be discussed at the end

of this section. The process begins with an initial set of binary features; let x be the cur-

rent set of features used for the linear function approximation at any point in time. After

every interaction, first the RL method updates the weight vector 6. In the case of TD,

Ot+1 = O + at6o#(st, at), where at is the learning rate and 6t is defined in Equation 4.4.

Next, Algorithm 20 is applied to discover new features.

The first step in the discovery process (lines 1,2) identifies all conjunctions of active fea-
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Algorithm 20: Discover using Equation 4.2

Input: #(s), 6 t, X, P
Output: xb

1 foreach (g, h) c {(i, j)#i(s)#4(s) = 1} do
2 f <-guh

3 if f V x then

s if bf > then
6 x-xxuf

tures as potential features.1 Considering only conjunctive features is sufficient for online

iFDD to converge to the best approximation possible given the initial feature set; conjunc-

tive features also remain sparse and thus keep the per-time-step computation low (refer

to the complexity analysis of Algorithm 17). The relevance <f of each potential feature

f = g U h is then incremented by the absolute approximation error 6t I (line 4). If the

relevance ?/f of a feature f exceeds the discovery threshold (, then feature f is added to

the set x and used for future approximation (lines 5,6).

In order to bound the number of states for which the value function might change,

Theorem 3.4.4 is used to determine the weight of the new feature. In particular, if fea-

ture f = g U h is added to the representation, the online iFDD algorithm initializes the

coefficient for the new feature f as Of =g + Oh.

4.1.2 Theory

The main virtue of online iFDD is the way it expands the feature representation. Unlike

other representation-expanding techniques (e.g., Ratitch & Precup, 2004; Whiteson et al.,

2007), iFDD increases the dimensionality of the space over which features are defined

gradually as opposed to utilizing the full-dimensional state space. This section shows that

online iFDD with TD learning asymptotically leads to the best performance possible given

the initial features: first it is shown that online iFDD does not stop expanding the repre-

sentation unless the representation is perfect or it is fully expanded. Next, the asymptotic

approximation error with respect to the true value function is bounded.

Let s' denote the ith state. The feature function #5(s) outputs which features are active

in state s and <kisix, captures all such feature vectors, where the ith row corresponds to

'Conjunctions are stored in a "flat" representation, so there is only one conjunctive feature a U b U c for

the conjunction of features a U (b U c) and (a U b) U c.
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O(si)T. As feature conjunctions are added as new features, the output dimensionality of

O(s) grows and adds columns to <i.

Completeness of Feature Expansion To show that online iFDD-TD will find the best

representation possible given the initial set of features, the following shows that the on-
line iFDD-TD will either find a perfect representation or will add all possible conjunctive
features:

Theorem 4.1.1 Given initial features and a fixed policy ir that turns the underlying MDP

into an ergodic Markov chain, online iFDD-TD is guaranteed to discover all possible fea-

ture conjunctions or converge to a point where the TD error is identically zero with proba-
bility one.

Proof Suppose online iFDD-TD has found # as its final representation which neither sets
the TD error zero everywhere nor includes all possible feature conjunctions. These proper-
ties imply that there is at least one state s that has at least two active features, g and h, where
g U h has not been explored (if no state has more than one active feature, then the feature
discovery algorithm would have no combined features to propose and the representation
would have been fully expanded). The absolute sum of TD errors for this state s and this
feature pair g and h after some time To is 'TO |6t I(st = s), where I indicates whether
the agent was in state s at time t, and 6t is the corresponding temporal difference error. By
the ergodicity of the underlying Markov chain, state s will be visited infinitely many times.

Since the value function approximation is not perfect, there exists some state s' for
which the TD error 6(s') is nonzero. The Markov chain induced by the policy was assumed
to be ergodic; ergodicity implies that there exists a path of finite length from state s' to
state s. Thus, over time, the TD error at state s' will propagate to state s. The only way
for feature f = g U h to not be added is if the sum ZZTo 6t|I(st = s) converges to some
non-zero value that is less than the discovery threshold .

It can be argued that the sum ZoT. 5tLI(st = s) diverges. Since the policy is fixed,
consider the value function V(s) instead of the action-values Q(s, a). Let V"(s) be the
converged fixed-point value function that would result from this learning process and V(s)
be the value function at time t. Let c(s, t) = Vt(s) - V(s). Then we can rewrite the
absolute TD error at time t as

A = |Vt (s) - r(s) - yVt (s')I

= Vo(s) + c(s, t) - r(s) - -yV.(s') - -ye(s', t) (4.5)

= |(V(s) - r (s) - yV.(s')) + (e(s, t) - -ye(s', t))|
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where, if the value function is not perfect, the first term (V.(s) - r(s) - -yVo(s')) is some

constant c (if the MDP is stochastic, the absolute TD error VIl = IV(s) - r(s, a) -

-yV, (s') will be nonzero simply because the successor state s' will vary). The second term

(c(s, t) - 'ye(s', t)) decreases as Vt(s) converges toward V,(s); find a time t = To such that

c(s, t) - -ye(s', t)| < . Therefore, the sum of absolute TD errors Z oITO 1t|I(st = s) is

lower bounded by Z'To 'I(st = s) and diverges.2

Corollary 4.1.2 If at each step of online iFDD-TD the policy changes but still induces an

ergodic Markov chain (e.g., via E-greedy or Boltzmann exploration), then online iFDD-

TD will explore all reachable features or converge to a point where the TD error is identi-

cally zero with probability one.

Asymptotic Quality of Approximation Theorem 4.1.1 implies that online iFDD-TD will

converge to a fixed point where the TD error is zero everywhere or the feature space is fully

explored. Using the bound derived in Tsitsiklis and Van Roy (1997), the asymptotic ap-

proximation error of iFDD with respect to this final representation is bounded. Let D.

be the feature matrix that includes all conjunctive features (including initial features), and

Visi x1 be the vector representing the optimal value of all states.

Corollary 4.1.3 With probability one, online iFDD-TD converges to a weight vector 0

and feature matrix 'b, where the approximated value function error as originally shown by

Tsitsiklis and Van Roy (1997) for a fixed set of linear bases, is bounded by:

#6 - VD - I f|V - V||D,

where DI 1 s sI is a diagonal matrix with the stationary distribution along its diagonal,

H = bDOGoD 0 )- > D, and ||.|| stands for the weighted Euclidean norm.

Proof Theorem. 4.1.1 states that online iFDD-TD either finds a perfect representation with

TD error zero everywhere (the approximation is exact) or exhaustively expands the whole

representation. In the fully-expanded case, each state will have exactly one active feature,

and thus the final feature matrix &D (excluding zero columns) will have full column rank.

Apply Theorem 1 of Tsitsiklis and Van Roy's work (1997) to bound the error in the value

function approximation. U

Corollary 4.1.3 guarantees that online iFDD-TD will achieve the best approximation for the

value of policy 7 given the initial feature set. Later online iFDD-TD will be examined em-

pirically to show this approach learns more quickly than a full tabular approach (equivalent
2This proof was jointly derived with Finale Doshi (Geramifard et al., 2011 c).
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to starting out with a full set of "converged" conjunctions of basic features). Whether that

value function is optimal depends on the initial choice of features; Corollary 4.1.3 states

that online iFDD-TD makes the best possible use of given features asymptotically. Deter-

mining a good set of initial features is also an important (but orthogonal) task. However,
some basic guidelines can be given for selecting initial features. For finite state MDPs,
the feature representation is guaranteed to be sufficient if each state has a unique set of

associated features. For continuous state spaces, discretizing dimensions separately into

buckets is one way of providing initial binary features; more popular approaches such as

tile coding (Albus, 1971) can be also applied as long as the granularity is fine enough for

the task to be solvable. Section 4.2 provides a heuristic method for expanding the set of

initial features online.

Maximum Features Explored In general, if online iFDD-TD begins with an initial fea-

ture set X with |x| = n elements, then the total number of possible features is the size

of the power set of x, |p(x) = 2'. In the specific case where initial features correspond

to d independent variables that can each take q values - such as a continuous MDP dis-

cretized into q buckets for d independent dimensions - a tighter bound on the number of

features to be explored can be obtained because only one initial feature will be active for

each dimension.

Remark Assume the initial set of features is defined for an MDP over d variables, each

with domain size q. The maximum number of features explored (initial + discovered) using

iFDD for such an MDP is (q + I)d - 1.

Proof The number of feature conjunctions of size k is qk. Hence the maximum number of

features using Pascal's triangle amounts to:
d d

~(d q d~ (d) qd - 1= (q + 1)d _1.E
k=1 k=0

A tabular representation for d variables uses qd features, less than the (q + I)d - 1 bound

on features explored by iFDD. The difference occurs because the lookup table is the fringe

of the feature tree expanded by iFDD process. While iFDD might explore more features

than the tabular representation, it is shown empirically that iFDD often retains many fewer

features due to its nature of gradual expansion. Also, because a minimal set of highest

order clauses are active in any state, the asymptotic effective number of features used by
iFDD is bounded by S I (equal to the number of features in a tabular representation) unless

a perfect representation is reached before discovering all possible features.
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4.1.3 Computational Complexity

As a reminder k and nt are the maximum number of active features for any state and

the total number of features in use at time t. The online iFDD algorithm does not forget

discovered features and # uses a greedy set covering approach to form new feature vectors.

Therefore, for all times i < j -> ni < ny, ki > kj. Hence, Vt > 0, k < ko. The main loop

of the Discover function (Algorithm 20) requires k operations. Using advanced hashing

functions such as Fibonacci heaps, both x and 0 updates require E (1) operations. Hence

the per-time-step complexity of Algorithm 20 is 8(k) < 0(k). It is interesting to see

that the discovery process runs faster as more features are added to the representation. The

outer loop of Algorithm 19 requires 8(2ko) operations in the worst case and each iteration

through the loop involves )(1) lookup and 8(ko) set difference. Hence the total per-

time-step complexity of evaluating the feature function < is 8(ko2ko). The computational

complexity of both algorithms depends on ko, the number of active features, and not nt, the

total number of features. Thus, even if a method like Tile Coding, which may introduce

large numbers of features, is used to create initial features, online iFDD will still execute

quickly.

4.1.4 Empirical Results

This section compares the effectiveness of online iFDD with SARSA (see Sutton & Barto,

1998) against representations that (i) use only the initial features, (ii) use the full tab-

ular representation, and (iii) use two state-of-the-art representation-expansion methods:

the adaptive Tile Coding (ATC) method, which cuts the space into finer regions through

time (Whiteson et al., 2007), and the sparse distributed memories approach (SDM), which

creates overlapping sets of regions (Ratitch & Precup, 2004). Following earlier successful

RL papers (Boyan, 2002; Geramifard et al., 2007), all cases used learning rates

o No + 1

kt N o + Episode #

where kt was the number of active features at time t. For each algorithm and domain, the

best ao and No were selected from {0.01, 0.1, 1} and {100, 1000, 106} correspondingly.

For exploration the c-greedy policy with c = 0.1 was employed. Each algorithm was tested

on each domain for 30 runs (60 for the rescue mission). iFDD was fairly robust with respect

to the threshold, , outperforming the initial and tabular representations in 7 out of 8 cases.
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Figure 4-2: The BlocksWorld domain: the goal is to build a tower of blocks with a pre-

ordered set of colors. For every movement of a block, there is 30% chance of dropping the

block. All blocks are on the table initially.

Inverted Pendulum The description of the pendulum domain is identical to the previous

chapter. Note that the policy is not fixed anymore. The goal is to balance the pendulum as

long as possible capped at 3000 steps. The initial features consisted of discretizing each

dimension into 20 levels (for 120 features total). Figure 4-5(a) plots the number of steps the

pendulum remained balanced versus the total steps experienced (SARSA using the original

Gaussian representation is also plotted). In this relatively low-dimensional space, SDM

and iFDD found good policies quickly, although SDM outperformed iFDD for the first

test case after 10, 000 steps. SARSA with the initial features never learned to balance the

pendulum for more than 2, 500 steps, suggesting that the optimal value function was not

linear in the initial features. The tabular representation reached near-optimal performance

after about 60, 000 steps, while the Gaussian representation approach performed well after

40, 000 steps. ATC's initial advantage disappeared after many unhelpful splits that slowed

generalization.

