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GALFusion: Multi-exposure Image Fusion via a
Global-local Aggregation Learning Network

Jia Lei, Jiawei Li, Jinyuan Liu, Shihua Zhou, Qiang Zhang, Member, IEEE
and Nikola K. Kasabov, Life Fellow, IEEE

Abstract—The goal of multi-exposure image fusion is to gener-
ate synthetic results with abundant details and balanced exposure
from low dynamic range(LDR) images. The existing multi-
exposure fusion methods often use convolution operations to
extract features. However, these methods only consider the pixel
values in local view field and ignore the long-range dependencies
between pixels. To solve the aforementioned problem, we propose
a global-local aggregation network for fusing extreme exposure
images in an unsupervised way. Firstly, we design a collaborative
aggregation module, composed of two sub-modules covering a
non-local attention inference module and a local adaptive learn-
ing module, to mine the relevant features from source images. So
that we successfully formulate a feature extraction mechanism
with aggregating global and local information. Secondly, we
provide a special fusion module to reconstruct fused images,
which effectively avoids artifacts and suppresses information
decay. Moreover, we further fine-tune the fusion results by a
recursive refinement module to capture more textural details
from source images. The results of both comparative and ablation
analyses on two datasets demonstrate that our work is superior
to ten existing state-of-the-art fusion methods.

Index Terms—Image fusion, multi-exposure image, non-local
attention

I. INTRODUCTION

Natural scenes are rich in light and shadow information,
which presents colorful images to human eyes. However, the
well-exposure image is difficult to accurately record by digital
cameras. A single image often has the phenomenon of being
excessively bright or dark in some regions. The reason for
these phenomena is that the dynamic range in realistic scenes
is much higher than the output dynamic range of imaging
or display devices. To deal with this limitations, researchers
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Fig. 1. (a), (b) and (c) refer to the detail patches of IFCNN, U2Fusion and
our approaches. Comparing the detail of various approaches, it is clear that
our work can achieve a more balanced exposure outcome.

generally conduct highly dynamic imaging equipments [1]
or common imaging equipments [2]. The highly dynamic
imaging equipment can directly obtain high dynamic range
(HDR) images of shooting scenes under professional hardware
conditions. The common imaging equipment relies on multiple
LDR image sequences under various exposure settings, and
then uses fusion algorithms to synthesize an HDR image with
clear details and faithful color. Considering the cost of actual
execution, we mostly choose the fusion algorithm to achieve
our purpose. Therefore, a stable HDR image is affected by two
factors: the number of LDR images and the performance of
fusion strategies. Depending on the quantity of LDR images
required for fusion, the current fusion tasks can be divided
into the non-extreme exposure fusion [3], [4], [5] and the
extreme exposure fusion [6], [7], [8], [9]. However, excessive
LDR images will undoubtedly increase storage burden and
time cost. So the following work in this paper is aimed at
extreme exposure image fusion.

Researchers have been working on the multi-exposure fu-
sion(MEF) task and have produced plenty of excellent works
in decades. These works may be broadly classified into two
groups: i.e., traditional-based approaches [10], [11], [12], [13]
and deep learning-based approaches [14], [15], [16]. For the
traditional group, the existing fusion methods are mainly based
on transform domain [17] and spatial domain [18]. The former
decompose image sequences into the transform domain, and
then design fusion rules to reconstruct the fused image. The
latter directly fuse on the pixel space of the image, whose
pixel values are calculated linearly. However, the limitation of
such methods is that it needs to manually design fusion rules,
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which can easily lead to color deviation and detail blurriness
of the fused image and lower time efficiency.

In addition, deep learning has become very popular recently,
and meanwhile it has been effectively served in image en-
hancement [19], super-resolution [20], image restoration [21]
and other low-level image tasks [22], [23], [24]. Researchers
have also used deep learning in the MEF field owing to
its excellent feature representation capabilities. Most existing
MEF approaches utilize convolutional neural networks (CNN)
for extracting features. Compared with traditional methods,
convolutional neural networks can directly interact with image
pixels to obtain required information, which is closer to the
working mode of human visual system. Nevertheless, these
MEF methods have some drawbacks: (i) some methods only
capture the features of local neighborhoods through convolu-
tion operations, which neglect the overall dependencies and
lost some essential global contexts. (ii) the fusion strategies
used by some methods fail to integrate the features obtained
from source images well. Moreover, these methods are prone
to cause information degradation throughout fusion process,
which lead that synthetic results produce structure defect and
color deviation. (iii) Due to the large gaps between extremely
exposed images, the detail information in the too bright or
dark areas is difficult to be fully utilized. The fusion results
may appear unclear targets and poor visual perception.

In this work, we solve the above limitations by proposing a
global-local aggregation learning network in an unsupervised
learning way. Concretely, the collaborative aggregation module
is implemented to acquire the relevant information from input
images, which not only pays attention to the pixel values of
small receptive field, but also fully considers the long-range
dependencies between pixels. To make full use of global-local
features, we design a special fusion module to reconstruct
fused images. Besides, we further refine the fusion results
to recover more textural details by the recursive refinement
module. A fused comparison is displayed in Fig. 1. Our work
has more balanced exposure, clearer details and more vivid
color. The following four aspects list the efforts made by our
work.

