
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Holistic Simulation of Mobile Robot and Sensor Network Applications Using TrueTime

Årzén, Karl-Erik; Ohlin, Martin; Cervin, Anton; Alriksson, Peter; Henriksson, Dan

2007

Link to publication

Citation for published version (APA):
Årzén, K-E., Ohlin, M., Cervin, A., Alriksson, P., & Henriksson, D. (2007). Holistic Simulation of Mobile Robot
and Sensor Network Applications Using TrueTime. Paper presented at European Control Conference, 2007,
Kos, Greece.

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 08. Oct. 2022

https://portal.research.lu.se/en/publications/49e1b53b-ede1-4caf-8548-75b7a6ff02b9


Holistic Simulation of Mobile Robot and Sensor Network Applications

Using TrueTime

K.-E. Årzén, M. Ohlin, A. Cervin, P. Alriksson, D. Henriksson

Department of Automatic Control LTH

Lund University, Sweden

Abstract— The RUNES project defines a complex road tunnel
scenario involving multiple mobile robots navigating in a sensor
network environment. In this paper, a TrueTime simulation
model of the tunnel scenario is developed. The TrueTime
simulator allows concurrent simulation of the physical robots
and their environment, the software in the nodes, the radio
communication, the network routing, and the ultra-sound
navigation system.

I. INTRODUCTION

Sensor/actuator networks and mobile robots are appli-

cation areas for embedded real-time systems where wire-

less communication plays a vital role. The computing and

communication resources are often severely limited, making

integrated design approaches important. Another common

characteristic is that the systems interact with their environ-

ment. One example is a sensor network that monitors the

presence of moving objects in the environment. Other exam-

ples are mobile robots moving around in the environment or

sensor/actuator networks that implement networked control

loops.

Within the EU/IST FP6 Integrated Project RUNES (Re-

configurable Ubiquitous Networked Embedded Systems) a

disaster relief road tunnel scenario has been defined. In the

scenario mobile robots are used as mobile radio gateways

that ensure the connectivity of a sensor network located

in a road tunnel in which an accident has occurred. The

RUNES tunnel scenario is described in more detail in the

companion paper [1]. A number of software components

have been developed for this scenario. These are described

in the companion papers in this session. A localization

component based on ultrasound is used for localizing the

mobile robots and a collision avoidance component ensures

that the robots do not collide, see [2] for a description of both

these components. A network reconfiguration component

[3] and a power control component [4] are responsible for

deciding the best position for the mobile robot in order

to maximize radio connectivity, and for adjusting the radio

power transmit level [4].

In parallel with the actual implementation of this scenario

a simulated version is being developed. The focus of the

simulation is the timing aspects of the scenario. Things that

are of interest to evaluate in simulation include the execution

time of the software in the stationary sensor network nodes

and in the mobile robots, the dynamics of the mobile robots,

the utilization of the wireless communication media, and the

propagation time of the ultrasound used in the localization

of the mobile robots.

Simulation is a powerful technique that can be used at

several stages of system development. In order to support

the application at hand, an holistic simulation approach is

crucial. It should be possible to simultaneously simulate the

computations that take place within the nodes, the wire-

less communication between the nodes, the power devices

(batteries) in the nodes, the sensor and actuator dynamics,

and the dynamics of the mobile robots. In order to model

the limited resources correctly, the simulation model must

be quite realistic. For example, it should be possible to

simulate the timing effects of interrupt handling in the micro-

controllers implementing the control logic of the nodes. It

should also be possible to simulate the effects of collisions

and contention in the wireless communication. Due to sim-

ulation time and size constraints, it is at the same time

important that the simulation model is not too detailed. For

example, simulating the computations on a source code level,

instruction for instruction, would be overly costly. The same

applies to simulation of the wireless communication at the

radio interface level or on the bit transmission level.

There are a number of simulation environments available

for networked control and sensor networks. However, the

majority of these only simulate the wireless communica-

tion and the node computations. Hence, something more is

needed. TrueTime [5], [6] is a MATLAB/Simulink-based co-

simulation tool that has been developed at Lund University

since 1999. Using TrueTime, it is possible to concurrently

simulate all the aspects mentioned above.