BlocksWorld The BlocksWorld task, shown in Figure 4-2, is to build a color-ordered

6-block tower. The trajectory starts with all blocks on the table. The action set is defined

as move(b, d) where b E B and d E B U {T}, amounting to 36 distinct actions. An object

is called clear if there exist no other objects on it or if it is table. The action is possible

if b # d and both b and d are clear. Each move has 30% chance of failure, resulting in

dropping the moving block on the table. Initial features were directly derived from the

relations: On(oi, 02) which led to 6 x 6 x 36 = 1296 features. The state is defined as

a 36 dimensional Boolean vector, specifying the On(.,.) relation for all pairs. A tabular

representation potentially demands b2 Eb i(b--i) x (b - i! = 368, 316 states. Reward

is 10-3 for all moves except the terminating move that completes the desired tower with

reward of +1. Episodes were capped by 1000 moves and -y = 1. Figure 4-5(b) shows the

return per episode. As expected, the initial representation does poorly because it cannot

capture correlations between blocks. Our iFDD approach on the other hand discovered

the necessary feature dependencies. The tabular representation could express the optimal
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Figure 4-3: Two UAV Mission Planning Scenarios

policy, but its expressiveness hindered generalization: it needed three times the data as

iFDD to achieve the same performance. Despite our optimization attempts, ATC and SDM

both learned poorly in this larger, 36-dimensional domain.

Persistent Surveillance Figure 4-3(a) shows an unmanned aerial vehicle (UAV) mission-

planning task where three fuel-limited UAVs must provide continuous surveillance of two

targets. At any time, the UAVs may be in maintenance, refuel, communication, or target

states; deterministic actions allow them to stay in place or move to adjacent states. All

actions except maintenance or refuel cost a unit of fuel; UAVs refuel completely by staying

in the refuel state. UAVs have perfect sensors to monitor for motor and camera failures;

failed parts can be repaired by going to maintenance. Parts have a 5% chance of failing

at each time step: broken motors require immediate fixing while broken cameras prevent

the UAV from monitoring a target. All together, the state is a 12-dimensional vector of

remaining fuel, location, motor sensor status and camera sensor status for each of the three

UAVs for a total of approximately 150 million state-action pairs. Initial features for each

UAV are the fuel indicator, location, and the state of each of the two sensors. The action

space is the combination of actions for all UAVs. -y was set to 0.9 and episodes were capped

at 1, 000 steps.

The team received a +20 reward for every time step a target was reported; to report a

target a UAV had to see it from the target state and a UAV had to relay the message from

the communication state. UAVs were penalized for each unit of fuel used; running out

fuel outside the refuel area cost -50 for each UAV and ended the episode. The results in

Figure 4-5(c) show that the lack of generalization slowed learning for the tabular case: even

after 10 steps, it held all agents in the maintenance area for the entire mission. ATC and

SDM had similarly inefficient generalization in this high-dimensional space. As before, the

initial feature set could not capture the required correlations: it incorrectly generalized the
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Figure 4-4: Average final feature counts. ATC and SDM, even using more features, per-
formed poorly on high-dimensional examples. The black bar depicts the total number of
state-action pairs.

consequences of running out of fuel. In contrast, the iFDD method corrected the improper

generalization by incrementally adding feature conjunctions combining fuel and location.

The resulting representation was able to switch to the better policy of sending UAVs out

after 20, 000 steps. After 100, 000 steps, the performance of iFDD was more than 12 better

on average compared to the second best competitor (Initial).

Rescue Mission Figure 4-3(b) shows a mission-planning task where a medic UAV and

a communication UAV must complete a rescue mission. The green circle shows UAVs'

base location; numbers above the remaining nodes indicate the number of injured people

at that node; and the cloud numbers are the probability of successful rescue. Victims are

saved when the medic UAV is at their node and the communication UAV is no farther

than one edge away to relay back information. The medic UAV consumes a unit of fuel

per movement or hover; the communication UAV may move (costs one fuel cell) or perch

(costs nothing). 3 Initial features were the fuel and position of each UAV, the communication

UAV mode, and the rescue status at each node. The total state-action pairs exceeded 200

million. -y was set to 1.

The team received +1 for each person rescued, -0.1 for each unit of fuel spent, and -23

if not at base after 10 time steps or depleting all fuel. Figure 4-5(d) shows the tabular rep-

resentation was crippled by the scale of the problem. ATC and SDM fared somewhat better

by capturing the notion of crashing early on but could not capture the complex reward struc-

ture. Learning with only the initial features proceeded quickly for the first 10, 000 steps,

3The perched UAV must hover before moving.
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Figure 4-5: Empirical results of SARSA algorithm using various representational schemes
in in four RL domains: Inverted Pendulum, BlocksWorld, Persistent Surveillance, and
Rescue Mission.

showing that the initial features are largely independent for this domain. However, after

20, 000 steps, iFDD's richer representation allowed it to encode a policy that outperformed

all other methods.

Figure 4-4 shows the average final feature counts for each domain. Previously, it was

demonstrated that online iFDD can lead to a representation with more features than the

tabular approach, but in the UAV domains, iFDD discovered approximately two orders

of magnitude fewer features than tabular approach. Even when ATC and SDM had more

features than online iFDD, they still did not match online iFDD's performance (except for

SDM on pendulum). This observation suggests that the good performance of online iFDD

is not due to the quantity, but the quality, of discovered features.
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Figure 4-6: The resulting feature discovery rate based on Equation 4.6 (red) and the number
of features discovered in the previous set of experiments (green) for the inverted pendulum
problem. C was picked manually, so that the pool of potential features would not run out
during the simulation.

Online iFDD vs. Random Expansion

This section investigates the effectiveness of the online iFDD process by comparing it

carefully against the random approach selection where the relevance of the encountered

potential features is ignored. In order to provide a careful comparison, the rate of feature

discovery for all methods was dictated by:

nt = no + Ot, (4.6)

where t is the time step, nt is the total number of features, no is the number of initial

features and C is a constant controlling the rate of discovery. Notice that this mechanism is

different from the previous online iFDD algorithm where potential features with relevance

more than a certain threshold were discovered. Instead, on each step, a certain number

of features are discovered in order to maintain nt features at time t. This will assure that

both Random and online iFDD have the same number of features at every time step. The

Random approach adds potential features uniformly randomly out of the pool of potential

features, while iFDD adds new features by looking at the sorted list of potential features

based on their relevance magnitude. The resulting algorithms were probed in the same
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Figure 4-7: Performance of online iFDD and Random feature discovery schemes with a
fixed rate of discovery in four RL domains: Inverted Pendulum, BlocksWorld, Persistent
Surveillance, and Rescue Mission. Notice how iFDD outperforms the random approach in
all domains.

battery of four domains with the corresponding C values set to {0.2, 0.4, 2, 0.004}. These

values assured that the pool of potential features was never empty, maximizing the number

of times online iFDD and Random could pick different features. For example, Figure 4-6

shows the rate of feature discovery for the online iFDD based on the threshold discovery

(green) and based on Equation 4.6 (red) for the inverted pendulum problem. The green

plot essentially shows the rate of discovery for the online iFDD in plot 4-5(a). Note how

the red plot remained below the green plot statistically significantly for the most parts of

the regions. For all experimental domains, the number of features was capped akin to

the Figure 4-6. In all domains, simulation results were averaged over 100 runs except the

Persistent Surveillance with 30 runs. Error bars represent 95% confidence intervals.
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Algorithm 21: Discover using Equation 4.3

Input: #(s), 6t, , x, A, V
Output: x, @b

1 foreach (g, h) c {(i, j)|#i(s)#13 (s) 1} do
2 f <-gUh
3 if f V x then

4 Af<-Af±+5t
5 Vf Vf +l

7 if 'Vf > ( then
8 L x <L - xu f

Figure 4-7 depicts the performance of online iFDD and Random approaches combined

with SARSA akin to Figures 4-5(a)-4-5(d). In all domains, the error driven feature discov-

ery used in iFDD provided a statistically significant boost to the learning rate of the algo-

rithm compared to the random discovery approach. Also notice that in the BlocksWorld

domain, on average, adding more features using the random approach led to worse per-

formance after 70, 000 steps. The performance drop from 70, 000 steps to 100, 000 was

statistically significant.

Online iFDD vs. Online iFDD+

So far the relevance of potential features was calculated using Equation 4.2. This section

introduces the online iFDD+ algorithm, in which relevances are calculated according to

Equation 4.3. While Algorithm 19 still provides the sparsified #, Algorithm 21 is used to

track relevances and discover features. Notice that calculating the new relevance formula-

tion (i.e., Equation 4.3), requires two vectors: (i) A, storing the sum of TD errors, and (ii)

v, representing the visitation frequency of each potential feature. At any given time the rel-

evance of feature f is calculated as Afr/yv]. While Theorem 4.1.1 showed the convergence

of online iFDD-TD, it does not immediately result in the asymptotic convergence of online

iFDD+-TD. In particular there are two pieces required to prove the convergence of online

iFDD+-TD: 1) the sum of TD errors (as opposed to the sum of absolute TD errors) for a

particular feature f is still unbounded, and 2) asymptotically the ratio of this sum (Af) over

Vf is also unbounded. The extension of the asymptotic convergence of online iFDD+ is

left for the future work.

The setting for running online iFDD+ was identical to online iFDD except for the

set of candidate discovery thresholds. The best threshold value for online iFDD+ was
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Figure 4-8: Empirical results of SARSA algorithm combined with online iFDD and online
iFDD+ representational schemes in in four RL domains: Inverted Pendulum, BlocksWorld,
Persistent Surveillance, and Rescue Mission. The Y-axis represents the performance of
each method.

picked empirically out of {0.02, 0.05, 0.1} for both Inverted Pendulum and BlocksWorld,
{50, 100, 200} for Persistent Surveillance, and {100, 200, 500} for the Rescue domain.
Compared to online iFDD, candidate threshold values were smaller, because online iFDD+
retained smaller relevances caused by the absence of the 1. operator and the use of feature
frequencies in the denominator. Figure 4-8 shows the performance of online iFDD against
online iFDD+ in all the domains, while Figure 4-9 shows the corresponding feature sizes
used by each method.

o Inverted Pendulum: The performance of online iFDD+ had less variance compared
to online iFDD. In particular, after 40, 000 steps the resulting policy using online
iFDD+ always balanced the pendulum for 3, 000 steps, while as for online iFDD the
policy sometimes experienced some difficulties around 70, 000 steps. This may be
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Figure 4-9: Empirical results of SARSA algorithm combined with online iFDD and online

iFDD+ representational schemes in in four RL domains: Inverted Pendulum, BlocksWorld,

Persistent Surveillance, and Rescue Mission. The Y-axis represents the total number of

features used by each method.

due to the fact that some of the discovered features by online iFDD were not useful.

Hence the agent required some time to have their weights adjusted. Overall, online

iFDD+ discovered more features compared to online iFDD, which can explain the

reduction in the variance of the performance due to better approximation of the value

function.

* BlocksWorld: In this domain both methods performed similarly, yet online iFDD+

ended up with roughly two times the number of features compared to online iFDD.

To investigate the effect of the threshold, new values of {0.2, 0.5, 1} were added

to the pool. While larger threshold values led to fewer number of features discov-

eries, the corresponding performances were not on par with online iFDD. Because

online iFDD+ is a closer approximation of the original rate of convergence stated in
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Corollary 3.2.8, this observation seems counter intuitive. Although applying iFDD

methods to the control case violates the assumptions of the corresponding Corollary,

hence results are not totally unexpected.

" Persistent Surveillance: The performance advantage of online iFDD+ over online

iFDD was statistically significant in the Persistent Surveillance domain after 60, 000

steps. At the same time, the final number of features used by online iFDD+ was less

than one-half that used by online iFDD.

" Rescue Domain: In terms of the performance both methods had similar results, but

online iFDD+ again finished with fewer features.

Overall, the empirical results suggest that using online iFDD+ over online iFDD is ben-

eficial, because in terms of performance, online iFDD+ was always better or on par with

online iFDD. Note that the computational complexities of both Algorithm 20 and Algo-

rithm 21 are equal.