• In order to fully mine the information of source images,
we design a collaborative aggregation module to obtain
the required features for fusion. It consists of two sub-
modules. One is a non-local attention inference module,
which is used to obtain global dependencies from feature
maps. The other is a local adaptive learning module,
which is regarded as a supplement to learn relevant local
features. With the help of the two sub-modules, our
collaborative aggregation module formulates a complete
feature extraction mechanism to learn global-local fea-
tures.

• According to the characteristics of the information ex-
tracted from source images, we provide a fusion module
to reconstruct fused results, which effectively avoids
artifacts and suppresses information decay.

• The recursive refinement module is introduced to fine-
tune the fused results. It can use the loop mechanism to
continuously excavate the information from the feature
maps, improving the texture details of fused images.

• Extensive experiments on different datasets are under-
taken to prove the effectiveness of our approach and
highlight its superiority over ten other state-of-the-art
approaches.

Our remaining work is arranged below. Section II mainly
describes MEF methodology development and the background
of non-local attention mechanisms. Section III illustrates the
principle of our work in detail. Section IV. presents the
comparative experiments and ablation studies. Finally, Section
V makes a few conclusions about our findings.

II. RELATED WORKS

We particularly reviews both conventional and deep learning
approaches to multi-exposure image fusion and explains the
principle of standard non-local attention mechanisms.

A. Traditional-based MEF approaches

Traditional MEF approaches are generally classified into
spatial domain-based approaches [18], [25] and transform
domain-based approaches [26]. Spatial domain approaches,
which are further divided into pixel-based [25], [27], patch-
based [28], [29] and optimization-based [10] approaches,
directly calculate the pixel values of input images. The pri-
mary technique of transform domain approaches is to decom-
pose input images, convert it to various domains and then
complete the subsequent fusion and construction operation.
Commonly used transform methods include pyramid transform
[30], Laplacian pyramid [31], wavelet transform [26], edge-
preserving smoothing [32], etc.

As a representative, Lee et al. [18] defined two adaptive
weights, which reflect the overall brightness and global gra-
dient related to the pixel quality. The method only requires
modest computational complexity to achieve visually pleasing
results. Ma et al. [28] introduced a patch-wise method, which
attaches importance to two independent parts in the image
patch, pixel intensity and signal information. The input image
is initially split into patches, two elements are deconstructed,
processed, and integrated, and then a full-color fusion image is
recombined. Song et al. [27] presented a maximum posterior
probability architecture that guides the fusion process to
obtain additional details using the ideal gradient information
of input contrast images. However, as the perfect contrast
image doesn’t exist, the authors employ a luminance image to
approximate it. Mertens et al. [31] proposed a framework for
fusion that places a strong emphasis on multi-scale information
fusion. Given input are decomposed by the Laplacian pyramid,
which then calculates and normalizes the weight map from
three factors: contrast, color saturation and exposure. The
Gaussian pyramid is used to smooth the weight map. The
Laplace pyramid of the multi-exposure images is multiplied
by the Gaussian pyramid of the weighted maps to get the
final fusion result. Zhang et al. [33] proposed a method based
on the color space variation of input images, which converted
the input image into YUV space. The different components
of this YUV space involve luminance and color information,
respectively. The luminance component is converted to the
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wavelet domain, and well-exposed weight and adjustable con-
trast weight are fused. The chromatic components are fused
according to saturation weights. The fused image is next
transformed into the standard RGB space. Kou et al. [34]
successfully constructed a multi-scale method by introducing
an edge-preserving smooth pyramid to smooth the weight
maps. Information about the most complex areas of the image,
including the brightest and darkest parts, is well-preserved
thanks to the edge-preserving properties.

B. Deep Learning-based MEF approaches

Deep learning has seen notable progress in computer vision
and image processing applications [35], [36]. Deep learning-
based MEF approaches have proliferated, and they may be
classified as supervised or unsupervised depending on whether
or not ground truth is used. In supervised MEF algorithms,
Kalantari [37] introduced the supervised CNN-based MEF
framework for the first time. The ground truth image datasets
are generated by combining three static images with various
exposure settings. The convolutional neural network (CNN),
which also provides the fusion weights, is employed to gen-
erate the final fused outputs. Zhang et al. [38] built a full
convolution method that can fuse images with arbitrary reso-
lution. The element average fusion rules are used to combine
the convolution features that were derived from two branches.
Additionally, perceptual loss improves the model. A general
image fusion network that can solve multiple modal tasks was
introduced in [42]. It discusses the commonalities and proper-
ties of various fusion works and analyzes the effect of different
network structures on the performance of image fusion. Liu
et al. [39] proposed a MEF framework based on attention
guidcance, which uses two discriminators to preserve global-
local features. Ground truth images are always missing in
real scenes, and thus researchers have developed unsupervised
fusion methods. Prabhakar et al. [7] built the first unsupervised
architecture for MEF. With this technique, the image’s color
space is altered during the fusion process, the information from
various channels is processed separately, and the color space is
finally reversed in accordance with the actual requirement. The
specific fusion strategy of this method is to use convolutional
neural networks to extract features for Y in YCbCr space
and manually fuse the CbCr channels using a predetermined
formula. Xu et al. [40] developed an unsupervised fusion
network, which was applied to build a unified image fusion
model without ground truth or standard reference metrics and
solve various fusion tasks. Deng et al. [41] used a coupling
feedback mechanism to simultaneously fuse and super-resolve
a pair of input overexposed and underexposed images.

