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Abstract— Real-world robots commonly have to act in com-
plex, poorly understood environments where the true world
dynamics are unknown. To compensate for the unknown world
dynamics, we often provide a class of models to a learner so
it may select a model, typically using a minimum prediction
error metric over a set of training data. Often in real-
world domains the model class is unable to capture the true
dynamics, due to either limited domain knowledge or a desire
to use a small model. In these cases we call the model class
misspecified, and an unfortunate consequence of misspecification
is that even with unlimited data and computation there is no
guarantee the model with minimum prediction error leads to
the best performing policy. In this work, our approach improves
upon the standard maximum likelihood model selection metric
by explicitly selecting the model which achieves the highest
expected reward, rather than the most likely model. We present
an algorithm for which the highest performing model from the
model class is guaranteed to be found given unlimited data and
computation. Empirically, we demonstrate that our algorithm
is often superior to the maximum likelihood learner in a batch
learning setting for two common RL benchmark problems and a
third real-world system, the hydrodynamic cart-pole, a domain
whose complex dynamics cannot be known exactly.

I. INTRODUCTION

Controlling a system with complex, unknown dynamics
(e.g., the interaction of a robot with a fluid) is a common
and difficult problem in real-world domains. The hydrody-
namic cart-pole, shown in Figure 1 is such an example,
constructed to capture many of the fundamental challenges
associated with fluid interaction (described in greater detail
in Section V-C). The system is composed of a thin flat plate
(the pole) placed in a flowing channel of water with a linear
actuator (the cart) attached to the pole’s trailing edge via a
pin joint. For this system, the objective is to learn a policy
that stabilizes the pole pointing into the water current.

Reinforcement learning (RL) [1] is a framework for se-
quential decision making under uncertainty with an unknown
dynamics model that can be used to learn a policy for
problems such as the hydrodynamic cart-pole. Classical RL
techniques tend to use powerful representations with many
parameters that translates into high sample complexity. Even
with the use of adaptive representations, modern model-free
RL techniques tend to require many samples to achieve rea-
sonable policies [2]. For real-world systems, collecting large
data sets can be expensive, dangerous, or even impossible [3],
so developing techniques with low data needs is paramount.

Model-based (MB) RL techniques have been shown to
be more sample-efficient than model-free RL methods [4],
[5], [6], [7], making them a natural choice for tackling

Figure 1. The hydrodynamic cart-pole system with the pole pointing
upstream into the water current.

real-world robotics problems [8]. Since the model of the
system is often not fully known, practitioners often rely
on domain knowledge to choose a dynamics model class
that reasonably trades off sample complexity for expressive
power. For real-world systems such as the hydrodynamic
cart-pole, this trade-off means the chosen representation will
often be misspecified (i.e., the approximate representation
cannot exactly capture the true dynamics). Such models can
introduce representational bias, the difference between the
performances of the true optimal policy and the best policy
found based on the misspecified model class. Furthermore
the learning algorithm using such model classes can intro-
duce learning bias, which is the the difference between the
performances of the best possible policy in the model class
and the policy that is produced by the learner [9].

The focus of this paper is on identifying the cause of
learning bias of MB RL and presenting an algorithm to
overcome it. For a given problem, typical MB RL algo-
rithms choose a representation from the class of potential
representations by minimizing a form of error measured on
the training data (e.g., maximum likelihood). Unfortunately,
when no representation in the chosen class can capture the
true representation, the fit by the standard minimum error
metrics (described in more detail in Section II) does not
necessarily result in the highest possible performing policy.
In other words, by optimizing a quantity other than the
performance (e.g., prediction error), the standard approaches
introduce learning bias.

To address the issue of learning bias, Section III intro-
duces Reward Based Model Search (RBMS), a batch MB
RL algorithm that estimates the performance of models in
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the model class and explicitly searches for the model that
achieves the highest performance. Given infinitely dense
data and unlimited computation, Section IV shows that the
asymptotic learning bias of RBMS for any representation
class is zero. Moreover, for limited data and computation
RBMS performs provably no worse than the minimum error
solution in expectation. Section V empirically demonstrates
that RBMS often results in a large performance increase over
minimum error on two common RL benchmark problems and
on the real-world hydrodynamic cart-pole system. We then
discuss related work and conclusions in Sections VI and VII.