4.2 Adaptive Resolution iFDD (ARiFDD)

The main drawback of iFDD is its reliance on the knowledge of the user to provide a rea-

sonable initial representation. This is due to the fact that iFDD cannot further split initial

features. Hence, if the representation including all feature dependencies is not powerful

enough to capture the objective function, applying iFDD will not be helpful. For discrete

functions, finding a comprehensive set of tiles is simple: provide binary features corre-

sponding to values of each dimension, independent of the other dimensions. While this

set of features allows iFDD to represent any objective function defined over the discrete

set of states asymptotically, the generalization occurring within each dimension is limited.

For example, consider an objective function for a UAV mission planning defined over a set

of discrete variables including the fuel indicator with 30 possible values. Assume states

with less than 1/3 of the fuel level translates into very low state values. With 30 features

corresponding to each fuel level, if the UAV reduces the weight corresponding to feature

(fuel = 1), it will not affect the weights corresponding to features (fuel = 2,. .. 10). Hence,

the concept of low fuel must be learned for each of the fuel values separately. Applying the

same method to continuous domains is even more challenging. The conservative approach

is to discretize each dimension with the finest possible granularity. This will reduce the

generalization within each dimension, requiring a plethora of training samples.

Adaptive Resolution iFDD (ARiFDD), elevates the capability of iFDD by augmenting

an autonomous feature splitting mechanism. Figures 4-10 illustrates the process through a
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Figure 4-10: ARiFDD representation expansion process: a) Initialization. b) A possible
representation found by ARiFDD. The representation for points falling in the purple tile
cannot be further expanded since there are no more conjunctions in that region. c) ARiFDD
considers splitting all basic tiles corresponding to the purple tile. d) The basic (blue) tile
which is going to be split and the split line are identified. e) The red and green tiles are
introduced as new basic tiles while the purple tile, built on the top of the split tile, is
eliminated. f) After some time iFDD discovers the yellow tile as a new expanded tile
capturing the dependency between the red tile and the orange tile.

Tile Coding example. For a d dimensional space, ARiFDD sets up the representation by
creating d basic' tiles, each defined on a single tiling covering a unique dimension of the
space. Figure 4-10-a illustrates this on a 2D space where two basic features (tiles) cover the
state space in x and y dimensions correspondingly.5 Figure 4-10-b shows a representation
after running ARiFDD for some time. For points mapped to a single expanded tile, iFDD

cannot expand the representation further. ARiFDD facilitates further expansion by splitting
4The term "basic" replaces the term "initial" to highlight the fact that these features can be split further,

as opposed to initial features that are fixed.
'While ARiFDD can also be initialized with a user specified representation, unlike iFDD, the choice of

initialization cannot be arbitrary. In particular, tiles must be rectangular as statistics stored for each dimension
are stored separately. Additionally if features are not one dimensional, a further process is required to extract
the corresponding one dimensional tiles for each feature.
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basic tiles corresponding to such points. Figure 4-10-c shows the corresponding basic tiles

for the purple tile as two blue tiles that are considered for further split. Figure 4-1 0-d shows

the selected basic (blue) tile and its split line. Notice that splitting the blue tile renders the

existence of the purple tile obsolete because the blue tile constitutes the purple tile. Figure

4-10-e depicts how the basic tile is split into two new basic tiles, shown as red and green

tiles. Accordingly, all affected expanded tiles (which in this example includes only the

purple tile) are removed from the representation. In Figure 4-10-f, iFDD discovers a new

expanded tile (shown in yellow) capturing the dependency between the red tile and the

orange tile.

Algorithm 22 illustrates this process in more detail. The input arguments to the algo-

rithm are the current state, (s), current active features calculated by Algorithm 19 (>(s)),
the corresponding basic tiles (<P (s)), the current error measure (6t), split threshold (i), and

current list of tiles (x). Additionally the algorithm keeps track of three statistical measures

for each basic tile. The first parameter is akin to the relevance measure discussed in online

iFDD. The E vector contains the sum of absolute errors corresponding to each basic tile.

The next two parameters are used to decide the priority and the split point for each basic

tile. Note that each basic tile, by definition, corresponds to a single dimension of the state

space. Hence parameters yt, and o track the weighted mean and variance of observed

states within each basic tile, where the weights are the absolute TD error.

The algorithm simply executes the iFDD discover, if more features can be expanded at

state s (lines 1 and 20). Otherwise, the statistics for each basic tile corresponding to state

s are updated incrementally (lines 4-8) using Finch's derivation (2009). If the threshold

for any basic features exceeds a user-defined threshold (c), the basic feature is added to the

list of potent ialSplits. If at the end of the loop potentialSplits is not empty, the

basic tile with the least weighted variance is split along its weighted mean (lines 12-15).

Consequently all expanded features built on top of the split tile are removed from the pool

of features (lines 17 and 18). Munos et al. applied a similar concept for discretizing kd-

trees, yet they focused expansion on areas with the largest variance. This scheme turned

out to be not very helpful compared to the other competitors they introduced (Munos &

Moore, 2002).

The intuition behind splitting a feature on its weighted mean stems from the fact that

the resolution should increase close to areas of the state spaces where the error persists

and no feature can be added through online iFDD. Picking the tile with the least variance

as opposed to largest variance was found empirically to yield better results. Intuitively,

the dimension with the least variance has the highest density of error, which is suggested

by Corollary 3.2.8 to be a positive indicator of expanding good features. As expected, by
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Algorithm 22: ARiFDD - Discover

Input: s, #0 (s), '>(s), , , , yf, a.

Output: x, 6, y, a2

1 if #(s) has one active feature then
2 potentialSplits <- 0

3 foreach basicfeature f E 4 (s) do
4 E <-Z0 +|t|
5 Pf + f + ,+ (Sf - tf)

6 o-7+ [-.1 + 6 t(sf - pf )(Sf - P )
7f

7 L.df -. 1

8 pf <- p

9 if > ( then
10 L potent ialSplits <- potent ialSplits U {f}
11 if potent ialSplits -/ 0 then
12 f +- argminfepotentiaispiits f
13 fi, f2 <- Split basic feature f along ptf
14 x - f i {f

15 X <- x U {{f1}, {f2}}
16 forall the g E X do
17 if f c g then
18 |_ x -x-- 9

19 else
20 L Run iFDD Discover (Algorithm 20 or 21)

setting c = o, the iFDD algorithm is retrieved. Also the extra computation required for
ARiFDD compared to iFDD does not change the per-time-step computational complexity.
Executing lines 16-18 is the most expensive part of Algorithm 22. By storing maps from
basic tiles to the set of features built on top of them, running lines 16-18 requires E(2 0),
because the number of features built on top of a specific tile is bounded by 2 ko for sparse
representations.

4.2.1 Empirical Results

The SARSA algorithm was combined with ARiFDD (replacing line 20 with Algorithm 20),
online iFDD , initial, and tabular representations, and tested in the Inverted Pendulum do-
main. All settings were identical to Section 4.1.4 andg = 1. Also in order to avoid memory
overrun, the maximum number of splits were bounded. In particular, any split that resulted
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Figure 4-11: Comparison of SARSA using ARiFDD, iFDD, initial, and tabular representa-

tions. Each vertical line depicts the performance of the corresponding algorithm algorithm

after 10, 000, 20, 000 and 100, 000 interactions from bottom to top. The X-axis represents

the number of uniform cuts put through the two dimensions of the state space to generate

the initial set of features.

in features with dimensional coverage less than 1/20 of the domain size in that dimension

was rejected.6

Figure 4-11 depicts the empirical results in the Inverted Pendulum domain. The X-axis

depicts the number of uniform cuts put in each dimension initially to create basic/initial

features. The Y-axis represents the number of steps each method balanced the pendulum

averaged over 30 runs. Each vertical line depicts the performance of the corresponding

algorithm algorithm after 10, 000, 20, 000 and 100, 000 interactions from bottom to top.

There are two stark observations: 1) For all initial cut values, ARiFDD achieved the

best performance compared to all other methods asymptotically. The reason that iFDD

and ARiFDD performed identically with 10 initial cuts was that all suggested splits were

rejected due to coverage restriction mentioned above.7 2) Starting with an odd or even num-

ber of initial cuts played a major role in the performance of all methods except ARiFDD.

For example, with 2 tiles per dimension, both iFDD and tabular methods could balance the

7Theoretically, the split in the exactly mid point of each feature was feasible but it was never suggested.
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pendulum close to 2, 000 steps at the end of the training. This is due to the fact that direc-

tions of 0 and ( provide important information for capturing good policies. Yet picking 1
or 3 uniform cuts led to the poor performance of iFDD, initial, and tabular representations.

Similarly moving from 5 initial cuts to 6 made a dramatic change in the performance of the

three methods.

In summary, picking the granularity of initial features can determine the success or fail-

ure of iFDD, initial, and tabular representations. Allowing feature expansion within the

basic tiles specified by the user, ARiFDD relaxes the dependency of iFDD on the initial

set of features. In the case where the user has no insight on how to specify basic features,
ARiFDD can start with one feature per dimension and expands the granularity of the repre-

sentation adaptively. Of course, it is expected that this favorable property will also increase

the sample complexity.

4.3 Related Work

Figure 4-12 illustrates the taxonomy of Adaptive Function Approximators (AFAs) as sug-

gested by Bugoniu et al. (2010). On the highest level, AFAs are divided into non-parametric

and parametric methods. Non-parametric methods mostly utilize kernel-based estimation

in which the value of each state is approximated as a function of its similarity to a set

of previously known samples (Bethke & How, 2009; Ormoneit & Sen, 2002; Reisinger
et al., 2008; Taylor & Parr, 2009). The per-time-step computational complexity of non-

parametric methods is expensive as these methods often require matrix inversion where the
size of the matrix is dependent on the number of samples. This property prevents the use
of non-parametric methods in online settings where samples are generated with high fre-
quency. Additionally the user requires prior skill in order to pick the right kernel and tune

its specifications.

The parametric branch of AFAs assumes a functional form for the value function which

can be non-linear or linear. Artificial Neural Networks (ANNs) are one of the most fa-

mous family of non-linear approximators. This mathematical model has been utilized in

the context of adaptive representation within the RL framework through the idea of cas-

cade correlation networks (Girgin & Preux, 2007; Girgin & Preux, 2008; Rivest & Precup,
2003) and evolutionary networks (Whiteson & Stone, 2006). Unfortunately, ANNs, and in

general non-linear function approximators, lack the convergence property when combined
with even most basic learning techniques (Tsitsiklis & Van Roy, 1997). Moreover, they
require several sweeps through labeled data in order to provide a reasonable approxima-

tion, which is often not possible in online settings. In contrast, online temporal difference
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Figure 4-12: Taxonomy of Adaptive Function Approximators adopted from the work of
Bugoniu et al. (Bugoniu et al., 2010)

learning has been shown to converge when combined with linear function approximation

(Tsitsiklis & Van Roy, 1997).

Creating linear AFAs has been an active area of research for the past decade, and has

been mainly pursued from two perspectives: selection and refinement. While L. Bugoniu et

al. (2010) considered Bellman error-based AFAs as a separate category, we include them

in the refinement branch, as they merely use a different measure in order to refine the rep-

resentation. Starting with a large set of basis functions, selection (bottom-up) methods

condense the representation by eliminating unpromising basis functions. This process has

been realized through regularization (Farahmand et al., 2008; Kolter & Ng, 2009), tempo-

ral difference learning (Li et al., 2009), dynamic Bayesian networks (Kroon & Whiteson,

2009), and homotopy methods (Petrik et al., 2010). Finding a comprehensive set of ba-

sis functions for high dimensional problems often requires extensive domain knowledge.

Moreover, as the per-time-step computational complexity of these methods depends on the

number of features, the large size of the initial set of basis functions reduces the speed of

selection methods substantially.

