513 research outputs found

    Multi-Service Mobile Traffic Forecasting via Convolutional Long Short-Term Memories

    Get PDF
    Network slicing is increasingly used to partition network infrastructure between different mobile services. Precise service-wise mobile traffic forecasting becomes essential in this context, as mobile operators seek to pre-allocate resources to each slice in advance, to meet the distinct requirements of individual services. This paper attacks the problem of multi-service mobile traffic forecasting using a sequence-to-sequence (S2S) learning paradigm and convolutional long short-term memories (ConvLSTMs). The proposed architecture is designed so as to effectively extract complex spatiotemporal features of mobile network traffic and predict with high accuracy the future demands for individual services at city scale. We conduct experiments on a mobile traffic dataset collected in a large European metropolis, demonstrating that the proposed S2S-ConvLSTM can forecast the mobile traffic volume produced by tens of different services in advance of up to one hour, by just using measurements taken during the past hour. In particular, our solution achieves mean absolute errors (MAE) at antenna level that are below 13KBps, outperforming other deep learning approaches by up to 31.2%

    CloudLSTM: A Recurrent Neural Model for Spatiotemporal Point-cloud Stream Forecasting

    Get PDF
    This paper introduces CloudLSTM, a new branch of recurrent neural models tailored to forecasting over data streams generated by geospatial point-cloud sources. We design a Dynamic Point-cloud Convolution (DConv) operator as the core component of CloudLSTMs, which performs convolution directly over point-clouds and extracts local spatial features from sets of neighboring points that surround different elements of the input. This operator maintains the permutation invariance of sequence-to-sequence learning frameworks, while representing neighboring correlations at each time step -- an important aspect in spatiotemporal predictive learning. The DConv operator resolves the grid-structural data requirements of existing spatiotemporal forecasting models and can be easily plugged into traditional LSTM architectures with sequence-to-sequence learning and attention mechanisms. We apply our proposed architecture to two representative, practical use cases that involve point-cloud streams, i.e., mobile service traffic forecasting and air quality indicator forecasting. Our results, obtained with real-world datasets collected in diverse scenarios for each use case, show that CloudLSTM delivers accurate long-term predictions, outperforming a variety of competitor neural network models.Comment: 17 pages, 15 figures, AAAI'2

    TransMUSE: Transferable Traffic Prediction in MUlti-Service Edge Networks

    Get PDF
    The Covid-19 pandemic has forced the workforce to switch to working from home, which has put significant burdens on the management of broadband networks and called for intelligent service-by-service resource optimization at the network edge. In this context, network traffic prediction is crucial for operators to provide reliable connectivity across large geographic regions. Although recent advances in neural network design have demonstrated potential to effectively tackle forecasting, in this work we reveal based on real-world measurements that network traffic across different regions differs widely. As a result, models trained on historical traffic data observed in one region can hardly serve in making accurate predictions in other areas. Training bespoke models for different regions is tempting, but that approach bears significant measurement overhead, is computationally expensive, and does not scale. Therefore, in this paper we propose TransMUSE, a novel deep learning framework that clusters similar services, groups edge-nodes into cohorts by traffic feature similarity, and employs a Transformer-based Multi-service Traffic Prediction Network (TMTPN), which can be directly transferred within a cohort without any customization. We demonstrate that TransMUSE exhibits imperceptible performance degradation in terms of mean absolute error (MAE) when forecasting traffic, compared with settings where a model is trained for each individual edge node. Moreover, our proposed TMTPN architecture outperforms the state-of-the-art, achieving up to 43.21% lower MAE in the multi-service traffic prediction task. To the best of our knowledge, this is the first work that jointly employs model transfer and multi-service traffic prediction to reduce measurement overhead, while providing fine-grained accurate demand forecasts for edge services provisioning

    Forecasting for Network Management with Joint Statistical Modelling and Machine Learning

    Get PDF
    Forecasting is a task of ever increasing importance for the operation of mobile networks, where it supports anticipa tory decisions by network intelligence and enables emerging zero touch service and network management models. While current trends in forecasting for anticipatory networking lean towards the systematic adoption of models that are purely based on deep learning approaches, we pave the way for a different strategy to the design of predictors for mobile network environments. Specifically, following recent advances in time series prediction, we consider a hybrid approach that blends statistical modelling and machine learning by means of a joint training process of the two methods. By tailoring this mixed forecasting engine to the specific requirements of network traffic demands, we develop a Thresholded Exponential Smoothing and Recurrent Neural Network (TES-RNN) model. We experiment with TES RNN in two practical network management use cases, i.e., (i) anticipatory allocation of network resources, and (ii) mobile traffic anomaly prediction. Results obtained with extensive traffic workloads collected in an operational mobile network show that TES-RNN can yield substantial performance gains over current state-of-the-art predictors in both applications consideredThis work is partially supported by the European Union's Horizon 2020 research and innovation programme under grant agreement no.101017109 DAEMON. This work is partially supported by the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union-NextGenerationEU through the UNICO 5G I+D 6GCLARION-OR and AEON-ZERO. The authors would like to thank Dario Bega for his contribution to developing the forecasting use case I, and Slawek Smyl for his feedback on the baseline ES-RNN model