II. MINIMUM ERROR REINFORCEMENT LEARNING

A Markov decision process (MDP) is a framework for
sequential decision making under uncertainty [10]. A finite
time MDP is defined by a tuple (S,A, s0,m,R, T ), where
S is the set of states, A is the set of actions, and s0 is
the starting state. The dynamics model is defined as, m :
S × A × S 7→ [0, 1], where m(s, a, s′) = p(s′|s, a), the
probability of transitioning to state s′ by taking action a in
state s. The reward function, R : S 7→ R, describes the
reward the agent receives for being in state s.1 An episode
of data is a sequence s0, a0, s1, a1, · · · , sT−1, aT−1, where
T is the episode length, at is the action taken at state st,
and st+1 ∼ m(st, at, ·).2 The performance, or return, of a
policy, π : S → A, is defined as

V π(s0) = Eπ

[
T−1∑
t=0

R(st)

∣∣∣∣sτ+1 ∼ m(sτ , π(sτ ), ·)

]
, (1)

where the expectation is taken over s1, ..., sT . We do not use
a discount factor due to the fixed finite horizon. The objective
of an MDP is to compute the optimal policy, π∗, where

π∗ = argmaxπV
π(s0). (2)

We assume m is unknown, which prevents us from calcu-
lating V π(s) using Equation 1. Instead, we must estimate
V π(s) from data. Additionally, even if m were known,
solving Equation 2 using Equation 1 is often extremely
challenging due to the difficulty of computing a closed form
expression of Equation 1 even for simple MDPs. One method
for estimating V π(s0) is through Monte Carlo (MC) policy
evaluation [11], where π is executed for N episodes starting
from s0. The estimate is computed using

V̂ π(s0) =
1

N

N∑
n=1

T−1∑
t=0

R(snt ), (3)

where snt is the agent’s state at time t of episode n and state
transitions are sampled m.

Given a method for evaluating Equation 1, policy search
(PS) methods parameterize the set of policies and search

1Without loss of generality, we assume a known reward function that is
only state-dependent, and a known, deterministic starting state. When the
reward function is unknown, a sampled reward rnt can be used throughout
in place of R(snt ).

2We focus on finite time MDPs in the interest of theoretical results.

over the parameter space to solve for the optimal policy in
Equation 2 using

θ∗ = argmaxθ∈ΘV
πθ (s0), (4)

where θ ∈ Θ is the policy’s parameterization [12]. A naive
PS technique to find θ∗ is to enumerate all parameter values
θ1, ..., θ|Θ|, compute V̂ π

θ1
(s0), ..., V̂ π

θ|Θ|
(s0), and select the

parameter which achieves the highest return. However, this
approach is impractical for many real-world domains as the
parameter space is often large or continuous, preventing Θ
from being directly searched over or even enumerated. Large
policy spaces can be overcome using policy gradient [13],
[14], where the parameter estimate, θ̂, is updated using a
gradient step

θ̂i+1 = θ̂i + c
∂V π

θ̂i
(s0)

∂θ̂i
, (5)

for iteration i where c > 0 and θ̂i is updated until conver-
gence. Equation 5 allows us to change θ̂ proportional to the
gradient of return, which can be estimated using Equation
3 with data generated from the policy we wish to evaluate
(i.e., on-policy data). Therefore each θ̂i must be simulated a
sufficient number of times to accurately estimate V π

θ̂i
(s0).

Model-based (MB) methods solve Equation 1 by explicitly
learning a dynamics model, m(s, a, s′; θ) from data, which
commonly results in a significant amount of data efficiency
by generalizing in the space of transitions.3 Maximum like-
lihood (ML) is a common method for inferring the dynamics
model which maximizes the likelihood of the model condi-
tioned on the data, where

θ̂ = argmaxθ∈Θ

N∏
n=1

T−1∏
t=0

m(snt , a
n
t , s

n
t+1; θ). (6)

A MB solver first uses Equation 6 to compute θ̂ and then
uses Equations 1 and 2 to compute the policy optimal with
respect to θ̂. The implicit assumption made by selecting a
representation “closest” to the true representation (using min-
imum error) is that the policy which is optimal with respect
to the minimum error representation will perform well in the
true world. If, however, the representation for the dynamics
model is not expressive enough to capture the true m, using
Equation 6 can result in a poorly performing policy [15]. For
comparison, we focus on the ML metric in this work, due to
its popularity in the literature, although our results generalize
to any prediction error metric (e.g., minimum squared error).