TrueTime provides a small but powerful block library,

see Fig. 1. The kernel block executes code that models,

e.g., I/O tasks, control algorithms, and network interface

drivers. The scheduling policy of the individual kernel blocks

is arbitrary and can be decided by the user. Likewise, in

the network messages are sent and received according to a

chosen network model. TrueTime is available for download

at http://www.control.lth.se/truetime/.

TrueTime can be used as an experimental platform for

research on dynamic real-time control systems. For instance,

it is possible to study compensation schemes that adjust the

control algorithm based on measurements of actual timing

variations (i.e., to treat the temporal uncertainty as a distur-

bance and manage it with feedforward or gain scheduling).

It is also easy to experiment with more flexible approaches

to real-time scheduling of controllers, such as feedback

scheduling, see [7], or as is the case in this paper, to simulate

MANET and sensor network applications.

The aim of this paper is to describe how TrueTime can be

Proceedings of the European Control Conference 2007
Kos, Greece, July 2-5, 2007

WeD15.5

ISBN: 978-960-89028-5-5 4301



Fig. 1. The TrueTime block library.

used to model different aspects of these types of scenarios.

A. Outline of the Paper

The hardware used in the physical scenario is presented

in Section II. Section III describes how TrueTime is used

to model computers and computations. The mobile robots

internally use an I2C bus for communication. How this is

modeled in TrueTime using the network block is discussed in

Section IV. The radio communication and how it is modeled

in TrueTime is discussed in Section V. A special ultrasound

block has been developed to model the propagation of

the ultrasound used by the localization component. This is

described in Section VI. The ad hoc routing in the scenario is

based on the AODV protocol. The TrueTime implementation

of this is discussed in Section VII. The total simulation model

including the sensor and actuator models are presented in

Section VIII. Finally, related work is presented in Section

IX.

II. THE PHYSICAL SCENARIO HARDWARE

The physical scenario consists of a number of hardware

and software components. The functionality of the software

components is described in more detail in the companion

papers in this session.

The hardware consists of the stationary wireless communi-

cation nodes and the mobile robots. The wireless communi-

cation nodes are implemented by Tmote Sky sensor network

motes executing the Contiki operating system [8]. In addition

to the ordinary sensors for temperature, light and humidity an

ultrasound receiver has been added to each mote, see Fig. 2.

The mobile robots used vary among the partners. In

this paper only the Lund robots, called RBbots, will be

considered. The two RBbots used are shown in Fig. 3. Both

robots are equipped with an ultrasound transmitter board (at

the top). The robot to the left has the obstacle detection

sensors mounted. This consists of a touch sensor bar and an

IR proximity sensor mounted on an RC-servo that sweeps a

circle segment in front of the robot.

Fig. 2. Stationary sensor network nodes with ultrasound receiver circuit.
The node is packaged in a plastic box to reduce wear.

Fig. 3. The two Lund RBbots.

The RBbots internally consists of one Tmote Sky, one

ATMEL AVR Mega128, and three ATMEL AVR Mega16

microprocessors. The nodes communicate internally over an

I2C bus. The Tmote Sky is used for the radio communication

as the master. Two of the ATMEL AVR Mega16 processors

are used as interfaces to the wheel motors and the wheel

encoders measuring the wheel angular velocities. The third

ATMEL AVR Mega16 is used as the interface to the ul-

trasound transmitter and the obstacle detection sensors. The

AVR Mega128 is used as a compute engine for software

component code that does not fit the limited memory of the

TMote Sky. The structure is shown in Fig. 4.

III. TRUETIME MODELING OF COMPUTATIONS

Computers and computations are modeled in TrueTime by

the kernel block. This is used to model the Tmote Sky TI

MSP430 processors and the ATMEL AVR processors.

The kernel block is a Simulink S-function that simulates a

computer with a real-time kernel, A/D and D/A converters,

a network interface, and external interrupt channels. The

kernel executes user-defined tasks and interrupt handlers.

Internally, the kernel maintains several data structures that

are commonly found in a real-time kernel: a ready queue,

a time queue, and records for tasks, interrupt handlers,

monitors and timers that have been created for the simulation.

