2,431 research outputs found

    Power and Channel Allocation for Non-orthogonal Multiple Access in 5G Systems: Tractability and Computation

    Full text link
    Network capacity calls for significant increase for 5G cellular systems. A promising multi-user access scheme, non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC), is currently under consideration. In NOMA, spectrum efficiency is improved by allowing more than one user to simultaneously access the same frequency-time resource and separating multi-user signals by SIC at the receiver. These render resource allocation and optimization in NOMA different from orthogonal multiple access in 4G. In this paper, we provide theoretical insights and algorithmic solutions to jointly optimize power and channel allocation in NOMA. For utility maximization, we mathematically formulate NOMA resource allocation problems. We characterize and analyze the problems' tractability under a range of constraints and utility functions. For tractable cases, we provide polynomial-time solutions for global optimality. For intractable cases, we prove the NP-hardness and propose an algorithmic framework combining Lagrangian duality and dynamic programming (LDDP) to deliver near-optimal solutions. To gauge the performance of the obtained solutions, we also provide optimality bounds on the global optimum. Numerical results demonstrate that the proposed algorithmic solution can significantly improve the system performance in both throughput and fairness over orthogonal multiple access as well as over a previous NOMA resource allocation scheme.Comment: IEEE Transactions on Wireless Communications, revisio

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Full text link
    In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation, and gradient-search methods. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated in this case such that the macro-cell optimal RE and corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Adaptive Power Allocation and Control in Time-Varying Multi-Carrier MIMO Networks

    Full text link
    In this paper, we examine the fundamental trade-off between radiated power and achieved throughput in wireless multi-carrier, multiple-input and multiple-output (MIMO) systems that vary with time in an unpredictable fashion (e.g. due to changes in the wireless medium or the users' QoS requirements). Contrary to the static/stationary channel regime, there is no optimal power allocation profile to target (either static or in the mean), so the system's users must adapt to changes in the environment "on the fly", without being able to predict the system's evolution ahead of time. In this dynamic context, we formulate the users' power/throughput trade-off as an online optimization problem and we provide a matrix exponential learning algorithm that leads to no regret - i.e. the proposed transmit policy is asymptotically optimal in hindsight, irrespective of how the system evolves over time. Furthermore, we also examine the robustness of the proposed algorithm under imperfect channel state information (CSI) and we show that it retains its regret minimization properties under very mild conditions on the measurement noise statistics. As a result, users are able to track the evolution of their individually optimum transmit profiles remarkably well, even under rapidly changing network conditions and high uncertainty. Our theoretical analysis is validated by extensive numerical simulations corresponding to a realistic network deployment and providing further insights in the practical implementation aspects of the proposed algorithm.Comment: 25 pages, 4 figure

    Joint User-Association and Resource-Allocation in Virtualized Wireless Networks

    Get PDF
    In this paper, we consider a down-link transmission of multicell virtualized wireless networks (VWNs) where users of different service providers (slices) within a specific region are served by a set of base stations (BSs) through orthogonal frequency division multiple access (OFDMA). In particular, we develop a joint BS assignment, sub-carrier and power allocation algorithm to maximize the network throughput, while satisfying the minimum required rate of each slice. Under the assumption that each user at each transmission instance can connect to no more than one BS, we introduce the user-association factor (UAF) to represent the joint sub-carrier and BS assignment as the optimization variable vector in the mathematical problem formulation. Sub-carrier reuse is allowed in different cells, but not within one cell. As the proposed optimization problem is inherently non-convex and NP-hard, by applying the successive convex approximation (SCA) and complementary geometric programming (CGP), we develop an efficient two-step iterative approach with low computational complexity to solve the proposed problem. For a given power-allocation, Step 1 derives the optimum userassociation and subsequently, for an obtained user-association, Step 2 find the optimum power-allocation. Simulation results demonstrate that the proposed iterative algorithm outperforms the traditional approach in which each user is assigned to the BS with the largest average value of signal strength, and then, joint sub-carrier and power allocation is obtained for the assigned users of each cell. Especially, for the cell-edge users, simulation results reveal a coverage improvement up to 57% and 71% for uniform and non-uniform users distribution, respectively leading to more reliable transmission and higher spectrum efficiency for VWN
    • …
    corecore