III. REWARD BASED MODEL SEARCH

Section II discussed that minimum error techniques in RL
are vulnerable to learning poor policies when the represen-
tations for the dynamics model is not expressive enough to
capture the true dynamics. This section presents a novel batch
MB RL approach that learns a representation which explicitly
maximizes Equation 4. We treat the dynamics model class
as a parameterization of the policy and search for θ̂ ∈ Θ

3We purposely use θ for both the policy and model parameterization to
illustrate that a dynamics model is an indirect policy representation.



Algorithm 1: MFMC Policy Return Estimation
Input: π, D, s0, ∆, T, p
Output: V π(s0)

1 for n = 1 to p do
2 s̃← s0, en ← [ ]
3 for t = 0 to T do
4 ã← π(s̃)
5 (snt , a

n
t , s

n
t+1)← argmin(s,a,s′)∈D∆((s̃, ã), (s, a))

6 D ← D \ (snt , a
n
t , s

n
t+1)

7 Append (snt , a
n
t , s

n
t+1) to en

8 s̃← snt+1

9 return V π(s0) (computed using Equation 3)

that achieves the highest return, rather than optimizing a
different metric (e.g., maximum likelihood). We can think
of the policy as being indirectly parameterized by θ which
defines the model and is updated using a policy gradient
approach, such that

θ̂ = θ̂ + c
∂V π

θ

(s0)

∂θ̂
, (7)

where c > 0.
Section III-A outlines a method for estimating the return

of a policy in continuous state spaces called Model-Free
Monte Carlo (MFMC) [16]. MFMC estimates a policy’s
return directly from data using Equation 3 rather than from
a dynamics model learned from the data. Section III-B
describes a method of gradient ascent in order to maximize
Equation 4. Section III-C presents our overall approach as
an algorithm.

A. Estimating a the Return of a Policy

Ideally, we would choose policies using Equations 3 and
4 with on-policy data. This results in a sample complexity at
least linear in the number of evaluated policies, an impracti-
cal amount for most real-world problems. We can reduce this
sample complexity by sharing data across iterations, using
off-policy data – data generated under a policy different from
the one we are evaluating. Therefore, we need an approach
that allows us to perform MC-like policy evaluation from
off-policy data.

In continuous state spaces, creating on-policy episodes
from off-policy data is challenging because a single state
is rarely visited more than once. We use Model-free Monte
Carlo (MFMC) [16] for policy evaluation from off-policy
data in continuous state spaces. For a policy, πθ, MFMC
creates pseudo on-policy episodes from off-policy training
data to compute statistics of the policy with bounded esti-
mation error.

To construct an episode of on-policy data, MFMC uses a
set of training data and a distance function. We define the
data set as D = {(si, ai, s′i)}

|D|
i=0, where s′i ∼ m(si, ai, ·).

The designer-provided distance function takes the form

∆ ((si, ai), (sj , aj)) = ||si − sj ||S + ||ai − aj ||A, (8)

(a) 5 episodes of data (b) 50 episodes of data

Figure 2. Phase space plots for pseudo on-policy episodes constructed
for a well performing policy using the MFMC algorithm with 5 and 50
episodes of batch data.

where i and j are one-step transitions from D.
MFMC constructs episodes starting at s0 and
sequentially adds transitions such that at time t,
when the agent is in state s̃, the next transition
(st, at, st+1) = argmin(s,a,s′)∈D∆((s̃, πθ(s̃)), (s, a)).
Each transition in D can only be used once and episodes
are terminated after T transitions.

MFMC also requires p, the number of episodes used for
policy evaluation. The decision of p, relative to |D|, trades
off bias and variance (see [16] for analysis, bounds on bias
and variance, and discussion on the trade-off). Algorithm
1 is a reproduction of MFMC from [16] for the reader’s
convenience.

A visualization the of episode construction procedure is
shown in Figure 2 for the mountain car domain (described
in Section V-A) where the agent begins near the center of
the diagram and attempts to reach x ≥ 0.5. The figure
shows two phase-space plots of constructed episodes, where
transitions observed in the data set are shown in blue,
and are connected by red lines for illustration purposes.
Episodes were generated using a well performing policy that
reaches the goal. Figures 2(a) and 2(b) show two episodes
constructed based on 5 and 50 episodes, respectively. Actual
observed interactions are shown in blue while discontinuities
in tailoring the episodes are highlighted as red segments.
Notice that more data leads to an overall smoother prediction
of the system evolution and the episode more accurately
approximates an on-policy sequence of interactions.