C. Non-local Attention Mechanism

Non-Local Attention(NLA) was first proposed by Wang et
al. [42]. As a new technology, it has been widely used in
Computer Vision(e.g., image restoration [43], image compres-
sion [44], image super-resolution [45]). Formally, standard

non-local attention is defined as:
∑M

j=1

exp(QT
i Kj)∑M

ĵ=1
exp(QT

i Kĵ)
Vj . In

detail, Q,K and V are respectively the results obtained from

the feature transformation of input. i and j are representation
of specific positions about the feature map. M represents the
size of the input. ci and c are the number of channels. Standard
non-local attention gathers all features, importing unnecessary
noises into results and causing quadratic computational cost.
To solve the problems, Mei et al. [20] used Locality Sensitive
Hashing to quickly assemble crucial information. However, the
method ignores global correlation information. To alleviate the
issue, Xia et al. [46] proposed a Efficient NLA to aggregate all
features efficiently. Efficient NLA adopts the kernel method to
close to exponential function exp

(
Q⊤

i Kj

)
. The technique can

not only compress the fusion of excessive irrelevant features,
but also can reduce the linear computation cost. Therefore, this
efficient NLA is introduced into our cooperative aggragation
module to help our model obtain global information and
formulate an effective feature extraction mechanism.

III. PROPOSED METHOD

A core part of our approach is a collaborative aggregation
module for global and local information aggregation, a fusion
module for generating fused images and a recursive refinement
module for improving the detail texture of the final fusion
images. Prior to accessing the bulk of our network, we first
process source images to obtain initial feature maps Fo. In
specific, two source LDR images I1 and I2 with extreme
exposure settings are concatenated to go through a 3× 3 con-
volution layer, and LeakyReLU as the activation layer. In Fig.
2, where we apply the proposed network to an unsupervised
image fusion task, the detail architecture is displayed.

A. Collaborative Aggregation Module

The retention degree of the relevant information in feature
maps affects the performance of fused images. We give more
weight to the information that needs attention. Based on this
consideration, we come up with a collaborative aggregation
module(CAM) to acquire more relevant features. Different
from previous methods, the CAM formulates a complete fea-
ture extraction mechanism, which acquires information from
both global and local aspects. In detail, the CAM consists of a
non-local attention inference module with Sparse Aggregation
and a local adaptive learning module. The former is employed
to acquire pertinent non-local features, and the latter is applied
to be a supplement to preserve more local information. We
utilize the collaborative aggregation module to refine the initial
feature maps Fo, converted into two feature representation
sequences with merging global-local information. So, the
process can be defined as:

[FA, FC ] = [A (Fo) , C (Fo)] (1)

where A (·) , C (·) refer to the non-local attention inference
module with Sparse Aggregation and the local adaptive learn-
ing module respectively. FA and FC represent the output
sequence of the two sub-modules.

1) Non-Local Attention Inference Module: The main goal
of the non-local attention inference (NLAI) module, which
takes the NLA mechanism as its foundation, is to leverage
more relevant non-local features and acquire long-range visual
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Fig. 2. Our image fusion framework. The network is composed of a collaborative aggregation module(CAM), a special fusion module(FM) and a recursive
refinement module(RRM). The collaborative aggregation module has two sub-modules(i.e., a non-local attention inference module(NLAI) with Sparse
Aggregation and a local adaptive learning module) to learn global and local information from feature maps. The learned information is passed into the
fusion module to reconstruct fusion results. The RRM is implemented to further fine-tune texture details of the fusion results.

dependencies. However, standard NLA gathers all features and
propagates meaningless noise into fused results. Therefore, we
adopt kernel method [46] to close to the exponential function
in Standard NLA, which can suppress the fusion of excessive
irrelevant features and obtain lower computation complexity.

The detail architecture of the NLAI is displayed in the
middle part of Fig. 2 (Part B). The input Fo of dimensions
c × h × w, where c stands for channel numbers, h and
w are height and width of input, respectively. Firstly, We
transferred the input Fo to three feature representations K,
Q and V , respectively. Then we decompose the exponential
function exp

(
Q⊤

i Kj

)
in Standard NLA. Concretely, we com-

bine K, Q with Gaussian random matrix F to approximate
the exponential function and modify the multiplication order to
reduce the computational cost. Among them, Gaussian random
matrix F ∈ Rm×c consists of m different Gaussian random
samples f1, ..., fm. The specific projection φ(·) is shown in
Fig. 3, which displays the conversion process from Q, K to
φ(Q), φ(K). Therefore, we use W =

(
φ(Q)⊤φ(K)

)
close to

exponential function for converging global information. And
we define the NLAI as:

FA = D−1 ⊙
(
WV ⊤) , (2)

where FA is the approximated standard NLA, D denotes the
normalization in softmax operators for φ(Q), φ(K). ⊙ is the
point-wise multiplication.