Refinement (top-down) methods take an opposite approach compared to selection al-

gorithms by starting off with a small representation and adding new features to the rep-

resentation as more data is observed. Early refinement techniques added random feature

conjunction as new features to the representation (Sutton & Whitehead, 1993). Tree based

partitioning of the state space has been a popular research trend for more than a decade

(Lampton & Valasek, 2009; Lin & Wright, 2010; Moore & Atkeson, 1995; Reynolds, 2000;

Uther & Veloso, 1998; Whiteson et al., 2007). This approach is also known as adaptive Tile

Coding in one layer by which the state space is partitioned into non-overlapping regions
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(i.e., state aggregation). Regions are further split into smaller areas based on some criteria

specified by the algorithm. While early work (Moore & Atkeson, 1995) scaled RL methods

up to 9 dimensional state spaces, the deterministic dynamics and known single goal region

assumptions limited the applicability of this approach. Relaxing these assumptions, later

work exhibited compelling results in low dimensional spaces, yet they could not scale up

to large domains as no generalization is allowed between tiles (i.e., each state is mapped

into one tile). The only work that focused on adaptive tiling adjustment was by Sherstov

and Stone (2005) in which tilings were defined in the full dimensional state space and the

effective resolution of tiles were both uniform and fixed. In general, adaptive Tile Coding

techniques have never considered automatic tile creation in sub-dimensional spaces which

is one of the main ideas introduced in this dissertation. Researchers also used linear instead

of binary features8 for representations (Munos & Moore, 2002; Waldock & Carse, 2008).
While the initial idea of splitting regions still remains the same, new points are evaluated by
interpolating the values of neighboring points. Among interpolation techniques, the idea

of Sparse Distributed Memory (a.k.a Kanerva coding) is unique as it operates with a fixed

amount of memory (Ratitch & Precup, 2004). The main insight of SDM is to maintain

at least N neighbors for a given sampled point. Once this rule is violated, random points
are shifted to fulfill this constraint for the new point. While SDM exhibited superior re-

sults in our low dimensional Inverted Pendulum problem, the performance was degraded
drastically as it was applied to problems with larger number of dimensions.

Perceiving the correlation between the Bellman error vector and space spanned by the

current features, researchers investigated the idea of adding features that reduce the Bell-

man error vector. The direct approach adds the Bellman vector as a new basis function on
each iteration of policy iteration (Parr et al., 2007; Valenti, 2007). While the new feature
vectors are guaranteed to be helpful in reducing the current Bellman error, the computa-
tional demands of this approach make it unappealing for online settings. On the same track,
Wu et al. applied machine learning techniques to introduce new binary features identifying

the sign of the Bellman error (2005). They extended their work by discovering real-valued

features exhibiting high correlation with the magnitude of the Bellman error (Wu & Givan,
2007). Both efforts led to batch techniques using approximate value iteration not amenable
to online settings. Keller et al. aggregated states with similar Bellman error using neigh-

borhood component analysis and added the aggregation function as the new basis function
on each iteration (Mannor & Precup, 2006). Their method applies only to the policy eval-

uation case. Furthermore, applying this technique to online problems is challenging as it
requires matrix inversion on every iteration. Representational policy iteration (Mahade-

8Notice that both linear and binary features are used within the context of linear function approximation
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van, 2005) is another computationally intensive approach for adding features based on har-

monic analysis. Sanner et al. introduced a batch feature discovery technique for first-order

MDPs (Sanner, 2006a), although the method does not generalize to universal reward func-

tions, demands the world model, and requires high computational complexity. Sanner also

introduced a fast method for online feature discovery (Sanner, 2006b), although the ap-

proach is restricted to relational MDPs with a single goal state. Manual feature expansion

techniques has been also practiced in the literature. A brute-force approach for including

all feature conjunctions up to a certain depth was applied to the TD learning method in the

games of hearts (Sturtevant & White, 2006) and Go (Silver et al., 2008). Outside the scope

of reinforcement learning, from a biological prospective, Valiant introduced adding feature

conjunctions as a provably evolvable structure for supervised learning. He verified that this

mechanism under certain assumptions can learn binary functions with arbitrary precision

in polynomial time (Valiant, 2009). Kalai et al. provided PAC bounds for the greedy fea-

ture construction algorithm used to extend the representation of a binary classifier in which

the conjunction correlated with the highest amount of error is added to the pool of features

(Kalai et al., 2009).

The iFDD family of expansions is a new member of the linear AFAs within the re-

finement category. It is simple to implement, requires low per-time-step computational

complexity, and scales better to high dimensional state spaces. The main difference be-

tween the iFDD family of methods and other refinement techniques used for control is

their ability to assign multiple features to a state, each of which corresponds to a selected

set of dimensions. In the Tile Coding framework, this can be thought of defining tilings

in sub-dimensional state spaces as opposed to other refinement techniques which define

tilings in the full dimensional state space.

A Note on Batch Refinement Techniques

While batch refinement techniques often have lower sample complexity compared to online

techniques, the associated computational demands often limit their application in online

settings. Furthermore, batch methods face the inconsistency between the distribution of

obtained samples and the distribution of samples under the current policy. Mahadevan

et al. suggested the use of a fixed policy for the sample gathering phase (2006). This

fixed policy can still cause problems for some domains, as the representation expansion

method can exert a lot of effort representing complex value functions corresponding to

poor initial policies. This observation motivated researchers to manually include samples

that are highly likely to be visited during the execution of the optimal policy (e.g., the

bicycle domain in Petrik et al., 2010) which cannot be generalized to arbitrary problems.
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Finally methods that do not provide a functional form for the new features (e.g., Parr et al.,

2007) cannot provide feature values for unseen samples. Hence for new visited states,

another approximation technique such as linear interpolation is required to provide the

value estimate.

4.4 Contributions

This chapter introduced online iFDD and online iFDD+and showed how the iFDD family

of methods can be combined with any online value-based RL algorithm. The combination

of temporal difference learning and online iFDD was investigated across four domains

with the planning spaces varying from 1.2 x 103 to - 2 x 108. Empirical results showed

the advantage of online iFDD over using two fixed representations (initial and tabular)

and two adaptive methods (ATC and SDM) for tackling large domains. Moreover the

convergence of online iFDD combined with temporal difference learning was proved in

the case of policy evaluation. It was also shown that when using sparse features, the per-

time-step computational complexity of online iFDD is independent of the total number of
features, making it an attractive choice for practical domains with constrained interaction

time. This chapter also analyzed the performance of online iFDD with respect to online

iFDD+ and Random expansion mechanisms. In order to relax the dependency of online

iFDD on the initial set of features, the ARiFDD algorithm was introduced as a promising

solution capable of expanding the initial representation. Finally this chapter discussed

related work on adaptive function approximation techniques, placing iFDD in the context

of that work.
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Chapter 5

Learning Within Planning

So far, this thesis has focused on model-free reinforcement learning approaches for solving

large scale control problems. While such techniques are computationally cheap and can

deal with unknown models, they do not have a mechanism to avoid risky behaviors. For

example, in the context of a UAV mission planning scenario, the learner might send UAVs

with low fuel to remote locations solely for the purpose of learning about the consequences

of such behaviors. In the eyes of a human operator who has domain knowledge, such ac-

tions may not be acceptable, because losing a UAV is costly and the risk of losing a UAV

is high under this plan. Consequently, several cooperative planners exist in the literature

for solving control problems based on prior knowledge (Alighanbari, 2004; Alighanbari

et al., 2003; Beard et al., 2002; Casal, 2002; Choi et al., 2009; Ryan et al., 2004; Saligrama

& Casta5l6n, 2006; Wang et al., 2007; Xu & Ozguner, 9-12 Dec. 2003). This chapter

explains how cooperative planners and domain knowledge can help mitigate the risk of

learning, reducing the overall sample complexity while boosting the performance of coop-

erative planners. Parts of this chapter were published as separate papers (Geramifard et al.,

2011 a,b; Redding et al., 2010a,b).

The structure of this chapter is as follows. Section 5.1 illustrates the goal of this chap-

ter through a pedagogical example. Section 5.2 explains the intelligent cooperative control

architecture (iCCA) as a template for integrating cooperative planners with learning algo-

rithms.' Section 5.3 focuses on the integration of RL methods that have explicit policy

formulations (e.g., Actor-Critic) with cooperative planners where the risk model is deter-

ministic. Section 5.4 extends the previous approach to support RL methods with implicit

policy forms. Section 5.5 elevates the risk assessments process by taking a probabilis-

tic approach to risk calculation. It also introduces a method that encapsulates the prior

'While all contributions of this chapter are built on top of the iCCA template, the template itself was

introduced by Josh Redding (2010b) and is not part of the contributions of this thesis.
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knowledge as a separate entity, which can be adaptively changed through time, improving
the quality of cooperative planner and risk assessment accordingly. Section 5.6 provides
the literature review on cooperative planners and safety in RL. Section 5.7 concludes the

chapter by highlighting the contributions.

5.1 A Pedagogical Example: GridWorld-I

Consider a grid world scenario shown in Figure 5-1(a), in which the task is to navigate a
UAV from the top-left corner (.) to the bottom-right corner (*). Red areas highlight the
danger zones where the UAV will be eliminated upon entrance. At each step the UAV can
take any action from the set {t, 4, +-, -±}. However, due to wind disturbances, there is

30% chance that the UAV is pushed into any unoccupied neighboring cell while executing
the selected action. The reward for reaching the goal region and off-limit regions are +1
and -1 respectively, while every other move results in -0.001 reward.

Figure 5-1(b) illustrates the policy (shown as arrows) calculated by a planner using dy-
namic programming that is unaware of the wind, together with the nominal path highlighted
as a gray tube. As expected, the path suggested by the planner follows the shortest path that
avoids directly passing through off-limit areas. The color of each cell represents the true
value of each state (i.e., including the wind) under the planner's policy. Green indicates
positive, white indicates zero, and red indicates negative values 2 . The optimal policy and
its corresponding value function and nominal path are shown in Figure 5-1(c). Notice how
the optimal policy avoids the risk of getting close to off-limit areas by making wider turns.
While the new nominal path is longer, it mitigates the risk better. In fact, the new policy
raises the mission success rate from 29% to 80%, while boosting the value of the initial
state by a factor of ~3. Model-free learning techniques such as SARSA can find the op-
timal policy through mere interaction, although they require a plethora training examples.
More importantly, they might deliberately move the UAV towards off-limit regions just to
gain information about those areas. However, when integrated with the planner, the learner
can rule out intentionally poor decisions. Furthermore, the planner's policy can be used
as a starting point for the learner to bootstrap on, reducing the amount of data the learner
requires to master the task.

The chapter explains how planner solutions based on approximated models (i.e., Fig-
ure 5-1-b) can be improved using learning techniques, while at the same time, the risk in
the learning process is reduced reduced. The next section explains the template framework
used to combine learning and planning methods together.

2We set the value for blocked areas to --oo, hence the intense red color
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(a) GridWorld-I (b) Plan with the noiseless model (c) Plan with the true model

Figure 5-1: GridWorld-1 (a), the corresponding policy calculated with a planner assuming
deterministic movement model and its true value function (b) and the optimal policy with
the perfect model and its value function (c). The task is to navigate from the top left corner
highlighted as * to the right bottom corner identified as *. Red regions are off-limit areas
which the UAV should avoid. The dynamics model has 30% noise of moving the UAV to a
random free neighboring grid cell. Gray cells are not traversable.

5.2 Intelligent Cooperative Control Architecture (iCCA)

Figure 5-2 depicts the general template of intelligent cooperative control architecture (iCCA)

(Redding et al., 2010b). The left rectangle with the gray boundary is the control box and

consists of three elements:

" Cooperative Planner: Given a problem model, this module provides safe solutions

with cheap computational complexity, often gained by simplifying the model. Coop-

erative planners are usually domain-dependent.

" Learning Algorithm: This component implements learning by looking at the past

experiences of interactions. While in general any machine learning algorithm can sit

in this box, in this thesis, RL methods instantiate this component.

* Performance Analysis: In the big picture, this module regulates the interaction be-

tween the learner and the cooperative planner. The duties of this module can vary

based on its instantiation. In this thesis, its purpose is to evaluate the risk involved in

executing the actions suggested by the learner.
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Figure 5-2: intelligent Cooperative Control Architecture, a template framework for the
integration of cooperative control algorithms and machine learning techniques (Redding
et al., 2010b).

The rest of the figure resembles Figure 2-6 closely, in which in every step the decision made

by the control box is sent to the world and executed (e.g., move a UAV to a certain location).

