5,374 research outputs found

    A survey on active simultaneous localization and mapping: state of the art and new frontiers

    Get PDF
    Active simultaneous localization and mapping (SLAM) is the problem of planning and controlling the motion of a robot to build the most accurate and complete model of the surrounding environment. Since the first foundational work in active perception appeared, more than three decades ago, this field has received increasing attention across different scientific communities. This has brought about many different approaches and formulations, and makes a review of the current trends necessary and extremely valuable for both new and experienced researchers. In this article, we survey the state of the art in active SLAM and take an in-depth look at the open challenges that still require attention to meet the needs of modern applications. After providing a historical perspective, we present a unified problem formulation and review the well-established modular solution scheme, which decouples the problem into three stages that identify, select, and execute potential navigation actions. We then analyze alternative approaches, including belief-space planning and deep reinforcement learning techniques, and review related work on multirobot coordination. This article concludes with a discussion of new research directions, addressing reproducible research, active spatial perception, and practical applications, among other topics

    Active Mapping and Robot Exploration: A Survey

    Get PDF
    Simultaneous localization and mapping responds to the problem of building a map of the environment without any prior information and based on the data obtained from one or more sensors. In most situations, the robot is driven by a human operator, but some systems are capable of navigating autonomously while mapping, which is called native simultaneous localization and mapping. This strategy focuses on actively calculating the trajectories to explore the environment while building a map with a minimum error. In this paper, a comprehensive review of the research work developed in this field is provided, targeting the most relevant contributions in indoor mobile robotics.This research was funded by the ELKARTEK project ELKARBOT KK-2020/00092 of the Basque Government

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Underwater Exploration and Mapping

    Get PDF
    This paper analyzes the open challenges of exploring and mapping in the underwater realm with the goal of identifying research opportunities that will enable an Autonomous Underwater Vehicle (AUV) to robustly explore different environments. A taxonomy of environments based on their 3D structure is presented together with an analysis on how that influences the camera placement. The difference between exploration and coverage is presented and how they dictate different motion strategies. Loop closure, while critical for the accuracy of the resulting map, proves to be particularly challenging due to the limited field of view and the sensitivity to viewing direction. Experimental results of enforcing loop closures in underwater caves demonstrate a novel navigation strategy. Dense 3D mapping, both online and offline, as well as other sensor configurations are discussed following the presented taxonomy. Experimental results from field trials illustrate the above analysis.acceptedVersio

    Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

    Get PDF
    Micro aerial vehicles (MAVs) are ideal platforms for surveillance and search and rescue in confined indoor and outdoor environments due to their small size, superior mobility, and hover capability. In such missions, it is essential that the MAV is capable of autonomous flight to minimize operator workload. Despite recent successes in commercialization of GPS-based autonomous MAVs, autonomous navigation in complex and possibly GPS-denied environments gives rise to challenging engineering problems that require an integrated approach to perception, estimation, planning, control, and high level situational awareness. Among these, state estimation is the first and most critical component for autonomous flight, especially because of the inherently fast dynamics of MAVs and the possibly unknown environmental conditions. In this thesis, we present methodologies and system designs, with a focus on state estimation, that enable a light-weight off-the-shelf quadrotor MAV to autonomously navigate complex unknown indoor and outdoor environments using only onboard sensing and computation. We start by developing laser and vision-based state estimation methodologies for indoor autonomous flight. We then investigate fusion from heterogeneous sensors to improve robustness and enable operations in complex indoor and outdoor environments. We further propose estimation algorithms for on-the-fly initialization and online failure recovery. Finally, we present planning, control, and environment coverage strategies for integrated high-level autonomy behaviors. Extensive online experimental results are presented throughout the thesis. We conclude by proposing future research opportunities

    An Object SLAM Framework for Association, Mapping, and High-Level Tasks

    Full text link
    Object SLAM is considered increasingly significant for robot high-level perception and decision-making. Existing studies fall short in terms of data association, object representation, and semantic mapping and frequently rely on additional assumptions, limiting their performance. In this paper, we present a comprehensive object SLAM framework that focuses on object-based perception and object-oriented robot tasks. First, we propose an ensemble data association approach for associating objects in complicated conditions by incorporating parametric and nonparametric statistic testing. In addition, we suggest an outlier-robust centroid and scale estimation algorithm for modeling objects based on the iForest and line alignment. Then a lightweight and object-oriented map is represented by estimated general object models. Taking into consideration the semantic invariance of objects, we convert the object map to a topological map to provide semantic descriptors to enable multi-map matching. Finally, we suggest an object-driven active exploration strategy to achieve autonomous mapping in the grasping scenario. A range of public datasets and real-world results in mapping, augmented reality, scene matching, relocalization, and robotic manipulation have been used to evaluate the proposed object SLAM framework for its efficient performance.Comment: Accepted by IEEE Transactions on Robotics(T-RO

    Efficient and elastic LiDAR reconstruction for large-scale exploration tasks

    Get PDF
    High-quality reconstructions and understanding the environment are essential for robotic tasks such as localisation, navigation and exploration. Applications like planners and controllers can make decisions based on them. International competitions such as the DARPA Subterranean Challenge demonstrate the difficulties that reconstruction methods must address in the real world, e.g. complex surfaces in unstructured environments, accumulation of localisation errors in long-term explorations, and the necessity for methods to be scalable and efficient in large-scale scenarios. Guided by these motivations, this thesis presents a multi-resolution volumetric reconstruction system, supereight-Atlas (SE-Atlas). SE-Atlas efficiently integrates long-range LiDAR scans with high resolution, incorporates motion undistortion, and employs an Atlas of submaps to produce an elastic 3D reconstruction. These features address limitations of conventional reconstruction techniques that were revealed in real-world experiments of an initial active perceptual planning prototype. Our experiments with SE-Atlas show that it can integrate LiDAR scans at 60m range with ∼5 cm resolution at ∼3 Hz, outperforming state-of-the-art methods in integration speed and memory efficiency. Reconstruction accuracy evaluation also proves that SE-Atlas can correct the map upon SLAM loop closure corrections, maintaining global consistency. We further propose four principled strategies for spawning and fusing submaps. Based on spatial analysis, SE-Atlas spawns new submaps when the robot transitions into an isolated space, and fuses submaps of the same space together. We focused on developing a system which scales against environment size instead of exploration length. A new formulation is proposed to compute relative uncertainties between poses in a SLAM pose graph, improving submap fusion reliability. Our experiments show that the average error in a large-scale map is approximately 5 cm. A further contribution was incorporating semantic information into SE-Atlas. A recursive Bayesian filter is used to maintain consistency in per-voxel semantic labels. Semantics is leveraged to detect indoor-outdoor transitions and adjust reconstruction parameters online
    • …
    corecore