To further improve the performance of the NLAI, Sparse
Aggregation(SA) is used to filter out irrelevant features and
expand the weight of relevant features. The essence is to
enhance the sparsity of weight by applying a raising factor
k(k > 1) to the input and forcing NLAI to assign higher
weights to relevant features. In Fig. 2, the Sparse Aggregation
may be written:

Z =
√
a

θ(X)

∥θ(X)∥
, (3)

where X is the input, and raising factor a(a > 1) is
employed to strengthen non-local sparseness. θ(·) is feature
transformation.

2) Local Adative Learning Module: The role of Sparse
Aggregation is to filter out irrelevant parts and expand the
weight of relevant parts in feature maps, which greatly affects
the performance improvement of the NLAI. However, Sparse
Aggregation doesn’t have the function of increasing the gap
between irrelevant and relevant features. So the irrelevant re-
gions ignored by the SA may still retain a little bit of important
information, which may impact the final fusion effect. To solve
this problem, we introduce a U-Net-like local adaptive learning
module to learn local feature weights from source images,
which is also seen as a complement to the NLAI. The local
adaptive learning module be separated into two stages: the
down-sampling stage and the up-sampling stage, as shown in
Fig. 2(Part A). In the down-sampling stage, the initial feature
maps Fo first go through a convolutional layer, termed Fc.
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Fig. 3. The specific projection process of NLAI.

And then put it into Global Average Pooling(GAP). GAP can
be used to aggregate information to generate Fg ∈ Rc×h×w.
The down-sampling stage is composed of two steps. In the
first step, we use the max-pooling operation(MP) to keep
the most meaningful information in receptive field while
reducing the resolution of Fg to 1 × 1

2h × 1
2w. After that,

a convolutional operation is employed to extract information
even more thoroughly. The first step is expressed as follows:

Fm = Conv3(MP (GAP (Fc))), (4)

where Conv3 denotes the 3 × 3 convolution. The resolution
of Fm is 8 × 1

2h × 1
2w. In the second step, we scale-

down the feature maps Fm using the average pooling(AP)
operation. And the results after AP operation are transferred to
a convolution layer to obtain the feature maps Fa of dimension
16× 1

4h× 1
4w. We calculate the feature maps Fa by

Fa = Conv3(AP (Fm)). (5)

In the up-sampling stage, we employ a sub-pixel con-
volution(Sp) operation to scale-up the feature maps Fa to
4× 1

2h× 1
2w. Concatenated the results from the Sp operation

and Fm are pumped into a 1× 1 convolutional layer. Finally,
a additional Sp layer is employed to acquire weight maps
Fs ∈ R1×h×w containing relevant local information, and the
sigmoid function is executed to normalize the value Fs to
[0, 1]. Specifically, the up-sampling process can be defined as

Fs = Sp(Conv1[Sp(Fa), Fm]), (6)

FC = Sigmoid(Fs)⊙ Fc, (7)

B. Recursive Refinement Module

We propose the recursive refinement module(RRM) for
improving the detail texture of fused images, which has a
iterative refinement mechanism using the previously estimated
distribution as a guidance of the current distribution. To realize
this recursive module, we formulate a recursive refinement
network R with three convolutional layers, whose detail shows
in Fig. 2. The RRM is defined as

pt = R
(
Fo; p

t−1
)

(8)

where pt and pt−1 are the predicted maps at tth and (t−1)th

iteration, respectively. The initial predicted map is defined as
zeros. For the number of iteration, we set tmax to 3. With
the number of iterations rising, the data distribution of the
predicted map is closer to initial feature maps Fo.

C. Fusion Module

1) Ours Fusion Strategy: We formulate a special fusion
module, which can employ the global and local features of
sources images and suppress information degradation, to en-
sure the reconstruction of a visually pleasant fusion image. By
the collaborative aggregation module, two sequences of fea-
tures FA, FC are generated and retain global-local information
from source images. We can utilize the feature representation
sequences to reconstruct fused image. The layout of our fusion
module(FM) is depicted in Fig. 2. In specific, sequences of
features FA, FC are first concatenated to balance the intensity
distribution of pixels and restore information lost in localized
areas. Then we perform four convolution operations on these
sequences to carrying out a preliminary feature fusion. At the
same time, in order to make up for the representation that
was lost during the CAM process, we also introduce initial
feature maps Fo during the concatenation and add a skip
connection, which adds initial feature maps Fo and the output
of the second convolution together. After the above process,
we can get a preliminary friendly fusion image Ĩ . To further
improving the detail quality of the fused image, we introduce
a recursive refinement module(RRM) to generate a predicted
map p, which guides the Ĩ to create a final outcome If that is
merged with complimentary and comprehensive information.
As a result, the fusion process may be described:

If = F (FA, FC , Fo)⊙ p (9)

2) Managing RGB Input: We apply common strategies
to fuse RGB images, the key of which is to fuse specific
information on different channels. First, the color channel of
RGB images is transformed to the YCbCr. Using our proposed
strategy, the Y channel is fused. Then the conventional tech-
nique [47] is utilized to fuse the information in the Cb and Cr
channels, which is characterized as:

Cf =
Cx (|Cx − τ |) + Cy (|Cy − τ |)

|Cx − τ |+ |Cy − τ |
, (10)

where Cx and Cy refer to the Cb, Cr channel values from
multi-exposure images. Cf denotes fused channel results. τ is
set to 128. Finally, the two channels (i.e., the fused Y channel
and the Cf channel) are reversed into RGB space together.