During the execution, the command might get distorted (e.g., the UAV moves forward but

the wind gust pushes it away). The outcome of each command execution affects the world.

Consequently the world sends back the observations to the the control box. The observation

may also get distorted through noise, yet this thesis will not consider partial observability.

Note that Figure 5-2 depicts a general framework, and depending on the instantiation of the

template, several algorithms can be derived.

5.3 Learning Methods with Explicit Policy Forms

This sections explains how RL methods can be combined with cooperative planners in order

to 1) mitigate the risk involved in the learning process, 2) improve the sample complexity

of the learning methods, and 3) improve the performance of the cooperative planners. The

high level idea is to use the solution of the cooperative planner fed with an approximate

model to bias the policy of the RL agent in order to explore solutions close to the behavior

of the cooperative planner. Furthermore, actions that are deemed not safe (i.e., risky) are

switched with the cooperative planner solution.

Figure 5-3 depicts the instantiation of the iCCA framework for merging RL methods

with cooperative planners. An RL agent realizes the learning algorithm module, while the

risk analyzer instantiates the performance analysis box. Also note that observations are

replaced with s, r, due to the full observability assumption. The underlying problem is

formulated as an MDP with the true model T = (, ). An approximate model of the

MDP, T = (P, k) is assumed to be available.
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5.3.1 Cooperative Planner

For small MDPs, given the approximated model, value iteration (i.e., Algorithm 2) is used

to generate the planner's policy, (i.e., wrP). For large UAV mission planning scenarios,

however, running value iteration is not feasible. Therefore the consensus based bundle

algorithm (CBBA) (Choi et al., 2009) provides the solution. CBBA is a fast algorithm

for task assignment among UAVs where the model of the system has to be deterministic.

All stochasticities in T are replaced with the events with maximum expected values before

being fed into CBBA. For example if there is an 80% chance to move from one state to

another state, achieving a reward of 100, the transition is assumed to be successful all the

time with the corresponding reward of 80. More information about CBBA can be found in

(Choi et al., 2009; Redding et al., 2010a). This thesis uses CBBA as a black box, which

takes an approximate model of the system and provides a safe policy quickly that obtains

good cumulative rewards. Other cooperative planners can easily replace CBBA box as long

as they return safe policies quickly.

5.3.2 RL Agent

For the learning module, the Actor-Critic algorithm with a tabular representation is em-

ployed (i.e., Algorithm 12). Since the representation is tabular, instead of using W as the

weight vector, preferences for each state-action pair are explicitly stored in p(s, a). In order

to bias the policy of the actor initially, the preferences of state-action pairs sampled from

rP are increased by the user-defined value A. This will encourage the agent to select actions

similar to the cooperative planner initially.

5.3.3 Risk Analyzer

The framework assume the presence of a function named safe: S x A - {0, 1} that returns

True if the execution of action a at state s will result in a catastrophic outcome and False

otherwise. Also it is assumed that the risk model is deterministic, meaning that actions may

not stochastically result in catastrophic outcomes. The deterministic risk model assumption

will be relaxed in Section 5.5.

5.3.4 Cooperative Learning: The High Level Control Loop

All sections so far described the mechanics inside each individual piece. Consequently,

a high level process is required to tailor the functionality of all these modules together.

Algorithm 23 shows the pseudo-code for the main loop of the iCCA control box, named
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Figure 5-3: iCCA framework instantiation for RL

Algorithm 23: Cooperative Learning- 1
Input: s, r
Output: a

1 ap 7rP(s)
2 al ~' (S)

3 a +- al
4 if not safe(s, a) then
5 a +- 7r
6 L p(s, a) +- p(s, a) - A

7 ActorCritic.learn(s,r,a)
8 return a

/* CooperativePlanner
/* Learner

* lines 7-10 of Algorithm 12

Cooperative Learning. First the safe action of the planner, aP, and the learner action al are

generated using the corresponding policies 7rP and 7r (lines 1,2). The safety of the learning

agent is then tested using the safe function (line 4). If the action is safe, it will be executed

on the next step, otherwise the action is replaced with the planner's action, aP, which is

assumed to be safe (line 5). What this process dictates, however, is that state-action pairs

explicitly forbidden by the safe function will not be intentionally visited. Therefore, if the

safe function is built on a poor model, it can hinder the learning process in parts of the

state space for which the safety is miscalculated. To reduce the probability of the learner

suggesting the same action, the preference corresponding to the unsafe action is reducing

by A (line 6). This parameter is picked by the domain expert to discourage suggesting

unsafe actions by the learner.
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Figure 5-4: The mission scenarios of interest: a team of two UAVs plan to maximize their
cumulative reward along the mission by cooperating to visit targets. Target nodes are shown
as circles with rewards noted as positive values and the probability of receiving the reward
shown in the accompanying cloud. Note that some target nodes have no value. Constraints
on the allowable visit time of a target are shown in square brackets.

5.3.5 Empirical Evaluation

This section compares the performance of iCCA with respect to pure learning and pure
cooperative planning approaches in both GridWorld- 1 and more complicated UAV mission
planning scenarios. Figures 5-4 depicts the mission scenarios of interest where a team of
two fuel-limited UAVs cooperate to maximize their total reward by visiting valuable target
nodes in the network. The base is highlighted as node 1 (green circle), targets are shown as
blue circles and agents as triangles. The total amount of fuel for each agent is highlighted
by the number inside each triangle. For those targets with an associated reward, it is given
as a positive number nearby. The constraints on the allowable times when the target can
be visited are given in square brackets and the probability of receiving the known reward
when the target is visited is given in the white cloud nearest the node.3 Each reward can be
obtained only once and traversing each edge takes one fuel cell and one time step. UAVs
may loiter at any of the nodes indefinitely if, for some reason, they believe loitering to be
the "optimal" action. The fuel burn for a loitering action is also one unit, except for any
UAV at the base, where it is assumed to be stationary and its fuel level is therefore not
depleted. The mission horizon was set to 8 time steps for UAV 7-2 scenario and 11 for the
UAV 10-2 scenario.

31f two agents visit a node at the same time, the probability of visiting the node would increase accord-
ingly.
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UAV Mission Planning: MDP formulation

The state space was formulated as [1i, fi, ... ,i l, f, v1 , ... , vm, t]T, where 1i and fi were
integer values highlighting the location and the remaining fuel respectively for UAV i (i C
1. . . n). v was a single bit signaling if node j had been visited before, where (j E 1 .. .m),

and t was the current time step. There were n UAVs and m nodes participating in the sce-
nario. The action space was [it, ... , l] where i+ was the node to which the agent was
traveling. The transition function (P",) was deterministic for the UAV position, fuel con-
sumption, and time variables of the state space, while it was stochastic for the visited list of
targets. The detailed derivation of the complete transition function should be trivial follow-
ing the corresponding graph in Figure 5-4. That is, transitions were allowed between nodes
for which there was an edge on the graph. The reward on each time step was stochastic and
calculated as the sum of rewards from visiting new desired targets minus the total burnt fuel
cells on the last move. Notice that a UAV received the target reward only if it landed on
an unvisited node and lucky enough to obtain the reward. In that case, the corresponding
visibility bit turned on, and the agent received the reward. The crash penalty or mission
failure was equal to the negative sum of rewards at all nodes for both scenarios in order to
prioritize safety over visiting targets. The mission failed if any UAV ran out of fuel or was
not at the base by the end of the mission horizon.

Experimental Results

Both for GridWorld-I and UAV 7-2 scenario, the optimal solutions were obtained using dy-
namic programming and used as the baseline for the optimality. Unfortunately, calculating
an optimal solution was not feasible for the UAV 10-2 case, with about 9 billion state action
pairs. 4 For GridWorld-1, based on the noise-free model, an action was assumed safe if it
does not deliberately move the UAV to one of the off-limit grid cells. As for the UAV mis-
sion planning scenarios, first all-pairs shortest paths were calculated using Floyd-Warshall
algorithm (Cormen et al., 2001) and stored. On each step, an action was assumed unsafe
if after executing the action, the UAV does not have enough fuel to return to the base us-
ing the shortest path values. For baseline planners, the Value Iteration and CBBA methods
were used for GridWorld- 1 and the UAV mission planning scenarios correspondingly. Note
that Value Iteration did not have access to the true model, while CBBA could not use the
exact stochastic model due to its deterministic assumption of the dynamics. The quality
of CBBA was probed on each domain by executing its policy online for 10,000 episodes.

4This computation for UAV 7-2 scenario took about a day to calculate all expected values over more than
100 million state action pairs. Thus, this approach cannot be easily scaled for larger sizes of the problem.
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Figure 5-5: A comparison of the collective rewards received in GridWorld-i using co-
operative planning alone (red), pure learning (blue), and when both are coupled via the
iCCA framework (green). The optimal performance (black) was calculated via dynamic
programming.

For Value Iteration the expected value of the initial state was simply fetched from the table.
For each learning algorithm (i.e., Actor-Critic and iCCA) the best learning rate was found
empirically where the learning rate was calculated by:

No + 1
at = o-0~d#

No + Episode#'-

The best ao and No were selected through experimental search of the sets of ao C {0.01, 0.1, 1}
and No E {100, 1000, 106} for each algorithm and scenario. A was set 100 and T was set
to 1 for the actor. The number of interactions for each simulation was limited to 10' and
105 steps for GridWorld-1 and UAV mission planning scenarios respectively. This led to
a cap of 40 minutes of computation for each simulation on an Intel Xeon 2.40 Ghz with
4 GB of RAM and Linux Debian 5.0. The performance of learning algorithms was ex-
tracted by running the greedy policy with respect to the existing preferences of the actor.
For iCCA, unsafe moves again were replaced by the cooperative planner's solution. All
learning method results were averaged over 60 runs except for the UAV 10-2 scenario for
which it was averaged over 30 runs. Error bars represent 95% confidence intervals.

Figure 5-5 compares the performance of Actor-Critic, iCCA, the baseline planner (Fig 5-
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Figure 5-6: (a) A comparison of the collective rewards received in UAV 7-2 using cooper-
ative planning alone (red), pure learning (blue), and when both are coupled via the iCCA
framework (green). The optimal performance (black) was calculated via dynamic program-
ming. (b) The final performance of all methods scaled based on the expected performance
of the worst and best policies.

I-b), and the expected optimal solution (Fig 5-1-c) in GridWorld- 1. The X-axis shows the

number of steps the agent executed an action, while the Y-axis highlights the cumula-

tive rewards of each method after each 1,000 steps. Notice how iCCA outperformed pure

learning Actor-Critic. In particular iCCA outperformed the planner (red) after 6,000 steps

by navigating farther from the danger zones. Actor-Critic, on the other hand, could not

outperform the planner by the end of 10,000 steps.

Similarly, Figure 5-6(a) depicts the performance of Actor-Critic, iCCA, CBBA, and

optimal policies in the UAV 7-2 scenario. The Y-axis shows the cumulative reward, while

the X-axis represents the number of interactions. It is clear that the Actor-Critic performed

much better inside the iCCA framework and performed better than CBBA alone. The

reason is that CBBA provided a good starting point for the Actor-Critic to explore the

state space, while the risk analyzer filtered risky actions of the actor leading to catastrophic

situations. Figure 5-6(b) shows the performance of iCCA and Actor-Critic relative to the

optimal policy after 105 steps of interaction with the domain and the averaged optimality of

CBBA through 10,000 trials. Notice how the integrated algorithm could on average boost

the best individual optimality performance (i.e., CBBA's result) by %10.

UAV 10-2 Scenario Figure 5-7(a) depicts the same set of results for the UAV 10-2 sce-

nario. Since the size of the state-action pairs for this domain is about 9 billion, running
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Figure 5-7: A comparison of the collective rewards received in UAV 10-2 scenario when
strictly following plans generated by CBBA alone, Actor-Critic reinforcement learning
outside of the iCCA environment, i.e., without initialization and guidance from CBBA,
and the result when these are coupled via the iCCA framework.

dynamic programming to obtain the optimal policy was not feasible. For that reason the
performance of the optimal policy is excluded. Since the state space was much larger than
the UAV 7-2 scenario, Actor-Critic method had a hard time to find a sensible policy even
after 101 steps. Online CBBA still could find a good policy to the approximated problem.
When both CBBA and Actor-Critic were put together through the iCCA framework, the
agent could achieve better performance even early on, after only 104 steps. Figure 5-7(b)
shows the averaged performance of each method at the end of the learning phase. Notice
that iCCA again could boost the performance of CBBA solution statistically significantly.

