83 research outputs found

    Multi-robot region-of-interest reconstruction with Dec-MCTS

    Full text link
    © 2019 IEEE. We consider the problem of reconstructing regions of interest of a scene using multiple robot arms and RGB-D sensors. This problem is motivated by a variety of applications, such as precision agriculture and infrastructure inspection. A viewpoint evaluation function is presented that exploits predicted observations and the geometry of the scene. A recently proposed non-myopic planning algorithm, Decentralised Monte Carlo tree search, is used to coordinate the actions of the robot arms. Motion planning is performed over a navigation graph that considers the high-dimensional configuration space of the robot arms. Extensive simulated experiments are carried out using real sensor data and then validated on hardware with two robot arms. Our proposed targeted information gain planner is compared to state-of-the-art baselines and outperforms them in every measured metric. The robots quickly observe and accurately detect fruit in a trellis structure, demonstrating the viability of the approach for real-world applications

    Information-theoretic Reasoning in Distributed and Autonomous Systems

    Get PDF
    The increasing prevalence of distributed and autonomous systems is transforming decision making in industries as diverse as agriculture, environmental monitoring, and healthcare. Despite significant efforts, challenges remain in robustly planning under uncertainty. In this thesis, we present a number of information-theoretic decision rules for improving the analysis and control of complex adaptive systems. We begin with the problem of quantifying the data storage (memory) and transfer (communication) within information processing systems. We develop an information-theoretic framework to study nonlinear interactions within cooperative and adversarial scenarios, solely from observations of each agent's dynamics. This framework is applied to simulations of robotic soccer games, where the measures reveal insights into team performance, including correlations of the information dynamics to the scoreline. We then study the communication between processes with latent nonlinear dynamics that are observed only through a filter. By using methods from differential topology, we show that the information-theoretic measures commonly used to infer communication in observed systems can also be used in certain partially observed systems. For robotic environmental monitoring, the quality of data depends on the placement of sensors. These locations can be improved by either better estimating the quality of future viewpoints or by a team of robots operating concurrently. By robustly handling the uncertainty of sensor model measurements, we are able to present the first end-to-end robotic system for autonomously tracking small dynamic animals, with a performance comparable to human trackers. We then solve the issue of coordinating multi-robot systems through distributed optimisation techniques. These allow us to develop non-myopic robot trajectories for these tasks and, importantly, show that these algorithms provide guarantees for convergence rates to the optimal payoff sequence

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice

    Autonomous Apple Fruitlet Sizing with Next Best View Planning

    Full text link
    In this paper, we present a next-best-view planning approach to autonomously size apple fruitlets. State-of-the-art viewpoint planners in agriculture are designed to size large and more sparsely populated fruit. They rely on lower resolution maps and sizing methods that do not generalize to smaller fruit sizes. To overcome these limitations, our method combines viewpoint sampling around semantically labeled regions of interest, along with an attention-guided information gain mechanism to more strategically select viewpoints that target the small fruits' volume. Additionally, we integrate a dual-map representation of the environment that is able to both speed up expensive ray casting operations and maintain the high occupancy resolution required to informatively plan around the fruit. When sizing, a robust estimation and graph clustering approach is introduced to associate fruit detections across images. Through simulated experiments, we demonstrate that our viewpoint planner improves sizing accuracy compared to state of the art and ablations. We also provide quantitative results on data collected by a real robotic system in the field

    Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR

    Get PDF
    This paper addressed the challenge of exploring large, unknown, and unstructured industrial environments with an unmanned aerial vehicle (UAV). The resulting system combined well-known components and techniques with a new manoeuvre to use a low-cost 2D laser to measure a 3D structure. Our approach combined frontier-based exploration, the Lazy Theta* path planner, and a flyby sampling manoeuvre to create a 3D map of large scenarios. One of the novelties of our system is that all the algorithms relied on the multi-resolution of the octomap for the world representation. We used a Hardware-in-the-Loop (HitL) simulation environment to collect accurate measurements of the capability of the open-source system to run online and on-board the UAV in real-time. Our approach is compared to different reference heuristics under this simulation environment showing better performance in regards to the amount of explored space. With the proposed approach, the UAV is able to explore 93% of the search space under 30 min, generating a path without repetition that adjusts to the occupied space covering indoor locations, irregular structures, and suspended obstaclesUnión Europea Marie Sklodowska-Curie 64215Unión Europea MULTIDRONE (H2020-ICT-731667)Uniión Europea HYFLIERS (H2020-ICT-779411

    Tactile Perception And Visuotactile Integration For Robotic Exploration

    Get PDF
    As the close perceptual sibling of vision, the sense of touch has historically received less than deserved attention in both human psychology and robotics. In robotics, this may be attributed to at least two reasons. First, it suffers from the vicious cycle of immature sensor technology, which causes industry demand to be low, and then there is even less incentive to make existing sensors in research labs easy to manufacture and marketable. Second, the situation stems from a fear of making contact with the environment, avoided in every way so that visually perceived states do not change before a carefully estimated and ballistically executed physical interaction. Fortunately, the latter viewpoint is starting to change. Work in interactive perception and contact-rich manipulation are on the rise. Good reasons are steering the manipulation and locomotion communities’ attention towards deliberate physical interaction with the environment prior to, during, and after a task. We approach the problem of perception prior to manipulation, using the sense of touch, for the purpose of understanding the surroundings of an autonomous robot. The overwhelming majority of work in perception for manipulation is based on vision. While vision is a fast and global modality, it is insufficient as the sole modality, especially in environments where the ambient light or the objects therein do not lend themselves to vision, such as in darkness, smoky or dusty rooms in search and rescue, underwater, transparent and reflective objects, and retrieving items inside a bag. Even in normal lighting conditions, during a manipulation task, the target object and fingers are usually occluded from view by the gripper. Moreover, vision-based grasp planners, typically trained in simulation, often make errors that cannot be foreseen until contact. As a step towards addressing these problems, we present first a global shape-based feature descriptor for object recognition using non-prehensile tactile probing alone. Then, we investigate in making the tactile modality, local and slow by nature, more efficient for the task by predicting the most cost-effective moves using active exploration. To combine the local and physical advantages of touch and the fast and global advantages of vision, we propose and evaluate a learning-based method for visuotactile integration for grasping
    corecore