B. Policy Improvement

The second step to solving Equation 4 is the maximiza-
tion over Θ. As discussed in Section II, enumerating and
evaluating all possible parameter values is impractical for
real-world problems. Policy gradient approaches overcome
this hurdle by updating the parameter value in the direction
of increasing performance (Equation 7).

We take the policy gradient type approach as described
in Section II, only we are updating the parameters of the
dynamics model rather than a parameterization of the policy.
Unfortunately, gradient ascent is known to be susceptible
to local maxima. To reduce the likelihood of becoming
stuck in a poor local maxima, we use random restarts in
addition to including the maximum likelihood solution in
the set of potential starting points (see Section IV). For this
work, we chose the basic form of gradient ascent for policy



Algorithm 2: RBMS

Input: D, Θ̃, δinit, δmin

Output: πθRBMS
1 V π

θstart
(s0)← −∞, θ ← θstart, δ ← δinit

2 while δ > δmin do
3 for each dimension of Θ do
4 while True do
5 {πθ−, πθ, πθ+} ← Compute the policies for

{θ − δ, θ, θ + δ}
6 {V πθ−(s0), V π

θ

(s0), V π
θ+

(s0)} ←
Estimate the return of {πθ−, πθ, πθ+}

7 if max(V π
θ+

(s0), V π
θ−

(s0)) ≤ V πθ then
8 Break

9 if V π
θ+

(s0) > V π
θ−

(s0) then
10 θ ← θ + δ
11 else
12 θ ← θ − δ

13 δ ← δ/2

14 return πθ

improvement described in Section III-C.4

C. RBMS Algorithm

Our overall approach is presented in Algorithm 2. The
inputs to the algorithm are the data, D, our representation, Θ,
the initial gradient ascent step size, δinit, and the minimum
gradient ascent step size, δmin.

RBMS begins gradient ascent by selecting a dimension
of the model space to search and computes the policies for
models θ, θ + δ, and θ − δ (line 5), where the parameter
δ is the step size in the model space. Once the policies are
computed, we use MFMC to estimate the return of each of
these policies (line 6) and estimate the difference in return
between the current best model θ and the models θ + δ and
θ − δ. If neither of these models yield an increase in the
estimated return, we continue to the next dimension. If θ+δ
or θ − δ are positive steps in terms of estimated return, we
take the step in the steepest direction. When all dimensions
have been stepped through, δ is decreased (line 13) and the
process is continues until δ reaches δmin. The algorithm is
then repeated for many random restarts, including the ML
parameters.

IV. THEORETICAL ANALYSIS

As described in Section III-A, MFMC constructs a set of
on-policy episodes from off-policy data and uses Equation
3 to estimate the return of πθ. This section provides the
formal analysis which shows that with infinitely dense data
and unlimited computation, RBMS is guaranteed to find the
highest performing model from the model class (Section

4While more intelligent optimization methods [17] were considered,
we found that this basic form of gradient ascent was sufficient for our
optimization needs and rarely encountered difficulties with local maxima.

IV-A). We relax these assumptions in Section IV-B and
guarantee that using RBMS after finding the ML solution will
never result in worse performance in expectation. Section
V empirically demonstrates that RBMS often results in a
substantial improvement over ML techniques.

The notion of data sparsity is introduced in [16], where
the k-sparsity of D is defined as

αk(D) = sup
(s,a)

∆Dk (s, a), (9)

in which ∆Dk is the distance of (s, a)’s k-th nearest neighbor
measured by ∆ over D. Using k-sparsity, as defined in
Equation 9, the learning bias of MCMC is bounded by∣∣∣V πθ (s0)− E

[
V̂ π

θ

(s0)
]∣∣∣ ≤ CαpT (D), (10)

where k = pT and C is a function of the Lipschitz
continuity constants describing m, R, and π [16]. Note that
the bound on the estimation error is independent of θ and the
expectation is taken over the data. The bound from Equation
10 provides us with the theoretical piece that both Sections
IV-A and IV-B build on.

A. Infinitely Dense Data and Unlimited Computation

Solving Equation 2 is difficult because of two complex
calculations: accurately estimating V π

θ

(s0) and performing
the optimization over policies. Equation 10 tells us that
as the density of the data increases (meaning the sparsity
αpT (D)→ 0), our estimate V̂ π

θ

(s0)→ V π
θ

(s0).
With unlimited computation, we have the ability to search

over the entire representation space Θ to find θ∗ =
argmaxθ∈ΘV

πθ (s0).5 This implies that with infinitely dense
data and unlimited computation, RBMS is guaranteed to find
θ∗, the highest performing model from the model class.