An arbitrary number of tasks can be created to run in

the TrueTime kernel. Tasks may also be created dynamically

as the simulation progresses. Tasks are used to simulate

both periodic activities, such as controller and I/O tasks,

WeD15.5

4302



TMote Sky

ATMEL AVR

Mega16

ATMEL AVR

Mega128

Mega16

ATMEL AVR

Mega16

ATMEL AVR

Left Wheel

Motor &

Encoder

Motor &

Encoder

Right Wheel

Obstacle
Detection
Sensors

Ultrasound

Transmitter

Fig. 4. RBbot hardware architecture.

and aperiodic activities, such as communication tasks and

event-driven controllers. Aperiodic tasks are executed by the

creation of task instances (jobs). Each task is characterized

by a number of static (e.g., relative deadline, period, and

priority) and dynamic (e.g., absolute deadline and release

time) attributes.

Interrupts may be generated in two ways: externally (asso-

ciated with the external interrupt channel of the kernel block)

or internally (triggered by user-defined timers). When an

external or internal interrupt occurs, a user-defined interrupt

handler is scheduled to serve the interrupt.

The execution of tasks and interrupt handlers is specified

by user-written code functions. Algorithms may also be

defined graphically using ordinary discrete Simulink block

diagrams. Simulated execution occurs at three distinct prior-

ity levels: the interrupt level (highest priority), the kernel

level, and the task level (lowest priority). The execution

may be preemptive or non-preemptive; this can be specified

individually for each task and interrupt handler.

A. Code Functions

The functionality of each task or interrupt handler is

defined by a code function written in MATLAB or C++ code.

The code function is divided into a number of segments,

which are (normally) executed sequentially as the simulation

progresses. Computational delay is simulated by associating

with each code segment an execution time. The code segment

is executed in zero simulation time. This is followed by

a delay equal to the specified execution time before the

next segment is executed. The delay may be preempted by

higher-priority tasks or interrupt handlers, making the total

simulation time between two segments greater than or equal

to the execution time of the segment. The code may cause

a task to self-suspend by calling certain kernel primitives.

In this case, no further code segments are executed until the

task is unblocked.

The code function format is quite flexible and allows the

user to simulate loops and branches, input-output latencies,

blocking when accessing shared resources, etc. The number

function [exectime,data] = ctrl_code(segment,data)

switch segment,

case 1,

data.y = ttAnalogIn(1);

data.u = calculate_output(data.x,data.y);

exectime = 0.002;

case 2,

ttAnalogOut(1,data.u);

data.x = update_state(data.x,data.y);

exectime = 0.006;

case 3,

exectime = -1; % finished

end

Fig. 5. Example of a standard controller code function written in MATLAB
code. The local memory of the control task is represented by the data
structure data. This stores the input, the controller state, and the output
between invocations of the code segments.

of segments can be chosen in relation to the desired time

granularity of the simulation. Technically it would, e.g., be

possible to simulate very fine-grained details occurring at the

machine instruction level, such as race conditions. However,

that would require a very large number of code segments.

The listing in Fig. 5 shows an example of a code function

implementing a standard regulator in state-space form. In the

first segment, the plant is sampled and the control signal is

computed (calculate output). In the second segment,

the control signal is actuated and the internal state is updated

(update state). The third segment indicates the end of

execution by returning a negative execution time.

The data structure data represents the local memory of

the task and is used to store the control signal and measured

variable between calls to the different segments. A/D and

D/A conversion is performed using the kernel primitives

ttAnalogIn and ttAnalogOut.

The simulated execution time of each segment is returned

by the code function, and can be modeled as constant, ran-

dom, or data-dependent. Note that the input-output latency

of this controller will be at least 2 ms (i.e., the execution

time of the first segment). However, if there is preemption

from other high-priority tasks or interrupt handlers, the actual

input-output latency will be longer.

B. Synchronization

Synchronization between tasks is supported by

semaphores, monitors with condition variables (events), and

mailboxes. Monitors are used to guarantee mutual exclusion

between tasks when accessing common data. Tasks waiting

for monitor access are sorted by priority in the waiting

queue. Basic priority inheritance is implemented as resource

access protocol.