5.4 Learning Methods with Implicit Policy Function

The initial policy of Actor-Critic type learners can be biased simply as they parameterize
the policy explicitly. For learning schemes that do not represent the policy as a sepa-
rate entity, such as SARSA, integration within the iCCA framework is not immediately
obvious. This section presents a new approach for integrating learning approaches with-
out an explicit actor component. The idea is motivated by the concept of the Rmax algo-
rithm (Brafman & Tennenholtz, 2001). The approach can be explained through the mentor-
protdg6 analogy, where the planner takes the role of the mentor and the learner takes the
role of the prot6g6. In the beginning, the proteg6 does not know much about the world,
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Algorithm 24: Cooperative Learning-2
Input: s, r
Output: a

1 a ~7P(s) /* CooperativePlanner */
2 knownness <-- min{1, K"""t s')}
3 if rand() < knownness then
4 a'~ 7r(s) /* Learner */
5 if safe(s, a') then
6 L a <- a'
7 else
8 L count (s, a) +- count (s, a) +1
9 learner.update(s, r, a)

1o return a

hence, for the most part s/he takes actions advised by the mentor. While learning from

such actions, after a while, the prot6g6 feels comfortable about taking a self-motivated ac-
tions as s/he has been through the same situation many times. Seeking permission from the

mentor, the prot6g6 could take the action if the mentor thinks the action is safe. Otherwise

the protege should follow the action suggested by the mentor.

Algorithm 24 details the new cooperative learning process. On every step, the learner

inspects the suggested action by the planner and estimates the "knownness" of the state-
action pair by considering the number of times that state-action pair has been experienced

following the planner's suggestion. The IC parameter controls the transition speed from

following the planner's policy to following the learner's policy. Given the knownness of
the state-action pair, the learner probabilistically decides to select an action from its own

policy. If the action is deemed to be safe, it is executed. Otherwise, the planner's policy
overrides the learner's choice (lines 4-6). If the planner's action is selected, the knownness

count of the corresponding state-action pair is incremented. Finally the learner is executed

depending on the choice of the learning algorithm. Note that any control RL algorithm,
even the Actor-Critic family of methods, can be integrated with cooperative planners using

Algorithm 24 as line 9 is the only learner-dependent line, defined in the general form.

5.4.1 Experimental Results

This section compares the empirical performance of SARSA combined with cooperative

planners (CSARSA), with pure learning and pure planning methods in both the GridWorld-
1 domain and the UAV 7-2 mission planning scenario. All cooperative planners and settings
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Figure 5-8: In the pedagogical GridWorld domain, the performance of the optimal solution
is given in black. The solution generated by the deterministic planner is shown in red. In
addition, the performance of SARSA and CSARSA are shown. It is clear that CSARSA
outperform SARSA and eventually outperform the baseline planner when given a sufficient
number of interactions.

remained the same from the previous set of experiments in Section 5.3.5. The knownness
parameter, /C, for CSARSA was selected out of { 10, 20, 50}. The exploration rate (E) for
SARSA and CSARSA was set to 0.1. All learning method results were averaged over 60
runs.

GridWorld-1 Figure 5-8 compares the performance of CSARSA, SARSA, the baseline
planner (Fig 5-1-b), and the expected optimal solution (Fig 5-1-right) in the pedagogical
GridWorld domain. The X-axis shows the number of steps the agent executed an action,
while the Y-axis highlights the cumulative rewards of each method after each 1,000 steps.
Notice how CSARSA outperformed pure learning approaches. Compared to Figure 5-5,
SARSA based methods learned faster. This observation can be explained by two facts:
1) SARSA's policy is embedded in the Q-value function, whereas the actor requires an-
other level of learning for the policy on the top of learning the Q-value function and 2)
Algorithm 24 provides a better exploration mechanism (i.e., Rmax like) compared to Algo-
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Figure 5-9: Probability of crash (left) and optimality (right) of SARSA, CBBA (planner),
and CSARSA algorithms at the end of the training session in the UAV 7-2 mission planning

scenario. CSARSA improved the performance of both CBBA and SARSA. The optimality

improvement of CSARSA was statistically significant.

rithm 23, where exploration is realized internally by the actor.

UAV 7-2 Scenario In order to test our risk mitigation approach under harder circum-

stances, 5% chance of edge traverse failure was added for each UAV, resulting in a fuel

burn without no movement. This noise value was not included in the approximated model,

hence the safety checking mechanism could not consider it. Figure 5-9 shows the results of

the same battery of learning algorithms used in GridWorld-I applied to the UAV mission

planning scenario at the end of learning (i.e., 105 steps of interaction). Akin to the previous

section, CBBA was used as the base line planner. The left plot exhibits the risk of executing

the corresponding policy while the right plot depicts the optimality of each solution. At the

end of learning, SARSA could barely avoid crashing scenarios (about 90%), thus yielding

low performance with less than 50% optimality. This observation coincides with the previ-

ous experiments with this domain where the movement model was noise free (Figure 5-6),

highlighting the importance of biasing the policy of learners in large domains and avoiding

risky behaviors. On average, CSARSA reduced the probability of failure of CBBA by 6%,

yet this improvement was not statistically significant. At the same time, CSARSA raised

the optimality of CBBA by 7%. This improvement was statistically significant.
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5.5 Adaptive Models

So far the approximated model of the MDP, T, was assumed to be static during the course

of interaction with the world. Moreover, the safety of actions was filtered based on the

deterministic safe function (e.g., movement and fuel burn did not involve uncertainty in

the approximated model). In this section, the iCCA framework is extended so that the

approximate model can be adapted through the course of online learning. In particular

the parametric form of the model is assumed to be able to capture the true model, where

parameters of the model are adjusted using adaptive parameter estimation. Moreover, a

probabilistic approach towards safety is introduced which allows the use of stochastic ap-

proximated models to estimate risk. Empirical results demonstrate that the performance of

the resulting system increases. Finally the drawbacks of having an underpowered model

representation are covered and an alternative solution is suggested.

5.5.1 Pedagogical GridWorld-2

Consider the GridWorld-2 domain shown in Figure 5-10(a), in which the task is to navigate

from the bottom-middle (o) to one of the top corner grid cells (*), while avoiding the danger

zone (o), where the agent will be eliminated upon entrance. At each step the agent can take

any action from the set {t, ,<-, -. However, due to wind disturbances unbeknownst to

the agent, there is a 20% chance the agent will be transferred into a neighboring unoccupied

grid cell upon executing each action. The reward for reaching either of the goal regions

and the danger zone are +1 and -1, respectively, while every other action results in -0.01

reward.

First consider the conservative policy shown in Figure 5-10(b) designed for high values

of wind noise. As expected, the nominal path, highlighted as a gray watermark, follows the

long but safe path to the top left goal. The color of each grid represents the true value of

each state under the policy. Green indicates positive, and white indicates zero. The value of

blocked grid cells are shown as red. Figure 5-10(c) depicts a policy designed to reach the

right goal corner from every location. This policy ignores the existence of the noise, hence

the nominal path in this case gets close to the danger zone. Finally Figure 5-10(d) shows the

optimal solution. Notice how the nominal path under this policy avoids getting close to the

danger zone. Model-free learning techniques such as SARSA can find the optimal policy

of the noisy environment through interaction, but require a great deal of training examples.

More critically, they may deliberately move the agent towards dangerous regions in order

to gain information about those areas. Section 5.4 demonstrated that when an approximate

model (e.g., the model used to generate policies in Figure 5-10-b,c) is integrated with a
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Figure 5-10: The gridworld domain is shown in (a), where the task is to navigate from
the bottom middle (.) to one of the top corners (*). The the danger region (o) is an off-
limit area where the agent should avoid. The corresponding policy and value function, are
depicted with respect to (b) a conservative policy to reach the left corner in most states, (c)
an aggressive policy which aims for the top right corner, and (d) the optimal policy.

learner, it can rule out suggested actions by the learner that are poor in the eyes of the

planner, resulting in safer exploration. Furthermore, the planner's policy can be used as
a starting point for the learner to bootstrap on, potentially reducing the amount of data

required by the learner to master the task. However, the model used for planning and
risk analysis were static. This section expands the iCCA framework by representing the
model as a separate entity which can be adapted through the learning process. The focus
here is on the case where the parametric form of the approximated model (T) includes
the true underlying model (T) (e.g., assuming an unknown uniform noise parameter for

the gridworld domain). Later the drawbacks of this approach when T is unable to exactly
represent T are discussed and a potential alternative is introduced. Adding a parametric
model to the planning and learning scheme is easily motivated by the case when the initial
bootstrapped policy is wrong, or built from incorrect assumptions. In such a case, it is more
effective to simply switch the underlying policy with a better one, rather than requiring a
plethora of interactions to learn from and refine a poor initial policy. The remainder of this
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section introduces a new stochastic risk analyzer and a cooperative learning process that is

able to intelligently switch-out the underlying policy, refined by the learning process.

Figure 5-11 depicts the new iCCA instantiation. Note that the model, (i.e., T) now has

its own encapsulation, and is shared both by the cooperative planner and the risk analyzer.

Moreover, the model module uses perceived state-action pairs to adjust its own parameters.

In order to take advantage of a dynamic model, the risk analyzer should support stochastic

risk models. Algorithm 25 explains the new risk analysis process in which the notation of

safety is defined probabilistically. In particular, it is assumed that there exists a function

constrained : S -+ {0, 1}, which indicates if being in a particular state is allowed or

not. Risk is defined as the probability of visiting any of the constrained states. The core

idea is to use Monte-Carlo simulation to estimate the risk level associated with the given

state-action pair if planner's policy is applied thereafter by simulating M trajectories from

the current state s. The first action is the suggested action a, and the rest of actions come

from the planner's policy, irP. The approximated model, T, is utilized to sample successive

states. Each trajectory is bounded to a fixed horizon . The risk of taking action a from

state s is estimated by the probability of a simulated trajectory reaching a risky state within

horizon N. If this risk is below a user-defined threshold, E, the action is deemed to be safe.

Algorithm 26 depicts the new cooperative algorithm. Lines 1-7 are identical to Algo-

rithm 24, while lines 8-13 highlights the new part of the algorithm which includes model

adaptation. The risk mitigation process is the same as Algorithm 24, yet the safe function

is now defined by Algorithm 25 which uses the most recent version of the estimated model,

T. Line 9 updates the current estimate of the model, based on the observations, providing

more accurate safety estimations compared to a static risk analyzer. Furthermore, if the
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Algorithm 25: safe (check the safety of the action suggested by the learner)
Input: s,a
Output: isSafe

1 risk <- 0
2 for i <- 1 to M do
3 t<- 1

4 st ~T(s, a)
5 while not constrained(st) and not isTerminal(st) and t < 7W do
6 st+1 ~ T(st, 7P(st))

7 t <- t + 1

8 risk <- risk+ -(constrained(st) - risk)

9 isSaf e - (risk < E)

change to the model used for planning crosses a user-defined threshold (AT), the planner

revisit its policy and keeps record of the new model (lines 10-12). If the policy changes, the

counts of all state-action pairs are set to zero so that the learner start watching the new pol-

icy (mentor) from the scratch (line 13,14). An important observation is that the planner's

policy should be seen safe through the eyes of the risk analyzer at all times. Otherwise,
most actions suggested by the learner will be deemed too risky by mistake, as they are

followed by the planner's policy. Hence the output of the iCCA is reduced to the baseline

planner's policy.