B. Limited Data and Computation

While the guarantee of finding θ∗ is a nice theoretical
property (Section IV-A), for real-world domains we can
never expect to have infinitely dense data nor unlimited
computation. Here we relax both assumptions and guarantee
that using RBMS after finding the ML solution will never
result in worse performance in expectation.

1) Limited Computation: With limited computation, we
no longer have the ability to perform the maximization over
Θ and instead resort to gradient ascent. Due to the non-
convexity of V π

θ

(s0) as a function of θ, we can no longer
guarantee that θ∗ is found. By initializing gradient ascent
with θML, the ML model, we guarantee that RBMS takes
steps in the direction of improving on the ML solution. In
addition to θML, we also initialize gradient ascent with many
random starting locations drawn from Θ to further increase
our chances of improving on the ML solution.6

5This is trivially accomplished for discrete spaces and can be done to an
arbitrary precision in continuous spaces.

6In the analysis, θML can be trivially replaced by any prediction error
metric (e.g., minimum squared error).



2) Limited Data: The consequence of limited data is
that V̂ π

θ

(s0) can be an inaccurate estimate of V π
θ

(s0)

and cause gradient steps to decrease V π
θ

(s0). Hence, one
could imagine using the bound from Equation 10 and
only step from θi to θi+1 if V̂ π

θi+1
(s0) ≥ V̂ π

θ
i (s0) +

2CαpT . This would ensure that the step from θi to θi+1

result in V π
θi+1

(s0) ≥ V π
θi

(s0) and consequently that
V π

θRBMS (s0) ≥ V π
θML (s0), where θRBMS is the model

selected by RBMS. Unfortunately, this bound only holds in
expectation over the data. For future work, we plan develop
a probabilistic bound based on Hoeffding’s inequality for
MFMC to ensure that gradient steps increase V π

θ

(s0) with
high probability.

V. EMPIRICAL RESULTS

The experiments described in this section highlight the
performance improvement of Reward Based Model Search
(RBMS) over maximum likelihood (ML) learners on the
RL benchmark problems of mountain car and cart-pole
and the real-world hydrodynamic cart-pole system. The two
benchmark domains allow for easier understanding and more
extensive evaluation to study how quickly the performance
of ML and RBMS degrade as the model classes become
increasingly misspecified. To study the different types of mis-
specification, Section V-A investigates both sharp misspecifi-
cation (unmodeled discontinuities in the true dynamics) and
irrelevant data (unhelpful data from a region of our state-
space that well performing policies will not visit). Section V-
B investigates unmodeled noise and smooth misspecification
(i.e., a gradual change in misspecification as the agent moves
through the state-space).

We compare RBMS and ML with misspecified model
classes to a large tabular Markov model fit using ML.We
show the resulting performance versus the amount of training
data to highlight the sample complexity advantage of RBMS
using small model classes over tabular representations, de-
spite being misspecified. For all model classes, policies were
found by first finely discretizing the continuous model and
performing value iteration using the same discretization for
the value function [10]. RBMS was run with p = 10 and,
unless otherwise specified, used the distance function

∆ ((s, a)), (s′, a′)) =

{ ∑D
d=1

|sd−s′d|
sdmax−sdmin

if a = a′

∞ otherwise
,

where sd is the d-th dimension.

A. Mountain Car

Mountain car [18] is a standard RL benchmark simulation
where the agent starts in a valley between two hills and takes
actions to reach the top of the right hill and receives -1 reward
for every time step the agent is not at the goal. Episodes
end when the agent reaches the goal or after 500 steps. The
standard mountain car dynamics are

xt+1 = xt + ẋt, ẋt+1 = ẋt + a+ θ1 cos(θ2x)

with action a ∈ {−0.001, 0.001}. A uniform discretization
of x and ẋ with a 500 × 250 grid was used to represent
value functions. Note the differing numbers of cells in each
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Figure 3. Performance versus misspecification (a) and performance versus
data size for c = 0.005 (b) for RBMS with the standard mountain car model
(yellow), ML with the standard mountain car model (blue), ML with the
standard mountain car model with irrelevant data removed (gray), ML with
the large tabular Markov model (green), and the true model (red). The error
bars show one standard error.

dimension were chosen to keep the representation small,
because it is also used as the dynamics representation for the
large tabular model approach. This ensured the large tabular
model was made as competitive as possible in terms of data
requirements.