    Deep neural mobile networking

    Get PDF
    The next generation of mobile networks is set to become increasingly complex, as these struggle to accommodate tremendous data traffic demands generated by ever-more connected devices that have diverse performance requirements in terms of throughput, latency, and reliability. This makes monitoring and managing the multitude of network elements intractable with existing tools and impractical for traditional machine learning algorithms that rely on hand-crafted feature engineering. In this context, embedding machine intelligence into mobile networks becomes necessary, as this enables systematic mining of valuable information from mobile big data and automatically uncovering correlations that would otherwise have been too difficult to extract by human experts. In particular, deep learning based solutions can automatically extract features from raw data, without human expertise. The performance of artificial intelligence (AI) has achieved in other domains draws unprecedented interest from both academia and industry in employing deep learning approaches to address technical challenges in mobile networks. This thesis attacks important problems in the mobile networking area from various perspectives by harnessing recent advances in deep neural networks. As a preamble, we bridge the gap between deep learning and mobile networking by presenting a survey on the crossovers between the two areas. Secondly, we design dedicated deep learning architectures to forecast mobile traffic consumption at city scale. In particular, we tailor our deep neural network models to different mobile traffic data structures (i.e. data originating from urban grids and geospatial point-cloud antenna deployments) to deliver precise prediction. Next, we propose a mobile traffic super resolution (MTSR) technique to achieve coarse-to-fine grain transformations on mobile traffic measurements using generative adversarial network architectures. This can provide insightful knowledge to mobile operators about mobile traffic distribution, while effectively reducing the data post-processing overhead. Subsequently, the mobile traffic decomposition (MTD) technique is proposed to break the aggregated mobile traffic measurements into service-level time series, by using a deep learning based framework. With MTD, mobile operators can perform more efficient resource allocation for network slicing (i.e, the logical partitioning of physical infrastructure) and alleviate the privacy concerns that come with the extensive use of deep packet inspection. Finally, we study the robustness of network specific deep anomaly detectors with a realistic black-box threat model and propose reliable solutions for defending against attacks that seek to subvert existing network deep learning based intrusion detection systems (NIDS). Lastly, based on the results obtained, we identify important research directions that are worth pursuing in the future, including (i) serving deep learning with massive high-quality data (ii) deep learning for spatio-temporal mobile data mining (iii) deep learning for geometric mobile data mining (iv) deep unsupervised learning in mobile networks, and (v) deep reinforcement learning for mobile network control. Overall, this thesis demonstrates that deep learning can underpin powerful tools that address data-driven problems in the mobile networking domain. With such intelligence, future mobile networks can be monitored and managed more effectively and thus higher user quality of experience can be guaranteed

    A Machine Learning-based Framework for Optimizing the Operation of Future Networks

    Get PDF
    5G and beyond are not only sophisticated and difficult to manage, but must also satisfy a wide range of stringent performance requirements and adapt quickly to changes in traffic and network state. Advances in machine learning and parallel computing underpin new powerful tools that have the potential to tackle these complex challenges. In this article, we develop a general machinelearning- based framework that leverages artificial intelligence to forecast future traffic demands and characterize traffic features. This makes it possible to exploit such traffic insights to improve the performance of critical network control mechanisms, such as load balancing, routing, and scheduling. In contrast to prior works that design problem-specific machine learning algorithms, our generic approach can be applied to different network functions, allowing reuse of existing control mechanisms with minimal modifications. We explain how our framework can orchestrate ML to improve two different network mechanisms. Further, we undertake validation by implementing one of these, mobile backhaul routing, using data collected by a major European operator and demonstrating a 3×reduction of the packet delay compared to traditional approaches.This work is partially supported by the Madrid Regional Government through the TAPIR-CM program (S2018/TCS-4496) and the Juan de la Cierva grant (FJCI-2017-32309). Paul Patras acknowledges the support received from the Cisco University Research Program Fund (2019-197006)

    Demand Modeling for Taxi and Ride-hailing Transport Services (RTS)

    Get PDF
    The rapid growth of Ride-hailing Transport Services (RTS) demand is found to have caused a fierce market share battle with conventional taxis in previous decades. In selecting a taxi or RTS, understanding the factors affecting passenger’s decisions is substantial for better development and more reliable transit service. The aims of this study to evaluate the demand for taxis and RTS in the Jakarta Greater Area, Indonesia, using the demand-supply and dynamic models. It has been conducted by using 519 respondents, with the model inputs consisting of waiting and travel time, trip costs, and the destination of the conventional passengers. Moreover, the choice between taxi and RTS was analyzed based on the stated preferences of respondents. The results showed that the waiting and travel time, as well as costs per trip of RTS, were 1.49 and 2.67 minutes lower and IDR10,902 cheaper than a taxi, respectively. The factors influencing the demand for these transport modes were also the number of trips per-day, mode share, the average vehicle occupancy, operating hours/day, passengers and driver waiting time, as well as travel period. In the dynamic model, the addition of variable service area, peak hour, and average vehicles speed was subsequently observed. Based on the results, the requests for these transport modes in the Greater Area of Jakarta were 64,494 and 55,811 vehicle units for the demand-supply and dynamic models, respectively. This proved that the dynamic model was better than the demand-supply, due to the added parameters representing the area’s traffic characteristics. Additionally, subsequent future research are expected to focus on modeling of taxi and RTS demands through the global positioning system data, as well as analysis using machine learning and deep learning. Doi: 10.28991/CEJ-2023-09-05-03 Full Text: PD
    • …
    corecore