Events can be associated with monitors to represent con-

dition variables. Events may also be free (i.e., not associated

with a monitor). This feature can be used to obtain synchro-

nization between tasks where no conditions on shared data

are involved. As for monitors, the waiting queues of the free

events are sorted after task priority. The mailboxes support

both blocking and non-blocking read and write operations.

WeD15.5

4303



C. Scenario Hardware Models

The basic programming model used for the TI MSP430

processor used in the Tmote Sky systems is event-driven

programming with interrupt handlers for handling timer

interrupts, bus interrupts, etc. In TrueTime the same architec-

ture can be used. However, the Contiki OS also supports so

called protothreads [9]. Protothreads are lightweight stackless

threads designed for severely memory constrained systems.

Protothreads provide linear code execution for event-driven

systems implemented in C. Protothreads can be used to

provide blocking event-handlers. They provide sequential

flow of control without complex state machines or full

multi-threading. In TrueTime protothreads are modeled as

ordinary tasks. The ATMEL AVR processors are modeled

as event-driven systems. A single non-terminating task acts

as the main program and the event-handling is performed in

interrupt handlers.

The software executing in the TrueTime processors is

written in C++. The names of the files containing the

code are input parameters of the kernel blocks. The lo-

calization component consists of two parts, as described

in the companion paper [2]. The distance sensor part of

the components is implemented as a (proto-)thread in each

stationary sensor node. The Extended Kalman Filter-based

data fusion is implemented in the Tmote Sky processor on-

board each robot. The localization method makes use of

the ultrasound network and the radio network. The collision

avoidance component code, also described in more detail in

[2], is implemented in the ATMEL AVR Mega128 processor

using events and interrupts. It interacts over the I2C bus

with the localization component and with the robot position

controller, both located in the Tmote Sky processor.

IV. TRUETIME MODELING OF BUS COMMUNICATION

The I2C bus within the RBbots is modeled in TrueTime

by a network block. The network block is event-driven and

executes when messages enter or leave the network. When a

node tries to transmit a message, a triggering signal is sent

to the network block on the corresponding input channel.

When the simulated transmission of the message is finished,

the network block sends a new triggering signal on the output

channel corresponding to the receiving node. The transmitted

message is put in a buffer at the receiving computer node.

A message contains information about the sending and

the receiving computer node, arbitrary user data (typically

measurement signals or control signals), the length of the

message, and optional real-time attributes such as a priority

or a deadline.

The network block simulates medium access and packet

transmission in a local area network. Six simple network

models are currently supported: CSMA/CD (e.g., Ethernet),

CSMA/AMP (e.g., CAN), Round Robin (e.g., Token Bus),

FDMA, TDMA (e.g., TTP), and Switched Ethernet. The

propagation delay is ignored, since it is typically very small

in a local area network. Higher network layer protocols such

as TCP can be implemented as user applications in the kernel

blocks. Configuring the network blocks involve specifying

a number of general parameters, such as transmission rate,

network model, and probability for packet loss. Protocol-

specific parameters that need to be supplied include the time

slot and cyclic schedule in the case of TDMA.

The TrueTime network model assumes the presence of a

network interface card or a bus controller implemented either

in hardware or software, i.e. as drivers. The Contiki interface

to the I2C bus is software-based and corresponds well to

the TrueTime model. In the ATMEL AVRs, however, it is

normally the responsibility of the application programmer to

manage all bus access and synchronization directly in the

application code. In the TrueTime model this low-level bus

access is not modeled. Instead it is assumed that there exists

a hardware or software bus interface that implements this.

Although the I2C is a multi-master bus that uses arbitration

to resolve conflicts this is not how it is modeled in TrueTime.

On the Tmote Sky the radio chip and the I2C bus share

connection pins. Due to this it is only possible to have one

master on the I2C bus and this master must be the Tmote

Sky. All communication must be initiated by the master. Due

to this bus access conflicts are eliminated. Therefore the I2C

bus is modeled as a CAN bus with the transmission rate set

to match the transmission rate of the I2C bus.