To study how the two approaches’ performances change
as their model class becomes increasingly misspecified, we
modified the standard dynamics in three ways. First, we
added stochasticity to the car’s starting location by uniformly
sampling from the interval [−π/6− 0.1,−π/6 + 0.1]. Second,
we simulated a rock at x = 0.25, such that when the car
hits the rock its velocity (ẋ) decreased by c. Therefore,
increasing c corresponds to the standard car dynamics model
class becoming increasingly misspecified. Third, we included
a second valley to the left of the standard valley with
significantly different dynamics (the goal is still on the right
hill of the right valley). For the right valley we used θright1 =
−0.0025, θright2 = 3 for the dynamics, as is commonly done
in the literature [10], and θleft1 = −0.01, θleft2 = 3 for the
left valley. For this experiment ML and RBMS were given
the standard mountain car dynamics model, parameterized by
θ1 and θ2, with both hills sharing the same parameters. The
training data was generated from uniformly random policies.

Figure 3(a) shows the results of ML (blue, gray) and
RBMS (yellow) as their model class becomes increasingly
misspecified (with increasing c) for 2500 episodes of training
data. For reference, the return of the planner with the true
model7 is shown in red. The blue line shows that the standard
ML approach never performs well due to the data from
the left hill biasing its model estimate. While it may seem
straightforward to remove irrelevant data before fitting a
model (e.g., data from the left valley), in general for diffi-
cult problems (e.g., the hydrodynamic cart-pole), identifying
regions of irrelevant data can be extremely difficult. Shown
in gray is a demonstration that even if we were able to trim
irrelevant data before using ML, other unmodeled effects (a
small influence of the rock) still cause ML to perform poorly.

In contrast, RBMS is able to learn models which allow it
to reach the goal for a large range of misspecification both
from the increasing effect of the rock and irrelevant data.

7Note that the planner first discretizes the continuous model to find a
policy, so the policy plotted for the “true model” is actual a finely discretized
representation of the true continuous model.



Additionally, we can see that when the rock had little effect
(c ≤ .005), RBMS performed as well as the true model.
Eventually, the influence of the rock is too significant for
any policy to escape the valley, as shown by the red line
eventually dropping to -500.

Figure 3(b) shows the results of ML (blue, gray), RBMS
(yellow), the large tabular Markov model (green) as the
amount of training data increases for fixed c = 0.005. For
reference, the return of the planner with the true model
is shown in red. This figure illustrates that less data is
required to use a small model, as opposed to a large tabular
Markov model with many parameters. Although the large
tabular model does eventually achieve the performance of
RBMS and the true model, such large data requirements are
often prohibitive for real-world problems. Our approach, on
the other hand, performs well using only 500 episodes, an
order of magnitude reduction in the amount of training data
compared to ML Tabular.

B. Cart-pole

The cart-pole system [19] is composed of a cart that moves
along a single axis with a pendulum (the pole) attached by
a pin joint. We focus on the task of stabilizing the pole in
an upright position against gravity.

The cart-pole deterministically starts at x = ψ = ẋ = ψ̇ =
0, where x is the position of the cart, ψ is the angle of the
pole, and the action space A = {−5, 5}. An episode ends
when the pole falls over (defined as |ψ| > π/15) or after 500
steps. The reward function is 1− |θ|/(π/15). The training data
was generated from a uniformly random policy.

The dynamics were parameterized by three quantities:
mass of the cart (mc), mass of the pole (mp), and the
length of the pole (l) [20]. For the true dynamics, we chose
mc = mp = l = 1 and introduced downward wind on the
system which applied a force, f , in the direction of gravity
(i.e., increasing force as θ moves away from zero) causing
θ to be displaced. We also added to zero mean noise on ψ
with standard deviation of 0.01.

Similarly to the experiment described in V-A, the purpose
of this experiment is to understand how the approaches’
performance changes as the model class becomes increas-
ingly misspecified. For ML and RBMS, we used the standard
cart-pole model class, parameterized by mc, mp, and l and
represented the value function using of a 50× 30× 30 grid
over ψ, ẋ, and ψ̇.

