4,752 research outputs found

    Diversification Across Mining Pools: Optimal Mining Strategies under PoW

    Full text link
    Mining is a central operation of all proof-of-work (PoW) based cryptocurrencies. The vast majority of miners today participate in "mining pools" instead of "solo mining" in order to lower risk and achieve a more steady income. However, this rise of participation in mining pools negatively affects the decentralization levels of most cryptocurrencies. In this work, we look into mining pools from the point of view of a miner: We present an analytical model and implement a computational tool that allows miners to optimally distribute their computational power over multiple pools and PoW cryptocurrencies (i.e. build a mining portfolio), taking into account their risk aversion levels. Our tool allows miners to maximize their risk-adjusted earnings by diversifying across multiple mining pools which enhances PoW decentralization. Finally, we run an experiment in Bitcoin historical data and demonstrate that a miner diversifying over multiple pools, as instructed by our model/tool, receives a higher overall Sharpe ratio (i.e. average excess reward over its standard deviation/volatility).Comment: 13 pages, 16 figures. Presented at WEIS 201

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
    • …
    corecore