V. TRUETIME MODELING OF RADIO COMMUNICATION

The radio communication used by the Tmote Sky is the

IEEE 802.15.4 MAC protocol (the so called Zigbee MAC

protocol). TrueTime supports wireless radio communication

through the wireless network blocks. Two wireless protocols

are supported: IEEE 802.11 b/g (WLAN) and IEEE 802.15.4.

The simulation covers the medium access delay and the

packet transmission.

Both the WLAN and the Zigbee models share the follow-

ing properties:

• Ad-hoc wireless networks, as opposed to infrastructure-

based ones.

• Isotropic antenna.

• Unable to send and receive at the same time.

• Path loss of radio signals modeled as 1

da
where d is the

distance in meters and a is a suitably chosen parameter

to model the environment.

• The possibility for the user to define his own path loss

model to, e.g., take multi-path propagation and fading

into account. The model is represented by a user-defined

Matlab-function.

• Interference from other terminals (shared medium).

• ACK messages on the MAC protocol level.

In the 802.15.4 case, a package transmission is modeled

like this: The node that wants to transmit a packet starts by

waiting a random number of backoff periods. The message is

then transmitted if the medium is idle. If the medium is not

idle, the window in which the delay is chosen is increased

and the node waits for a random number of backoff periods

again. This behaviour continues until the message is either

transmitted or the maximum number of retries is reached.

When a node starts to transmit, its relative position to all

other nodes in the same network is calculated, and the signal

level in all those nodes are calculated according to the path-

loss formula 1

da
or the user-defined path-loss formula.

WeD15.5

4304



The signal is assumed to be possible to detect, if the signal

level in the receiving node is larger than a configurable

threshold (receiver signal threshold). If this is the case,

then the signal-to-noise ratio (SNR) is calculated and used

to statistically find the block error rate (BLER). Note that

all other transmissions add to the background noise when

calculating the SNR. The BLER, together with the size of the

message, is used to calculate the number of bit errors in the

message and if this number is lower than another threshold

(error coding threshold), then it is assumed that the channel

coding scheme is able to fully reconstruct the message. If

there are (already) ongoing transmissions from other nodes

to the receiving node and their respective SNRs are lower

than the new one, then all those messages are marked as

collided. Also, if there are other ongoing transmissions which

the currently sending node reaches with its transmission, then

those messages may be marked as collided as well.

Note that a sending node does not know if its message

is colliding, therefore ACK messages are sent on the MAC

protocol layer. From the perspective of the sending node,

lost messages and message collisions are the same, i.e., no

ACK is received. If no ACK is received during a certain

configurable time, the message is retransmitted according

to the same scheme as described above. There are only a

certain configurable number of retransmissions before the

sender gives up on the message and it is not retransmitted

anymore.

A. Network Reconfiguration and Radio Power Control

The requirements on the simulation environment from the

network reconfiguration and radio power control components

are that it should be possible to change the transmit power

of the nodes and that it should be possible to measure the

received signal strength, i.e., the so called Received Signal

Strength Indicator (RSSI). The former is possible through

the TrueTime command

ttSetNetworkParameter(’transmitpower’,value)

The RSSI is obtained as an optional return value of the

TrueTime function ttGetMsg, which is defined as

[msg, signalPower] = ttGetMsg(network)

This function is typically called from the interrupt handler

associated with the network to extract the received message,

msg.

VI. TRUETIME ULTRASOUND MODEL

In order to model the ultrasound a special block has been

developed. The block is a special version of the wireless

network block that models the ultrasound propagation of

a transmitted ultrasound pulse. Senders and receivers are

connected to the block through the send and receive ports,

similar to an ordinary wireless network block. The x and y

positions of the senders and receivers are also inputs to the

block.

The main difference between the wireless network block

and the ultrasound block is that in the ultrasound block

it is the propagation delay that is important, whereas in

the ordinary wireless block it is the medium access delay

and the transmission delay that are modeled. The ultrasound

is modeled as a single sound pulse. When it arrives at a

stationary sensor node an interrupt is generated. This also

differs from the physical scenario, in which the ultrasound

signal is connected via an AD converter to the Tmote Sky.

