1,160 research outputs found

    Towards a Reference Architecture for Context-Aware Services

    Get PDF
    This Chapter describes an infrastructure for multi-modal perceptual systems which aims at developing and realizing computer services that are delivered to humans in an implicit and unobtrusive way. The framework presented here supports the implementation of humancentric context-aware applications providing non-obtrusive assistance to participants in events such as meetings, lectures, conferences and presentations taking place in indoor "smart spaces". We emphasize on the design and implementation of an agent-based framework that supports "pluggable" service logic in the sense that the service developer can concentrate on the service logic independently of the underlying middleware. Furthermore, we give an example of the architecture’s ability to support the cooperation of multiple services in a meeting scenario using an intelligent connector service and a semantic web oriented travel service. The framework was developed as part of the project CHIL (Computers in the Human Interaction Loop). The vision of CHIL was to be able to provide context-aware human centric services which will operate in the background, provide assistance to the participants in the CHIL spaces and undertake tedious tasks in an unobtrusive way. To achieve this, significant effort had to be put in designing efficient context extraction components so that the CHIL system can acquire an accurate perspective of the current state of the CHIL space. However, the CHIL services required a much more sophisticated modelling of the actual event, rather than simple and fluctuating impressions of it. Furthermore, by nature the CHIL spaces are highly dynamic and heterogeneous; people join or leave, sensors fail or are restarted, user devices connect to the network, etc. To manage this diverse infrastructure, sophisticated techniques were necessary that can map all entities present in the CHIL system and provide information to all components which may require it. From these facts, one can easily understand that in addition to highly sophisticated components at an individual level, another mechanism (or a combination of mechanisms) should be present which can handle this infrastructure. The CHIL Reference Architecture for Multi Modal Systems lies in the background, and provides the solid, high performance and robust backbone for the CHIL services. Each individual need is assigned to a specially designed and integrated layer which is docked to the individual component, and provides all the necessary actions to enable the component to be plugged in the CHIL framework

    Holistic Simulation of Mobile Robot and Sensor Network Applications Using TrueTime

    Get PDF
    The RUNES project defines a complex road tunnel scenario involving multiple mobile robots navigating in sensor network environment. In this paper, a TrueTime simulation model of the tunnel scenario is developed. The TrueTime simulator allows concurrent simulation of the physical robots and their environment, the software in the nodes, the radio communication, the network routing, and the ultra-sound navigation system. The various models are described in detail, and some simulation results obtained from the complete model are presented

    Amulet: An Energy-Efficient, Multi-Application Wearable Platform

    Get PDF
    Wearable technology enables a range of exciting new applications in health, commerce, and beyond. For many important applications, wearables must have battery life measured in weeks or months, not hours and days as in most current devices. Our vision of wearable platforms aims for long battery life but with the flexibility and security to support multiple applications. To achieve long battery life with a workload comprising apps from multiple developers, these platforms must have robust mechanisms for app isolation and developer tools for optimizing resource usage.\r\n\r\nWe introduce the Amulet Platform for constrained wearable devices, which includes an ultra-low-power hardware architecture and a companion software framework, including a highly efficient event-driven programming model, low-power operating system, and developer tools for profiling ultra-low-power applications at compile time. We present the design and evaluation of our prototype Amulet hardware and software, and show how the framework enables developers to write energy-efficient applications. Our prototype has battery lifetime lasting weeks or even months, depending on the application, and our interactive resource-profiling tool predicts battery lifetime within 6-10% of the measured lifetime

    Exploring Broadband Enabled Smart eEnvironment: Wireless Sensor (Mesh) Network

    Get PDF
    This paper explored the emergent importance of the use sensors as complementary or as alternative to environmental sensing and monitoring, industrial monitoring, and surface explorations. Advances in wireless broadband technology have enabled the use Wireless Sensor (Mesh) Network (WSN), a type mobile ad hoc network (MANET), in all facet of human endeavor. As a next-generation wireless communication, which centered on energy savings, communication reliability, and security, WSN has increased our processing, sensing, and communications capabilities. Hence, this paper is an exploration of recent reliance on sensors as result of broadband enabled smart environment for activities, such as environmental and habitat monitory, military surveillance, target tracking, search and rescue, and logistical tracking and supply-chain management

    Reactive Context-Aware Programming

    Get PDF
    Using state of the art tools, context-aware applications are notified of relevant changes in their environment through event handlers which are triggered by dedicated middleware. The events signalled by the middleware should percolate through the entire application, requiring a carefully crafted network of observers combined with complex synchronization code to address the inherent concurrency issues. This paper proposes the adoption of reactive programming techniques to bridge the gap between the event-driven middleware and the application

    Service-oriented middleware for wireless sensor networks

    Get PDF
    There is a wide range of applications for wireless sensor networks (WSNs) with different needs. The network infrastructure and data dissemination protocol change according to each specific application requirement. To achieve the best network performance, it is important to adapt the network operation to the application needs. We propose a middleware system for WSNs, which provides a layer between user applications and the network. Such middleware offers an automatic choice of the network configuration and data dissemination strategy

    Power Consumption Analysis of Operating Systems for Wireless Sensor Networks

    Get PDF
    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks

    A Systematic Approach to Constructing Families of Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    In the communication systems domain, constructing and maintaining network topologies via topology control (TC) algorithms is an important cross-cutting research area. Network topologies are usually modeled using attributed graphs whose nodes and edges represent the network nodes and their interconnecting links. A key requirement of TC algorithms is to fulfill certain consistency and optimization properties to ensure a high quality of service. Still, few attempts have been made to constructively integrate these properties into the development process of TC algorithms. Furthermore, even though many TC algorithms share substantial parts (such as structural patterns or tie-breaking strategies), few works constructively leverage these commonalities and differences of TC algorithms systematically. In previous work, we addressed the constructive integration of consistency properties into the development process. We outlined a constructive, model-driven methodology for designing individual TC algorithms. Valid and high-quality topologies are characterized using declarative graph constraints; TC algorithms are specified using programmed graph transformation. We applied a well-known static analysis technique to refine a given TC algorithm in a way that the resulting algorithm preserves the specified graph constraints. In this paper, we extend our constructive methodology by generalizing it to support the specification of families of TC algorithms. To show the feasibility of our approach, we reneging six existing TC algorithms and develop e-kTC, a novel energy-efficient variant of the TC algorithm kTC. Finally, we evaluate a subset of the specified TC algorithms using a new tool integration of the graph transformation tool eMoflon and the Simonstrator network simulation framework.Comment: Corresponds to the accepted manuscrip

    Control and Embedded Computing: Survey of Research Directions

    Get PDF
    This paper provides a survey of the role of feedback control in embedded realtimesystems, presented in the context of a new EU/IST Network of Excellence, ARTIST2.The survey highlights recent research efforts and future research directions in the areasof codesign of computer-based control systems, implementation-aware embedded controlsystems, and control of real-time computing systems
    • …
    corecore