D. Loss Function

To motivate our model to learn the pixel dependencies
from input, we introduce three loss functions to restrain the
resemblance between the original image Ii and the final fused
image If . The total loss function is employed as follows:

Ltotal =

2∑
i=1

Lfused (Ii, If ) , (11)
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where Lfused is the fusion loss function, containing the struc-
tural similarity(SSIM) loss function LSSIM [48], the mean
square error(MSE) loss function LMSE and the total variation
loss function LTV [49]. In addition, two hyperparameters α
and β are introduced, Lfused is defined as:

Lfused = LSSIM + αLMSE + βLTV. (12)

The SSIM loss improves the model’s ability to extract struc-
tural elements from input, while the MSE loss constrains the
pixel difference between two images. LSSIM and LMSE are
defined as:

LSSIM = 1− SSIM (If , Ii) , (13)

LMSE = ∥If − Ii∥2 . (14)

The total variation loss LTV introduced in [49] is employed
to recover gradient information from input images and further
suppress noise. It is described as follows:

R(m,n) = If (m,n)− Ii(m,n), (15)

LTV =
∑
m,n

(∥R(m,n+ 1)−R(m,n)∥2

+∥R(m+ 1, n)−R(m,n)∥2) ,
(16)

where R(m,n) means the difference between the input image
and the fused image, ∥ · ∥2 is the l2 norm, and m,n refer to
coordinate relationship of the image’s pixels, respectively.

IV. EXPERIMENTS AND RESULTS

This section elaborates on our experimental setup, covering
training details, optional datasets, evaluation metrics and com-
parison methods. In addition, we discuss the performance of
our methods through comparative and ablation experiments.
Finally, the efficiency comparison further proves the superior-
ity of our work.

A. Experimental Settings

1) Training Details: For training our modules, initial resiz-
ing of the input images to 512× 512, and then the downsized
images are randomly split into 128 × 128 patches in each
round of training. The Adam is used to optimize the network
with default parameters and fixed learning rate 1e-4. The batch
size is 17. Hyperparameters α and β are both set to 20.
Five hundred epochs make up the entire training procedure,
implemented in the Pytorch framework. The hardware support
with a NVIDIA RTX 2080 Ti GPU, a 11GB RAM Memory,
and an Intel Core i7-7700HQ CPU.

2) Optional Datasets: To train and evaluate our method, we
introduce the SICE dataset [50], which provides all kinds of
exposure image sequences(e.g., church, lawn, railway, sunset).
Each sequence contains a variable number of well-aligned
images. To demonstrate the fusion capability of our approach
for extreme scenarios, we only select two images with signif-
icant gaps in exposure levels from each sequence to train our
model. We randomly select 374 image sequences with extreme
exposure images as our training dataset. From the remaining
sequences, 100 image sequences are chosen to serve as the

test dataset. In addition, as a supplement to the test set, we
introduce 18 image sequences from dataset [29] and select
pairs of exposure images in the same ways.

3) Evaluation Metrics: Refer to previous work, we se-
lect two important fusion metrics, the structure similarity
index measure (MEF-SSIM) [51] and peak signal-to-noise
ratio(PSNR), to accomplish quantitative analysis for the sub-
sequent experiments.

- MEF-SSIM evaluates the structural consistency of image
patches by removing luminance components. The statis-
tical values range of MEF-SSIM is constrained between
0 and 1. The image perception quality increases as the
value gets closer to 1. Given the structural comparison
element S:

S ({xk} ,y) =
2σx̂y + C

σ2
x̂ + σ2

y + C
, (17)

where {xk} and y indicate the corresponding patches
obtained from the source image and the fused image,
respectively. σ2

x̂ and σ2
y denote the local variances of x̂

and y, and σx̂y is the local covariance between x̂ and y.
C is a constant reflecting low contrast effects [48].

- PSNR is a metric used to represent the retio between
peak power and noise power of the fused image. It makes
it possible to evaluate aberrations in the fusion process,
defined as follows:

PSNR = 10 log10
r2

MSE
, (18)

where r is the peak of the fused result, and is set to
255. MSE is the mean squared error that measures the
inressemblance between two images. It calculates as:

MSESF =
1

MN

M∑
i=1

N∑
j=1

[S(i, j)− F (i, j)], (19)

where S and F denotes the input and fused image. The
final calculation can be constructed as: 0.5 ∗MSEAF +
0.5 ∗MSEBF , A and B are the two input with different
exposure settings. In general, getting higher PSNR values
means that the fused results retains more details with less
deviation.