VII. ROUTING

The network routing is implemented using a TrueTime

model of the AODV protocol. AODV [10] stands for Ad-hoc

On-Demand Distance Vector routing and contrary to most

routing mechanisms, it does not rely on periodic transmission

of routing messages between the nodes. Instead, routes are

created on-demand, i.e., only when actually needed to send

traffic between a source and a destination node. This leads to

a substantial decrease in the amount of network bandwidth

consumed to establish routes.

AODV uses three basic types of control messages in order

to build and invalidate routes: route request (RREQ), route

reply (RREP), and route error (RERR) messages. These

control messages contain source and destination sequence

numbers, which are used to ensure fresh and loop-free routes.

A node that requires a route to a destination node initiates

route discovery by broadcasting an RREQ message to its

neighbors. A node receiving an RREQ starts by updating

its routing information backwards towards the source. If the

same RREQ has not been received before, the node then

checks its routing table for a route to the destination. If a

route exists with a sequence number greater than or equal

to that contained in the RREQ, an RREP message is sent

back towards the source. Otherwise, the node rebroadcasts

the RREQ. When an RREP has propagated back to the

original source node, the established route may be used to

send data. Periodic hello messages are used to maintain local

connectivity information between neighboring nodes. A node

that detects a link break will check its routing table to find

all routes which use the broken link as the next hop. In order

to propagate the information about the broken link, an RERR

message is then sent to each node that constitute a previous

hop on any of these routes.

Two TrueTime tasks are created in each node to handle

AODV send and receive actions, respectively. The AODV

send task is activated from the application code as a data

message should be sent to another node in the network.

The AODV receive task handles incoming AODV control

messages and forwarding of data messages. Communication

between the application layer and the AODV layer is han-

dled using TrueTime mailboxes. Each node also contains a

periodic task, responsible for broadcasting hello messages

and determine local connectivity based on hello messages

received from neighboring nodes. Finally, each node has a

task to handle timer expiry of route entries.

The AODV protocol in TrueTime is implemented in such a

way that it stores messages to destinations for which no valid

route exists, at the source node. This means that when, even-

tually, the network connectivity has been restored through the

use of the mobile radio gateways, the communication traffic

will be automatically restored.

WeD15.5

4305



Fig. 6. The TrueTime model diagram. In order to reduce the use of wires From and To blocks hidden inside the corresponding subsystems are used to
connect the stationary sensor nodes to the radio and ultrasound networks.

VIII. THE COMPLETE MODEL

In addition to the above the complete model for the

scenario also contains models of the sensors, motors, robot

dynamics, and a world model that keeps track of the position

of the robots and the fixed obstacles within the tunnel.

The wheel motors are modeled as first-order linear systems

plus integrators with the angular velocities and positions

as the outputs. From the motor velocities the corrsponding

wheel velocities are calculated. The wheel positions are

controlled by two PI-controllers residing in the ATMEL AVR

processors acting as interfaces to the wheel motors.

The Lund RBbot is a dual-drive unicycle robot. It is

modeled as a third-order system

ṗx =
1

2
(R1ω1 + R2ω2) cos(θ)

ṗy =
1

2
(R1ω1 + R2ω2) sin(θ)

θ̇ =
1

D
(R2ω2 − R1ω1)

(1)

where the state consists of the x- and y-positions and the

heading θ. Input to the system are the angular velocities ω1

and ω2 of the two wheels. The parameters R1 and R2 are

the radius of the two wheels and D is the distance between

the wheels.

The top-level TrueTime model diagram is shown in Fig. 6.

The stationary sensor nodes are implemented as Simulink

subsystems that internally contain a TrueTime kernel mod-

eling the Tmote Sky mote and connections to the radio

network and the ultrasound communication blocks. In order

to reduce the wiring From and To blocks hidden inside the

corresponding subsystems are used for the connections. The

block handling the dynamic animation is not shown in the

figure.

The subsystem for the mobile robots is shown in Fig. 7.

The Robot Dynamics block contains the motor models and

the robot dynamics model.

The position of the robots and status of the stationary

sensor nodes, i.e., whether they are operational or not, are

shown in a separate animation workspace, see Fig. 8.