Figure 4(a) shows the results of ML (blue) and RBMS
(yellow) as their standard cart-pole dynamics model class
becomes increasingly misspecified (with increasing f ) for
10,000 episodes of training data. For reference, the return
of the true model is shown in red. The figure shows that
the ML approach has difficulty coping with the model
misspecification and for f ≥ 0.3 the approach never learns a
stabilizing policy. In contrast, RBMS is able to learn models
resulting in policies that stabilized the pole for a much larger
range of f . Eventually, the influence of the wind is too
significant for any policy to stabilize the pole, as shown by
the red line eventually dropping to near zero.
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(b) Performance vs Data Size

Figure 4. Performance versus misspecification (a) and performance versus
data size for f = 0.2 (b) for RBMS with the standard cart-pole model
(yellow), ML with the standard cart-pole model (blue), ML with the large
tabular Markov model (green), and the true model (red). The error bars
show one standard error.

Figure 4(b) shows the results of ML (blue), RBMS (yel-
low), the large tabular Markov model (green) as the amount
of training data increases for a fixed f = 0.2. Again, for
reference, the return of the true model is shown in red. While
it is not shown in the figure, the large tabular Markov model
does eventually achieve a level of performance equal to that
of the true model after approximately 50,000 episodes. This
further illustrates that less data is required to use a small
model, as opposed to a large tabular Markov model with
many parameters. Our approach, on the other hand, achieves
a high level of return after 500 episodes, two orders of
magnitude reduction in the amount of training data compared
to the ML Tabular, but may never achieve performance equal
to that of the true model due to the limited representational
power of the misspecified model.

C. Hydrodynamic Cart-pole

The hydrodynamic cart-pole, shown in Figure 1, is a real-
world, experimental, fluid analog of the cart-pole system.
It is composed of a thin flat plate (the pole) attached at
its trailing edge via a pin joint to a linear actuator (the
cart) that is operated at 50 Hz. The flat plate (6.5 cm
wide by 20 cm tall) is submerged in a channel (22 cm
wide) of flowing water, with the flat plate placed at the
“upright position.” In this position, the water attempts to turn
the wing downstream via a “weather vane” effect, making
the upright position passively unstable and the downright
position passively stable.8 The system was operated at a
Reynolds number of 15,000, considered to be an intermediate
flow. As opposed to large and small Reynolds number flows,
intermediate flows are particularly challenging due to the
difficulty of modeling and simulating them.

Learning a policy which stabilizes the pole at the upright
is difficult because the coupling between the motion of the
cart and the motion of the pole is dictated by the complex
dynamics of the fluid, which itself has many states and
is highly nonlinear. Additionally, the flywheel mounted to
the pole adds extra inertia to the system and there is a
free surface which can add secondary effects when the pole
moves violently through the water. Success on this system

8Due to fluid effects, the downright position is not precisely stable as
vortex shedding from the wing will cause it to oscillate slightly, but these
are small deviations compared to those considered in the experiments in
this paper.
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Figure 5. Time stabilized versus number of episodes for RBMS with the
standard cart-pole model (yellow), ML with the standard cart-pole model
(blue), and ML with a large tabular Markov model (green) on hydrodynamic
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will demonstrate the robustness of the technique to the
many uncertainties inevitably present in actual hardware, and
particularly present in fluid systems.

Our goal is to learn a controller from training data that
stabilizes the pole similar to the experiment performed in
Section V-B. We collected a data set of 316 episodes (approx-
imately 45 minutes of data) from the hydrodynamic cart-pole
system from a variety of hand-designed, poor controllers,
none of which stabilized the pole for more than a few seconds
and many of them quickly fell over. For the system, an
episode was ended when the pole fell over (defined as |ψ| >
π/15) or a maximum length of 500 steps (10 seconds) was
reached. For our model class we used the standard cart-pole
system, parameterized by mc, mp, l as a model class of this
far more complex system. To represent the value function,
we discretized the state space [x, ψ, ẋ, ψ̇] into 7×11×11×11
bins with an action space A = {−1,−0.9,−0.8, ..., 1}. We
used a quadratic cost function and used the distance function

∆ ((s, a)), (s′, a′)) =
|x− x′|

xmax − xmin
+

|ψ − ψ′|
ψmax − ψmin

+
|ẋ− ẋ′|

ẋmax − ẋmin
+

|ψ̇ − ψ̇′|
ψ̇max − ψ̇min

+
|a− a′|

amax − amin
.

Figure 5 shows the performance on the real system of the
learned controllers for the standard cart-pole model fit using
ML (blue), the standard cart-pole model fit using RBMS
(yellow), and a large tabular Markov model fit using ML
(green), where each controller was run 10 times and one
standard error is shown on the figure. The results show
that the 45 minutes of training data was sufficient to learn
a controller which stabilized the system for the maximum
amount of time in all 10 trials from the small representation.
Neither ML with the misspecified model nor ML with the
large Markov model were able to achieve any statistically
significant improvement in performance. This experiment
demonstrates that despite the misspecified representation,
RBMS was still able to use limited off-policy data to perform
well on an extremely complex system, because it focused
on finding the model that achieves the highest performance

rather than minimizing the prediction error.