5.5.2 Experimental Results

This part probes the effectiveness of the adaptive modeling approach (i.e., Algorithm 26),
called AM-iCCA, compared to (i) the static model iCCA (i.e., Algorithm 24) and (ii) the

pure learning approach. Both iCCA and AM-iCCA used Algorithm 25 to estimate the

safety, since the approximated model (T) is stochastic. The empirical settings omitted here

were identical to those of Section 5.3.5. 5 Monte-Carlo simulations used to evaluate risk

(i.e., M = 5). Each algorithm was tested for 100 trials. The risk tolerance (E) was set to

20%. For the AM-iCCA, the noise parameter was estimated as:

.s #unintended agents moves + initial weight
nozse =#total number of moves + initial weight

Both iCCA methods started with the noise estimate of 40% with the count weight of 100.
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Algorithm 26: Cooperative Learning-3
Input: s, r
Output: a

1 a ~ TP(S)

2 knownness 4- min{1, count(sa)

3 if rand() < knownness then
4 a' ~-d 7'r(S)
5 if safe(s, a') then
6 La - a'
7 else
8 L count(s, a) +- count(s, a) + 1

9 learner.update(s, r, a)

10 model.update(s, r, a)

ii if ||TP - Til > AT then
12 TP +- t

13 planner.updateo

14 if 7TP is changed then
15 L reset all counts to zero

16 return a

Pedagogical GridWorld-2 For the iCCA algorithm, the planner followed the conserva-

tive policy (Figure 5-10-b). As for AM-iCCA, the planner switched from the conservative

to the aggressive policy (Figure 5-10-c), whenever the noise estimate dropped below 25%.

The knownness parameter (IC) was set to 10. Figure 5-12 compares the cumulative re-

turn obtained in the GridWorld-2 domain for SARSA, iCCA, and AM-iCCA based on the

number of interactions. The expected performance of both static policies are shown as hor-

izontal lines, estimated by 10,000 simulated trajectories. The improvement of iCCA with

a static model over the pure learning approach is statistically significant in the beginning,

while the improvement is less significant as more interactions were obtained. Although

initialized with the conservative policy, the adaptive model approach within iCCA (shown

as green in Figure 5-12) quickly learned that the actual noise in the system was much less

than the initial 40% estimate and switched to using (and refining) the aggressive policy.

As a result of this early discovery and switching planner's policy, AM-iCCA outperformed

both iCCA and SARSA, requiring two times less data compared to other learning meth-

ods to reach the asymptotic performance. 5 Over time, however, all methods reached the

same level of performance. On that note, it is important to see that all learning methods

5Compare AM-iCCA's performance after 4,000 steps to other learning methods' performance after 8,000
steps.
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Figure 5-12: Empirical results of AM-iCCA, iCCA, and SARSA algorithms in the
GridWorld-2.

(SARSA, iCCA, AM-iCCA) improved on the baseline static policies, highlighting their

sub-optimality.

UAV 7-2 Scenario The UAV 7-2 Scenario was implemented with 5% movement noise

identical to Section 5.4.1. As for the baseline cooperative planner, CBBA (Choi et al., 2009)
was implemented in two versions: aggressive and conservative. The aggressive version

used all remaining fuel cells in one iteration to plan the best set of target assignments

ignoring the possible noise in the movement. Algorithm 27 illustrates the conservative

CBBA algorithm. The input to the algorithm is the collection of UAVs (U). First the

current fuel of UAVs are saved and decremented by 3 (lines 1-2). Then on each iteration,

CBBA is called with the reduced amount of fuel cells. Consequently, the plan will be more

conservative compared to the case where all fuel cells are considered. If the resulting plan

allows all UAVs to get back to the base safely, it will be returned as the solution. Otherwise,

UAVs with no feasible plan (i.e., Plan[u] = 0) will have their fuels incremented, as long

as the fuel does not exceed the original fuel value (line 8). Notice that aggressive CBBA

is equivalent to calling CBBA method on line 5 with the original fuel levels. Akin to the

GridWorld-2 domain, the iCCA algorithm only took advantage of the conservative CBBA

because the noise assumed to be fixed at 40%. As for AM-iCCA, the planner switched

from the conservative to the aggressive CBBA, whenever the noise estimate dropped below
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Algorithm 27: Conservative CBBA
Input: UAVs
Output: Plan

1 MaxFuel 4- U.fuel

2 UAVs.fuel <- UAVs.fuel - 3

3 ok <- False

4 while not ok or MaxFuel = UAVs.fuel do
5 Plan <-CBBA(UAVs)

6 ok <- True

7 for u E UAVs, Plan[u] 0 do
8 UAVs.fuel[u] <- min(MaxFuel[u],UAVs.fuel[u] + 1)
9 ok +- False

10 return Plan

25%. The best knowness parameter (IC) was selected from {10, 20, 50} for both iCCA and

AM-iCCA.

Figures 5-13 shows the results of learning methods (SARSA, iCCA, and AM-iCCA)

together with two variations of CBBA (conservative and aggressive) applied to the UAV

mission planning scenario. Figure 5-13(a) represents the solution quality of each learning

method after 105 steps of interactions. The quality of fixed CBBA methods were obtained

through averaging over 10,000 simulated trajectories, where on each step of the simulation

a new plan was derived to cope with the stochasticity of the environment. Figure 5-13(b)

depicts the optimality of each solution, while Figure 5-13(c) exhibits the risk of executing

the corresponding policy. First note that SARSA at the end of training yielded 50% op-

timal performance, together with more than 80% chance of crashing a UAV. Both CBBA

variations outperformed SARSA. The aggressive CBBA achieved more than 80% optimal-

ity in cost of 25% crash probability, while conservative CBBA had 5% less performance,

as expected, it realized a safe policy with rare chances of crashing. The iCCA algorithm

improved the performance of the conservative CBBA planner again by introducing risk

of crash around 20%. While on average it performed better than that aggressive policy,

the difference was not statistically significant. Finally AM-iCCA outperformed all other

methods statistically significantly, obtaining close to 90% optimality. AM-iCCA boosted

the best performance of all other methods by 22% on average (Figure 5-13-a). The risk

involved in running AM-iCCA was also close to 20%, matching the selected E value.

These result highlights the importance of an adaptive model within the iCCA frame-

work: 1) model adaptation provides a better simulator for evaluating the risk involved in

taking learning actions, and 2) planners can adjust their behaviors according to the model,
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Figure 5-13: Results of SARSA, CBBA-conservative, CBBA-Aggressive, iCCA and AM-
iCCA algorithms at the end of the training session in the UAV mission planning scenario.
AM-iCCA improved the best performance by 22% with respect to the allowed risk level of
20%.
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Figure 5-14: The GridWorld-3 scenario: identical to GridWorld-2, yet the noise is only
applied in windy grid cells (*).

resulting in better policies serving as the stepping stones for the learning algorithms to build

upon.

5.5.3 Extensions

So far, the true model was assumed to be representable within the functional form of the

approximated model. But what are the consequences of using cooperative learning if this

assumption does not hold? Returning to the GridWorld-2 domain, consider the case where

the 20% noise is not applied to all states. Figure 5-14 depicts such a scenario through

GridWorld-3 where the noise is only applied to the grid cells marked with a *. While

passing close to the danger zone is safe, when the agent assumes the uniform noise model

by mistake, it generalizes the noisy movements to all states including the area close to

the danger zone. This can cause the AM-iCCA to converge to a suboptimal policy, as the

risk analyzer filters optimal actions suggested by the learner due to the inaccurate model

assumption.
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The root of this problem is that iCCA always filters the risky actions of the learner,

even though the underlying assumed model might be incorrect. In order to allow the learn-

ing agent the freedom of trying potentially risky actions asymptotically, the safety check

should be turned off for all states at some point. Back to the mentor/prot6g6 analogy, the

prot6g6 may simply stop checking if the mentor thinks an action is safe once s/he feels

comfortable taking a self-motivated action. Thus, the learner will eventually circumvent

the need for a planner altogether. More specifically, line 4 of Algorithm 26 is changed, so

that if the knownness of a particular state reaches a certain threshold, probing the safety

of the action is not mandatory anymore. While this approach introduces another parameter

to the framework, we conjecture that the resulting process converges to the optimal policy

under certain conditions. This is due to the fact that under an ergodic policy realized by

the c-greedy policy, all state-action pairs will be visited infinitely often. Thus at some point

the knownness of all states exceeds any predefined threshold, which leads to 1) having

SARSA suggest an action for every state, and 2) turning the risk filtering mechanism off

for all states. As a result, the whole iCCA framework is reduced to pure SARSA with an

initial set of weights. Under certain conditions, it can be shown that the resulting method

is convergent to the optimal policy with probability one (Melo et al., 2008).

5.6 Related Work

In the controls community, many researchers have developed algorithms for task assign-

ment among teams of vehicles under the name of cooperative planning (Alighanbari, 2004;

Alighanbari et al., 2003; Beard et al., 2002; Berman et al., 2009; Cassandras & Li, 2002;

Castanon & Wohletz, 2009; Choi et al., 2009; Ryan et al., 2004; Saligrama & Casta5t6n,

2006; Wang et al., 2007, 2005). As the name suggests, these methods use an existing

world model for planning vehicles task assignment. While, in theory, such planning prob-

lems can be solved using dynamic programming (DP) (Bellman, 2003), the computation

time required for solving realistic problems using DP is not practically feasible. Conse-

quently, cooperative planners are often focused on problems with specific properties such

as convexity, submodularity, etc. that render the problem more tractable. Furthermore, they

investigate approximation techniques for solving planning problems.

Cassandras et al. adopted a receding horizon approach for planning in obstacle free

2D spaces where vehicles with constant speeds move according to deterministic dynamics

(Cassandras & Li, 2002). Singh et al. proposed a non-myopic approach and derived the-

oretical guarantees on the performance of their algorithm (Singh et al., 2009). Their main

results are built upon the submodularity (a diminishing returns property) assumption which
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is a limiting factor. Alighanbari et al. formulated the task allocation problem as a mixed-

integer linear program (Alighanbari et al., 2003). They scaled their solution to large do-

mains including 6 vehicles by approximating the decomposition of task assignment among

vehicles. The main drawback of the work is the assumption of deterministic dynamics for

vehicle movements. Wang et al. introduced a new method for maintaining the formation

among vehicles in domains with dynamic obstacles (Wang et al., 2005). Their approach

assumes a quadratic cost function and a Gaussian noise model. In our UAV mission plan-

ning scenarios both these assumptions are violated: the penalty function is step-shaped

and the noise involved in the reward function has a multinomial distribution. Castanon et

al. focused on stochastic resource allocation problem (Castanon & Wohletz, 2009). While

their method scaled well to domains with 20 resources and 20 tasks, it cannot be applied

to cases where multiple assignments of simultaneous resources are required for the task

completion. Berman et al. tackled the problem of task allocation for swarms of robots in

a distributed fashion using stochastic policies (Berman et al., 2009). Their approach ad-

dresses the problem of maintaining a predefined distribution of robots on a set of locations,

yet does not support time varying distributions. Choi et al. used a distributed auction-based

approach for task assignment among agents (2009). They bounded the sub-optimality of

their solution, yet extending their work to stochastic models is still an open problem. In

summary, cooperative planners often result in sub-optimal solutions due to the model inac-

curacy or unsatisfied assumptions. Furthermore, these methods do not incorporate learning

to use perceived trajectories in order to improve future performance.

Safe exploration has been of special interest to practitioners applying RL techniques

to real world domains involving expensive resources. Pessimistic approaches find opti-

mal policies with respect to the worse possible outcome of selected actions (Heger, 1994).

Consequently, resulting policies are often overly constrained, yielding undesirable behav-

ior. Bounding the probability of failure, risk-sensitive RL methods (Geibel & Wysotzki,

2005; Mihatsch & Neuneier, 2002) provide a less conservative approach by maximizing

the performance subject to an acceptable risk level. Because these methods do not guar-

antee the performance before the learning phase, they are not suitable for online settings.

Abbeel et al. investigated exploration within the context of batch apprenticeship learn-

ing (2005). They conjectured that running least-squares policy iteration (Lagoudakis &

Parr, 2003) over teacher generated trajectories yields safe policies for practical domains.

While in practice they reported safe resulting policies, their approach does not have math-

ematical guarantees. For deterministic MDPs, Hans et al. extended the risk-sensitive RL

approach by identifying states as super critical, critical, and safe (Hans et al., 2008). While

they demonstrated promising empirical results, their method cannot be applied to stochas-
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tic domains. Knox et al. discussed various ways that an initial policy can bias the learning

process (2010), yet their approach requires access to the value function of the given policy

which may be hard to calculate. Within the controls community, safe exploration is pursued

under robust RL in which the stability of the system is of main interest (Anderson et al.,

2007). Current state of the art methods do not extend to general MDPs as they consider

systems with linear transition models (Anderson et al., 2007).