IX. LIMITATIONS OF THE MODEL

The implemented TrueTime model contains several sim-

plifications. For example, interrupt latencies are not simu-

lated, only context switch overheads. All execution times

are chosen based on experience from the hardware imple-

mentation. The component framework is not implemented

as such. However, since most of the component activities,

e.g., composition, are performed off-line this is not a major

limitation. Also, it is important to stress that the simulated

code is only a model of the actual code that executes in

the sensor nodes and in the robots. However, since C is the

programming language used in both cases the translation is

in most cases quite straightforward.

In spite of the above it is our experience that the True-

Time simulation approach gives results that are close to the

real case. The TrueTime approach has also been validated

by others. In [11] a TrueTime-based model is compared

with a hardware-in-the-loop (HIL) model of a distributed

CAN-based control system. The TrueTime simulation result

matched the HIL results very well.

An aspect of the model that is extremely difficult, if

not impossible, to validate is the wireless communication.

Simulation of wireless MANET systems is notoriously dif-

ficult, see, e.g., [12]. The effects of multi-path propagation,

fading, and external disturbances are very difficult to model

accurately. The approach adopted here is to first start with

an idealized exponential decay radio model and then when

WeD15.5

4306



Tmote Sky

AVR Mega16−1

AVR Mega128

AVR Mega16−2

AVR Mega16−3

Robot Dynamics

I2C Bus

To Radio
Network

From Radio
Network

To Ultrasound
Network

2

y

1

x

[radio2]
A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

P

left

right

x

y

theta

lspeed

rspeed

In1

In2

In3

In4

In5

Out1

Out2

Out3

Out4

Out5

[ultra1]

[radio1]

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

P

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

P

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

P

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

P

Fig. 7. The Simulink model of the mobile robots. For the sake of clarity the
obstacle detection sensors have been omitted. These should be connected
to AVR Mega16-1.

Fig. 8. Animation workspace

this works properly gradually add more and more non-

determinism. This is done either by setting a high probability

that a packet is lost, or by providing a user-defined radio

model using Rayleigh fading.

X. RELATED WORK

There exists a large number of general network simulators

today. One of the most well-known is ns-2 [13], which is a

discrete-event simulator for both wired and wireless networks

with support for, e.g., TCP, UDP, routing, and multicast

protocols. It also supports simple movement models for

mobile applications, where the position and velocity of nodes

may be specified in a script. It should be noted that the

default radio model in ns-2 is very simplistic (even more

simplistic than TrueTime’s), although more accurate physical

layer models may be implemented [14].

Another discrete-event computer network simulator is

OMNeT++ [15]. It contains detailed IP, TCP, and FDDI

protocol models and several other simulation models (file

system simulator, Ethernet, framework for simulation of

mobility, etc.). Compared to these simulators, the network

simulation part in Truetime is far more simplistic. However,

the strength of TrueTime is the co-simulation facilities that

makes it possible to simulate the latency-related aspects of

the network communication in combination with the node

computations and the dynamics of the physical environment.

Rather than basing the co-simulation tool on a general

network simulator and then try to extend this with addi-

tional co-simulation facilities, the approach has been to base

the co-simulation tool on a powerful simulator for general

dynamical systems, i.e., Simulink, and then add support for

simulation of real-time kernels and the latency aspects of

network communication to this. An additional advantage of

this approach is the possibility to make use of the wide

range of toolboxes that are available for Matlab/Simulink.

For example, support for virtual reality animation.

There are also some network simulators geared towards

the sensor network domain. TOSSIM [16] compiles directly

from TinyOS code and scales very well. The COOJA simu-

lator [17] makes it possible to simulate sensor networks run-

ning the Contiki OS. Network in a box (NAB) [18] is another

simulator for large-scale sensor networks. Another example

is J-Sim, a general compositional simulation environment

that includes a generalized packet switched network model

that may be used to simulate wireless LANs and sensor

network [19]. Again, these types of simulators generally lack

the possibility to simulate continuous-time dynamics, that is

present in TrueTime.

Another type of related tools are software emulators such

as, e.g., the Simics system [20]. Although systems of this

type provide very accurate ways of simulating software they,

generally, have weak support for networks and continuous-

time dynamics.

