14,837 research outputs found

    DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs

    Full text link
    We present a novel deep learning architecture for fusing static multi-exposure images. Current multi-exposure fusion (MEF) approaches use hand-crafted features to fuse input sequence. However, the weak hand-crafted representations are not robust to varying input conditions. Moreover, they perform poorly for extreme exposure image pairs. Thus, it is highly desirable to have a method that is robust to varying input conditions and capable of handling extreme exposure without artifacts. Deep representations have known to be robust to input conditions and have shown phenomenal performance in a supervised setting. However, the stumbling block in using deep learning for MEF was the lack of sufficient training data and an oracle to provide the ground-truth for supervision. To address the above issues, we have gathered a large dataset of multi-exposure image stacks for training and to circumvent the need for ground truth images, we propose an unsupervised deep learning framework for MEF utilizing a no-reference quality metric as loss function. The proposed approach uses a novel CNN architecture trained to learn the fusion operation without reference ground truth image. The model fuses a set of common low level features extracted from each image to generate artifact-free perceptually pleasing results. We perform extensive quantitative and qualitative evaluation and show that the proposed technique outperforms existing state-of-the-art approaches for a variety of natural images.Comment: ICCV 201

    Virtual Rephotography: Novel View Prediction Error for 3D Reconstruction

    Full text link
    The ultimate goal of many image-based modeling systems is to render photo-realistic novel views of a scene without visible artifacts. Existing evaluation metrics and benchmarks focus mainly on the geometric accuracy of the reconstructed model, which is, however, a poor predictor of visual accuracy. Furthermore, using only geometric accuracy by itself does not allow evaluating systems that either lack a geometric scene representation or utilize coarse proxy geometry. Examples include light field or image-based rendering systems. We propose a unified evaluation approach based on novel view prediction error that is able to analyze the visual quality of any method that can render novel views from input images. One of the key advantages of this approach is that it does not require ground truth geometry. This dramatically simplifies the creation of test datasets and benchmarks. It also allows us to evaluate the quality of an unknown scene during the acquisition and reconstruction process, which is useful for acquisition planning. We evaluate our approach on a range of methods including standard geometry-plus-texture pipelines as well as image-based rendering techniques, compare it to existing geometry-based benchmarks, and demonstrate its utility for a range of use cases.Comment: 10 pages, 12 figures, paper was submitted to ACM Transactions on Graphics for revie

    Infrared and visible image fusion based on residual dense network and gradient loss

    Get PDF
    Deep learning has made great progress in the field of image fusion. Compared with traditional methods, the image fusion approach based on deep learning requires no cumbersome matrix operations. In this paper, an end-to-end model for the infrared and visible image fusion is proposed. This unsupervised learning network architecture do not employ fusion strategy. In the stage of feature extraction, residual dense blocks are used to generate a fusion image, which preserves the information of source images to the greatest extent. In the model of feature reconstruction, shallow feature maps, residual dense information, and deep feature maps are merged in order to build a fused result. Gradient loss that we proposed for the network can cooperate well with special weight blocks extracted from input images to more clearly express texture details in fused images. In the training phase, we select 20 source image pairs with obvious characteristics from the TNO dataset, and expand them by random tailoring to serve as the training dataset of the network. Subjective qualitative and objective quantitative results show that the proposed model has advantages over state-of-the-art methods in the tasks of infrared and visible image fusion. We also use the RoadScene dataset to do ablation experiments to verify the effectiveness of the proposed network for infrared and visible image fusion.<br/
    • …
    corecore