4) Comparison Methods: We compare our method with ten
state-of-the-art methods, involving four traditional methods,
i.e., DEM [5], DSIFT [25], FMMEF [17] and GFF [3], and
six deep learning methods, i.e., U2Fusion [40], DeepFuse
[7], IFCNN [38], MEF-Net [52], CF-Net [41] and AGAL
[39]. In specific, DEM performs simple multi-scale opera-
tion in the YUV space. DSIFT can effectively extract local
details to obtain fusion images without ghosting artifacts
through scale-invariant feature transform.FMMEF utilizes a
fast structural patch decomposition method to improve fused
results. The highlight of GFF is information fusion based on
guided filtering. U2Fusion can solve multiple fusion tasks,
which limits the resemblance between fused results and input
images. DeepFuse is the iconic MEF method that builds the
unsupervised training structure for the first time. IFCNN can
use full-convolutional architecture to fuse various types of
images. MEF-Net develops a fast MEF method, which can
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Fig. 4. Qualitative comparisons with eleven methods on the SICE dataset. The part of fused images is magnified by red and green boxes to observe the
differences between these methods. For the above examples, our method generates fused images with more balanced exposure and abundant details(e.g., sky,
walls, trees and clouds).

fuse images of random resolution and exposure number. A
coupled feedback network provided by CF-Net that allows
both MEF tasks and super-resolution tasks to be carried out.
AGAL is an adversarial netwok based on two discriminators
for processing exposure images. Each approach is assessed in
accordance with its official code.

B. Observational Analysis Using The SICE Dataset

1) Qualitative Comparisons: In this analysis, we compare
our approach against ten other excellent methods using two
ordinary image sequences from the SICE test set. Fig. 4
shows the results of our visual comparison. To evaluate these
methods comprehensively and reasonably, we consider the
overall image and local details(the red and green boxes are
utilized to enlarge the local details below each image). Look
at the whole image, areas of DEM, DSIFT, FMMEF, GFF and
MEF-Net are clearly shaded with black, such as the sky and
clouds above the building. In the second sequence of images,
the house color in methods U2Fusion and DeepFuse is low-
exposure, which means that these two methods can not recover
the color information well. Moreover, IFCNN and AGAL have
a seemingly good visual effect, but it can be found from the
figure that their exposure is out of balance, the former is

TABLE I
THE VALUES OF TWO COMMON METRICS REPRESENT THE FINDINGS OF

THE QUANTITATIVE COMPARISON OF ELEVEN APPROACHES ON SICE
TEST DATASET. THE TOP TWO OUTCOMES ARE DENOTED IN RED AND

BLUE.

Methods MEF-SSIM PSNR

DEM 0.9300 57.1168
DSIFT 0.9242 56.8504

FMMEF 0.9311 57.4353Traditional

GFF 0.8547 56.3125
U2Fusion 0.9447 58.5469
DeepFuse 0.9019 58.2120
IFCNN 0.8863 57.6739

MEF-Net 0.9486 56.6181
CF-Net 0.7561 57.8450
AGAL 0.9019 57.9328

DL-based

Ours 0.9512 58.6529

slightly dark and the latter is slightly light. The details of
CF-Net are blurred and flawed, especially this wall and the
edge of the tree. After comparison, we found that our method
can produce an image with a balanced exposure, both its detail
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Fig. 5. Qualitative comparisons with eleven methods on dataset [29]. The part of fused images is magnified by red and green boxes to observe the differences
between these methods. For these examples, our proposed method can achieve the desired results with balance pixel intensity and realistic details(e.g., lotus
leaves and doorhead).

and color can be recovered well.
2) Quantitative Comparisons: After the subjective assess-

ment, we begin to analyze the image quality objectively. Based
on previous MEF works, we select the most commonly used
image metrics, which is described in the experimental settings
section, to measure the fusion ability of different methods. The
quantitative analyses are performed on the SICE dataset. On
the basis of 100 test image pairs, we calculate the average
scores of the two metrics of eleven methods separately. It
should be noted that the training dataset and the test dataset do
not cross over. Table. I reports the quantitative results, which
shows that our method generates fused results with higher
metric values than those of ten other approaches. Additionally,
the statistical data in the table reflects that our approach can
deliver a strong visual image with balanced exposure and
accurate texture details.

C. Observational Analysis Using The Dataset [29]

1) Qualitative Comparisons: In addition to the SICE
dataset, we also use another dataset as a supplement to ensure
the rigor of the entire experimental analysis. Fig. 5 shows
two image pairs on the Dataset [29], involving the visual

comparison of two categories about 11 approaches. Among
these traditional methods, DEM, DSIFT, FMMEF and GFF
appear to exposure imbalances and obvious artifacts. For ex-
ample, the lotus leaf area in the first image pair has noticeable
brightness, and shades of black appear near the doorhead in
the second image pair. Among the deep learning approaches,
the fused images acquired by U2Fusion and DeepFuse have
poor color, whose local areas are pretty gloomy and fail to
recover proper luminance. For methods IFCNN, MEF-Net and
CF-Net, observing the local parts of their fused images, it can
be found that the details are either too sharp or too fuzzy.
Moreover, AGAL can avoid shadow artifacts but produce color
distortion. Although the exposure gap of the source images is
quite large, our proposed method still achieves the desired
results, which can balance pixel intensity and realistic details.