5.7 Contributions

This chapter introduced cooperative learners formed by combining cooperative planners

with RL algorithms. The first set of cooperative learners were built on top of RL meth-

ods with explicit policy parameterization using deterministic risk models. The second set

of cooperative learners relaxed the assumption of an explicit parametric form for the RL

methods, allowing the fusion of any online RL technique with cooperative planners. The

third set of cooperative learners accommodated the notion of adaptive modeling within the

framework and also supported stochastic risk models. Resulting methods were empirically

investigated in pedagogical grid-world domains and UAV mission planning scenarios with

state-action spaces up to 9 billions. Empirical results demonstrated the ability of cooper-

ative learners in boosting the performance of fixed planners, while reducing the risk and

sample complexity involved in the learning process. This chapter also explained the draw-

backs of adaptive modeling when the parametric form of the model cannot be captured in

the exact model. Finally this chapter provided a literature review of cooperative planners

and safety within learning.
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Chapter 6

Conclusion

This chapter provides a summary of the thesis and presents a list of the contributions. It also

sheds light on potential future work that has been motivated by the results of this thesis.

6.1 Contributions

The main goal of this thesis has been to develop algorithms that find good policies in

large-scale sequential decision making problems under uncertainty by interacting with the

system. The motivating example that was carried through the thesis was the mission plan-

ning for a set of fuel-limited unmanned air vehicles (UAVs) with more than 100 million

state-action pairs. The three main challenges to scale existing methods up to such scenar-

ios were: (I) sample complexity, (II) limited computation, and (III) safe exploration. This

thesis tackled these challenges within the following three thrusts.

6.1.1 A Theoretical View of Finding the Right Set of Features

Chapter 3 focused on reinforcement learning algorithms using linear function approxima-

tion to represent the value function. Addressing mainly challenge (I) and partially challenge

(II), this chapter:

" Defined the notion of feature coverage in the context of linear function approxima-

tion and provided a theoretical analysis on how feature coverage plays a critical role

in providing a guaranteed rate of convergence in the policy evaluation case (i.e., The-

orem 3.2.6 and Corollary 3.2.8).

" Introduced the incremental feature dependency discovery (iFDD) family of algo-

rithms based on the theoretical results as a novel feature expansion process. It also
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showed how iFDD can be viewed geometrically as a dynamic Tile Coding scheme.

" Empirically verified the advantage of discovering features using batch iFDD as op-

posed to batch random expansion in the task of inverted pendulum.

" Presented a sparsification method to reduce the computational complexity of iFDD,

and analyzed the theoretical consequences of such sparsification.

6.1.2 An Empirical View of Finding the Right Set of Features

Chapter 4 concentrated on practical implementations of iFDD. The aim was to approximate
the optimization criteria of iFDD with the goal of applying the resulting algorithm to the
online setting. Addressing both challenges (I) and (II) this chapter:

* Introduced online iFDD and online iFDD+ as two members of iFDD family which
can be combined with any online value based RL method. Given a set of initial
features, in the case of policy evaluation, this chapter also proved the asymptotic
convergence of online iFDD combined with temporal difference learning to the best
possible approximation (i.e., Corollary 4.1.3).

" Empirically verified the advantage of online methods over two fixed representations

(initial and tabular) and two state-of-the-art online expansion techniques (ATC and
SDM) in a battery of domains including UAV mission planning scenarios, where the
size of the state-action pairs ranged from 103 to more than 108.

" Presented adaptive resolution iFDD (ARiFDD) as a promising extension which can
adaptively reshape the initial set of features, relaxing the dependency of iFDD on
the initialization process. Empirical results exhibited the advantage of using online
ARiFDD over online iFDD in the task of inverted pendulum with various set of
initializations.

" Provided an overview of the related work for adaptive function approximators that
covered the current existing gaps and placed iFDD in the context of that work.

6.1.3 Learning with Safe Exploration

Chapter 5 mainly addressed challenges (I) and partly (III) by integrating online RL methods
with cooperative planners. In particular this chapter:

o Introduced cooperative learners as the fusion of online RL methods and cooperative
planners.
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" Empirically verified the advantage of cooperative learners over pure learning and

pure planning methods in the pedagogical GridWorld domains and UAV Mission

planning scenarios with about 9 x 109 state-action pairs. In particular cooperative

planners boosted the performance of pure planners, while reduced the sample com-

plexity and risk involved in pure learning methods.

" Extended the cooperative learners to support adaptive model approximation and stochas-

tic risk models. These extensions facilitated better risk estimation and the capability

to switch the underlying policy suggested by the planner. The resulting methods were

shown to improve the sample complexity in a GridWorld domain and a UAV mission

planning scenario.

" Provided a literature review both on existing cooperative planners for solving UAV
mission planning problems, and RL methods aimed at realizing safety.

6.2 Future Work

This section describes potential extensions for which this thesis can be used as a stepping

stone.

6.2.1 Solving Partially Observable MDPs (POMDPs)

A POMDP is defined as tuple (S, A, Q, P,,, R' , 0",,, -) where the definitions of S, A,

pSaS, Ri1,, and -y are identical to the discussion of MDPs covered in Chapter 2. Q is the

set of possible observations, and 0, : S x A x Q -± [0, 1] provides the probability of

observing o after taking action a and reaching state s. A POMDP can be cast as a equivalent

to a belief MDP defined as tuple (B, A, Ta,, Was,, 'Y), where B c [0, 1]IS| is the set of all

possible probability distributions (beliefs) over the state space, Ta, is the probability of

going from belief b to belief b' taking action a, and Ta is the expected reward along the

way. The derivation of T, and I' from Psa,, R,, and 04,%, as presented in the work of
Kaelbling et al. (1998), is as follows:

Tbbl , P(b' b, a) - ( P(b'|b, a, o)P(o b, a),
OEQ

P(b'|b, a,{o) 1 SE(b, a, o) = b'
0 otherwise

b'(s') P(s' o, a, b) = aZP 8p,b(s),
sES
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P(olb, a) = 3P(olb, a, s')P(s'|b, a) = O(a, P(s'|b, a)

s/ES s'CS

s'ES ss'S

seS s'es

where SE is the state-estimation function that has the new belief state b' as its output.

Using this mapping, each POMDP can be translated into a continuous |S| dimensional

MDP. Hence, the result of this thesis provides an attractive tool for dealing with POMDPs

where all elements of the POMDP are known. It should be noted that the variation in

the value function defined over the belief space is often more dramatic compared to the

value function for the state space, due to the fact that in real-world domains the state of

the agent often locally changes, while the change in the belief space can be arbitrary large.

Furthermore, tackling POMDPs with unknown transition or observation model remains a

challenge, as the agent cannot calculate its state in the new MDP formulation.

6.2.2 Model Learning

One area for future refinement is the noise sensitivity of online iFDD methods. Highly

stochastic domains often lead to more frequent TD errors encouraging the feature discovery

process to quickly add many features or add unnecessary features after the convergence of

weights. While these factors do not affect the asymptotic guarantees, unnecessary features

can increase computational load and slow down learning by refining the representation too

quickly. Utilizing techniques that learn a model online, such as linear Dyna (Sutton et al.,

2008; Yao et al., 2009) can hedge against this problem. Moreover, because these methods

assume that the transition and reward models are linear in the feature space, in theory, iFDD

can be used to approximate such models. In other words, iFDD can be used to provide a

good fit to both the model and the value function. However, the source of the model error

is no longer the Bellman error. It would be interesting to see if theoretical results can be

extended to the case where the underlying function of interest can be sampled directly.'

6.2.3 Moving Beyond Binary Features

While the original Tile Coding framework used a binary (i.e., piecewise constant) func-

tion to generate features, researchers have considered other functions, such as hat functions

(Waldock & Carse, 2008) and Gaussians (Eldracher et al., 1997; Nguyen et al., 2005).

'Note that in the case of RL, the true value function can not be sampled directly.
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Exploring how such functions can be used in the context of iFDD while maintaining the

low per-time-step computational complexity would be an interesting extension to this the-

sis. For example, given continuous features on [0, 1], a threshold can convert continuous

features into binary values.

6.2.4 Exploration and Knownness

Another developing line of research in the RL community is efficient exploration with the

aim of minimizing the regret (i.e., the difference between the performance under optimal

policy, and the actual performance obtained) during learning. While the R,", type of al-

gorithms have been shown both empirically and theoretically to yield promising results

(Brafman & Tennenholtz, 2001), applying such methods to high-dimensional problems

or continuous state spaces poses a challenge for RL practitioners. Recently the Multi-

Resolution Exploration (MRE) technique (Nouri & Littman, 2008) has been shown to work

well in low-dimensional continuous problems, yet we conjecture MRE does not scale to

high-dimensional problems, because the core idea of MRE is very similar to the adaptive

Tile Coding method (ATC) used to approximate the value function. Both techniques add

full-dimensional features to capture the function of interest (knownness in case of MRE,

and value function in case of ATC), which often have low coverage. Another interesting

research direction is to use iFDD to approximate knownness rather than the value function.

Empirical results suggest that the resulting method should demonstrate better sample com-

plexity compared to MRE, because features can be defined in lower dimensional spaces.

6.2.5 Decentralized Cooperative Learning

Another alternative for dealing with large state-spaces in multi-agent mission planning do-

mains is to decentralize the decision making process, so that each agent partially contributes

to the overall plan formation (Choi et al., 2009). While cooperative learners in this thesis

employed decentralized planners (i.e., CBBA), the learning methods required a centralized

process. It would be interesting to see how the learning methods can also be decentralized

in order to have the whole framework running separately on each agent.

6.2.6 Cooperative Learning with Adaptive Function Approximators

This thesis introduced cooperative learning and iFDD as two different tools for dealing

with large control problems, yet it did not consider the fusion of both approaches. While

combining iFDD within cooperative learners with explicit policy forms should be simple,
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extending the fusion to RL methods with implicit policies is not immediately obvious. The

main gap lies in formulating the knownness for continuous state spaces. Hence, the solution

to Section 6.2.4 provides the stepping stone for this extension as well.

6.2.7 Relation of iFDD to Brain and Cognitive Science

While the importance of starting with a small representation for learning has been noted

in the cognitive science literature (Elman, 1993), similar results have been obtained in the

RL domain. Sherstov et al. demonstrated that reducing the generalization among states

(i.e., decaying the number of tilings while increasing the resolution of tiles) boosts the

learning speed (2005). Ahmadi et al. showed that exposing features by a domain expert

incrementally reduces the sample complexity (2007). Finally, Whiteson et al. empirically

verified that agents starting with the learned representation required more samples com-

pared to those starting with a simple representation which was refined through the learning

process (2007). All such evidence motivates the use of an adaptive representation, start-

ing with a broad coverage, while subsequently narrowing the coverage as time evolves.

We think the theoretical analysis on the convergence rate of feature expansion techniques

(i.e., Corollary 3.2.8) provides an interesting lead on why, in general, adaptive represen-

tations and in particular a move from simple to complicated features is superior to static

representations. In a broader sense, we hypothesize that children have limited representa-

tional power on early stages of life using features with broad coverage. Hence, finding a set

of weights for a compact representation consumes less time, while broad features cover a

lot of discrepancies early in the learning process. This hypothesis can explain why children

are good at picking up second languages compared to adults (Bjorklund, 1997). As chil-

dren grow older, the representation in their brain expands. This phenomenon encourages

older humans to learn a task using a more complicated representation, therefore requiring

more parameter tuning.

We would like to close this thesis by introducing the following experiment template

which can highlight more of the connection between iFDD and human learning: select two

sets of children A and B. The goal for all children is to solve a specific task using a set of

binary features (e.g., identify an object type). To excel in the task children have to consider

a list of feature conjunctions in their decision making. Group A will be taught features and

all necessary feature conjunctions (without being exposed to any samples), while group B

will only be taught features but not any feature conjunctions. My hypothesis is that group

A will require more training to master the task compared to group B.
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