VI. RELATED WORK

The approaches most closely related to our work are Policy
search (PS) techniques, which search the policy space for
high performing policies using gradient techniques [21], [22].
In order to estimate the gradient, some methods obtain new
samples for the new policy in order to avoid the learning bias,
which can translate into high sample complexity. Existing
off-policy PS methods [23] use importance sampling to reuse
the data while attempting to avoid learning bias. In general,
such methods are limited to discrete domains and stochastic
policies. Additionally, sample efficient PS methods generally
require data from high performing policies [7]. We suspect
that applying RBMS in a PS setting, where the policy is
directly parameterized by θ, would be successful in cases
where we, as designers, struggle to construct a model class
that contains high performing policies learnable from limited
data. In these cases we may prefer to directly parameterize
the policy instead of using a dynamics model. We plan to
investigate this approach and compare it to the model-based
approach described here in future work.

Model Based (MB) methods aim to capture the unknown
dynamics using a representation of the dynamics model.
While expressive representations [24], [25] can capture
nearly any type of world dynamics, they are still vulner-
able to choosing models which perform arbitrarily poorly,
especially from limited data due to the bias introduced by
the learner. Compact representations may eliminate the sam-
ple complexity problem, yet once combined with classical
learning methods (e.g., maximum likelihood), they incur
substantial learning bias, as shown in our empirical results.
We hypothesize that we can remedy this shortcoming by
applying RBMS to Bayesian nonparametric models and plan
to explore that direction in future work.

Model-free Value Based (VB) techniques sidestep learning
an explicit world model and directly compute a value func-
tion, although [26] showed that MB and VB RL methods
using linear representations are equivalent. In the online
setting, VB methods e.g., [27] eliminate the learning bias
by using on-policy data, yet are sample inefficient. For real-
world problem, batch VB techniques [28] have been shown
to be sample efficient, yet they are sensitive to the distribution
of the training data9. Manually filtering the training data by
a domain expert has been used to correct for the sampling
distribution; for example, in a bicycle domain, episodes were
trimmed after a certain length to expose the agent to a higher
proportion of the data from the bicycle balancing, which
is more likely to be seen under good policies [29]. When
the representation containing the true value function is un-
known, batch VB methods cannot guarantee that the highest
performing value function is chosen from the representation,
and generally only show convergence [10]. We believe we
can overcome this limitation by using the parameterization

9For comparison note that the policies learned by the large tabular Markov
model are equivalent to the policies LSPI [28] would learn if given the
tabular representation for its value function.



V (s; θ) for RBMS to find the highest performing value
function in the VB setting.

While there has been relatively little work on overcom-
ing learning bias, there has been a great deal of work in
reducing representational bias by growing the representation
using nonparameteric dynamics models [30], [31], Bayesian
nonparametric dynamics models [25], nonparametric value
functions [32], [2], and kernel-based methods [33], [34]. The
work specifically focused on reducing misspecification error
generally has relied on strong assumptions about the true
model [35], [36]. [9] states that we must “pick and tailor
learning methods to work with imperfect representations,”
and specifically highlights meta-learning [37], and combining
value-based RL and policy search [21], [22] as work headed
in this direction. Despite these previous algorithms being a
significant step toward the goal of reducing learning bias, for
a given problem and representation, it is extremely difficult
to know which method will provide the desired reduction in
learning bias without implementing a variety of methods.

VII. CONCLUSION

In this paper we showed that the standard RL approach
of fitting misspecified representations by minimizing a form
of prediction error (e.g., maximum likelihood) does not nec-
essarily result in maximizing return. We presented Reward
Based Model Search (RBMS) as an algorithm for learning
misspecified models in RL. RBMS has zero learning bias
with infinitely dense data and unlimited computation. With
limited data and computation, RBMS can be seen as an
improvement on the typical minimum error technique, which
provably, in expectation, does not decrease performance.
We empirically demonstrated that RBMS results in a large
performance increase over the maximum likelihood on two
common RL benchmark problems and a third real-world
system, the hydrodynamic cart-pole, with extremely complex
dynamics that cannot be known exactly.
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