2) Quantitative Comparisons: We selected 18 image pairs
from dataset [29] and obtained the corresponding fused images
by using different fusion methods. Afterward, we calculate the
metric values, which quantifies the ability of the fused images
produced by each method to retain information. Fig. 6 shows
the concrete quantification results and our method is indicated
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Fig. 6. Quantitative comparisons of two metrics with eleven methods on dataset [29], the horizontal and vertical axes refer to image pairs and metric values.

Input-O Input-U w/o A w/o C w/o R Ours

Fig. 7. Ablation analysis on the SICE dataset validates the effectiveness of three modules(i.e., the non-local attention inference module A, the local adaptive
learning module C and the recursive refinement module R ) in our method.

by dark blue boxes. It is clear from the figure that our PSNR
is the best, which means that the distortion is the lowest in
our fusion process. For MEF-SSIM, our method is not always
the best, and that’s because MEF-SSIM is not particularly
accurate in accordance with the human visual system since
it concentrates on the structure consistency between the fused
target and input target. In other words, a great MEF approach
should balance the metric score with the visual results.

D. Ablation Experiments

1) Discussion of Sub-modules: We set up experiments to
verify the work utility of three modules, including the non-
local attention inference module, the local adaptive learning
module and the recursive refinement module. In Fig. 7, we
display the outcomes of our entire model with and without
per module, and three modules are denoted by A, C and R,
respectively. From the figure, it is obvious that each module
is indispensable and affects the final fusion result. Compared
to the visual output of the full model, the color of the fused
results without A or C is obviously not recovered well, as well
as the images have relatively decreased sharpness and fragile
details, especially the roof and the leaves. These are because

TABLE II
QUANTITATIVE ANALYSIS OF TWO METRICS ON SICE DATASET
VALIDATES THE EFFECTIVENESS OF THREE MODULES(i.e., THE

NON-LOCAL ATTENTION INFERENCE MODULE A, THE LOCAL ADAPTIVE
LEARNING MODULE C AND THE RECURSIVE REFINEMENT MODULE R )

IN OUR METHOD.

A C R MEF-SSIM PSNR

% ! ! 0.938 58.678
! % ! 0.947 58.733
! ! % 0.947 58.725
! ! ! 0.951 58.652

the global and local features are not fully utilized, which
seen that only a complete cooperative aggregation module
can ensure the final fusion effect. The textural expression of
the fusion results can be further improved using the recur-
sive refining module, which can correct color distortion and
enrich details. In addition, we conduct quantitative analysis
of different modules. Table. II reports whether or not each
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Input-O/U NOI-1 NOI-2 NOI-3(Ours)

Fig. 8. Ablation analysis on SICE dataset tests the performance of iteration counts on fused outcomes in recursive refinement module. The grayscale image
in the middle is the predicted map obtained by our RRM.

Input-O Input-U w/o SA Ours

Fig. 9. Ablation analysis on SICE dataset validates the effectiveness of Sparse Aggregation.

module affects the final score. The PSNR score in the table
fluctuates. The calculation of PSNR is related to MSE, which
has a limitation that it may not completely conform to the
visual law. During the experiment, MSE is very sensitive to
pixel changes, leading to changes in PSNR scores.

2) Discussion of the Number of Iteration: The fusion
performance of the results might be impacted by the iteration
count of the recursive refinement module. The NOI-3 results,
as shown in Fig. 8, offer significantly clearer details, such
as ripples in the water and markings in the grass. With a
higher iteration count, the detail quality and contrast of the
reconstructed results are obviously enhanced. The essence
of this iterative refinement procedure is to fit the numerical
distribution of the initial feature map over and over again. By
the mechanism, weight maps are obtained and finally produce
a satisfactory result. The quantitative analysis in Table. III.
The change of PSNR is affected by the pixel change in each
iteration.

3) Discussion of Sparse Aggreagation: We discuss the
validity of Sparse Aggregation in the non-local attention

TABLE III
ABLATION ANALYSIS OF TWO METRICS ON THE SICE DATASET TESTS
THE PERFORMANCE OF ITERATIONS COUNTS ON FUSED OUTCOMES IN

RECURSIVE REFINEMENT MODULE.

MEF-SSIM PSNR

NOI-1 0.943 58.669
NOI-2 0.946 58.629

NOI-3(All) 0.951 58.652

inference module. Concretely, we add or remove SA blocks
in the network to experiment with their effects on the fused
image. Fig. 9 shows two pairs of exposed images zoomed in on
local details, input-O/U. In addition, the corresponding fusion
image patches with or without SA are presented successively.
The fact that the engraving on the stone walls and the details
of the plants are much clearer under the guidance of the SA
block. The method with SA blocks can enlarge the weight of
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OursInput-O Input-U w/o Fo w/o add

Fig. 10. Ablation analysis about fusion tradeoff on SICE dataset. From front to back: over-exposed image patch, under-exposed image patch, the concatenation
without Fo, without addition operation, full module.

useful information and ensure the texture details and color of
the fusion result. It may be seen from the quantitative analysis
in Table. IV that metric values have a positive increase when
Sparse Aggregation is used. Thus, we can prove that Sparse
Aggregation is effective for our model.

4) Discussion of fusion tradeoff: To compensate for the lost
information in the network, we take two measures, including
introducing the initial feature map Fo during the concatenation
and using the addition operation in the fusion process. For
our fusion module, the essence of the initial feature maps
and the addition operation is to reemploy previous features
to prevent information decay. In Fig. 10, From front to back,
we present the visual results of various operations, including
the exposed image without any processing, unused Fo during
the concatenation, removing the addition operation and the
complete model. From the figure, the model with the full
operation has better saturation and more detail. In addition,
we also execute a quantitative analysis in Table. V.

5) Discussion of Other Conditions: Our approach can uti-
lize two images with different exposure settings, generating
a balanced exposure and visually pleasing result. To further
test the reconstruction capability of our method, we randomly
select an image sequence from SICE dataset, which contains
five images with various exposure settings of the same scene.
These images are arranged and combined, and the fusion out-
comes are presented in Fig. 11. Data with the same exposure
levels as (1) and (5) are used to train our model, so the result
of this combination is optimal in terms of saturation and detail
preservation.

E. Efficiency Evaluation

The NVIDIA RTX 2080Ti GPU and the Intel i7-7700HQ
CPU as our calculate power support are used to test traditional
approaches and deep learning approaches, respectively. We can

TABLE IV
ABLATION ANALYSIS OF TWO METRICS ON SICE DATASET VALIDATES

THE EFFECTIVENESS OF SPARSE AGGREGATION.

MEF-SSIM PSNR

w/o SA 0.938 58.605
All 0.951 58.652

TABLE V
ABLATION ANALYSIS ABOUT FUSION TRADEOFF.

MEF-SSIM PSNR

w/o Fo 0.946 58.676
w/o add 0.947 58.690

All 0.951 58.652

see that, among all approaches, our work is exceptionally ef-
fective (producing the third best result). We identify two causes
for the given method’s high time effectiveness. Operation
efficiency of various approaches is offered in Table. VI. First,
the backbone of our method is the collaborative aggregation
module, which has two sub-modules: a non-local attention
inference module and a local adaptive learning module. For the
former, we use the Gaussian random matrix to reconstruct the
non-local attention mechanism and use Sparse Aggregation
to filter out irrelevant information, which all improve the
efficiency. For the former, we also use a network structure
similar to U-net, which requires a shorter amount of time than
a single feedforward procedure. Second, our proposed method
can perform unsupervised tasks, which further improves the
time efficiency. However, the key to our method is to focus
on extracting useful information from multiple feature maps,
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Source Image Seqence

(1) (2) (3) (4) (5)

Fusion of 2 images

(1)&(4) (1)&(5) (2)&(4)

(2)&(5) (3)&(4) (3)&(5)

Fig. 11. Six visual results of our method generated by combing images with five exposure settings. Among them, (1)-(3) are under-exposed images, (4),(5)
are over-exposed images.

TABLE VI
EFFICIENCY COMPARISON ON 100 TEST IMAGE PAIRS. THE RESULTS OF THREE MOST EFFICIENT METHODS ARE SHOW IN RED, BLUE AND

BLACK(RED IS BEST, BLUE IS SECOND).

Methods DEM DSIFT FMMEF GFF U2Fusion DeepFuse IFCNN MEF-Net CF-Net AGAL Ours
Platform Matlab(CPU) Matlab(CPU) Matlab(CPU) Matlab(CPU) Tensorflow(GPU) Tensorflow(GPU) Pytorch(GPU) Pytorch(GPU) Pytorch(GPU) Pytorch(GPU) Pytorch(GPU)
Runtime 0.497 0.732 0.333 0.361 0.145 0.332 0.214 0.023 1.319 0.066 0.118

Parameters - - - - 0.659 0.018 0.083 0.026 2.897 1.591 1.597

causing a larger number of parameters than other approaches.
MEF-Net keeps the efficiency by downsampling the images,
and AGAL uses a relatively simple layer attention module to
guarantee time efficiency. Our method combines both advan-
tages, taking into account time efficiency and fusion quality.

V. CONCLUSIONS

We develop a global-local aggregation network for address-
ing multi-exposure image fusion tasks in an unsupervised way.
Our work is composed of a collaborative aggregation module,
a special fusion module and a recursive refinement module.
The collaborative aggregation module formulates a complete
feature extraction mechanism to learn global-local features
from source images. The special fusion module is used to
reconstruct fused results in terms of the characteristics of
extracted information. The recursive refinement module further
fine-tunes the fusion results by loop mechanism. Our mod-
ule, whose each part is indispensable, significantly generates
fused images with abundant details and balanced exposure.
Extensive experiments on two common datasets are performed
to prove the fusion capability of the proposed approach and

highlight its competitiveness over ten other state-of-the-art
methods.
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