A few other tools have been developed that support co-

simulation of real-time computing systems and control sys-

tems. RTSIM [21] has a module that allows system dynamics

to be simulated in parallel with scheduling algorithms. XILO

[22] supports the simulation of system dynamics, CAN

networks, and priority-preemptive scheduling. Ptolemy II is

a general purpose multi-domain modeling and simulation

environment that includes a continuous-time domain, and

a simple RTOS domain. Recently it has been extended in

the sensor network direction [23]. In [24] a co-simulation

environment based on ns-2 is presented. The ns-2 simulator

has been extended with an ODE-solver for dynamical simu-

lations of the controller units and the environment. However,

this tool lacks support for real-time kernel simulation.

XI. CONCLUSIONS

New simulation tools such as TrueTime are needed to

capture the complex interactions that exist between hardware,

WeD15.5

4307



software, and the physical environment in wireless sen-

sor/actuator applications. The TrueTime approach is based

on co-simulation of (sometimes simplistic) models of the

environment, the code executing inside the nodes, and the

network communication. In this paper it has been described

how TrueTime can be used to model and simulate several

aspectes of a large road tunnel disaster relief scenario in-

volving mobile robots. Since TrueTime is based on MAT-

LAB/Simulink, the modeling of the robot dynamics and

the environment is straightforward. The TMote Sky nodes

and ATMEL AVR microcontrollers can be modeled by the

TrueTime kernel blocks, while I2C buses and the Zigbee

radio communication is modeled by TrueTime wired and

wireless network blocks. Finally, a new TrueTime ultra-

sound block has been developed to faciliate the simulation

of the RUNES localization component.

A. Acknowledgment

The work has been done with partial support from the EC

project RUNES (Contract IST-2004-004536).

REFERENCES

[1] K.-E. Årzén, A. Bicchi, G. Dini, S. Hailes, K. Johansson, J. Lygeros,
and A. Tzes, “A component-based approach to the design of networked
control systems,” in Proceedings of the European Control Conference
(ECC), Kos, Greece, Kos, Greece, 2007.

[2] P. Alriksson, J. Nordh, K.-E. Årzén, A. Bicchi, A. Danesi, R. Schiavi,
and L. Pallottino, “A component-based approach to localization and
collision avoidance for mobile multi-agent systems,” in Proceedings of
the European Control Conference (ECC), Kos, Greece, Kos, Greece,
2007.

[3] A. Panousopoulou and A. Tzes, “Utilization of mobile agents for
Voronoi-based heterogeneous wireless sensor network reconfigura-
tion,” in Proceedings of the European Control Conference (ECC), Kos,
Greece, Kos, Greece, 2007.

[4] B. Zurita Ares, C. Fischione, A. Speranzon, and K. Johansson, “On
power control for wireless sensor networks: radio model, software
implementation and experimental evaluation,” in Proceedings of the
European Control Conference (ECC), Kos, Greece, Kos, Greece, 2007.

[5] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén,
“How does control timing affect performance?” IEEE Control Systems

Magazine, vol. 23, no. 3, pp. 16–30, June 2003.
[6] M. Andersson, D. Henriksson, A. Cervin, and K.-E. Årzén, “Simu-

lation of wireless networked control systems,” in Proceedings of the
44th IEEE Conference on Decision and Control and European Control
Conference ECC 2005, Seville, Spain, Dec. 2005.

[7] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén, “Feedback-
feedforward scheduling of control tasks,” Real-Time Systems, vol. 23,
no. 1–2, pp. 25–53, July 2002.

[8] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Proceedings
of the First IEEE Workshop on Embedded Networked Sensors
(Emnets-I), Tampa, Florida, USA, Nov. 2004. [Online]. Available:
http://www.sics.se/∼adam/dunkels04contiki.pdf

[9] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
Simplifying event-driven programming of memory-constrained
embedded systems,” in Proceedings of the Fourth ACM
Conference on Embedded Networked Sensor Systems (SenSys

2006), Boulder, Colorado, USA, Nov. 2006. [Online]. Available:
http://www.sics.se/∼adam/dunkels06protothreads.pdf

[10] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector (AODV)
routing,” in Proceedings of the 2nd IEEE Workshop on Mobile

Computing Systems and Applications, New Orleans, LA, 1999.
[11] D. Ayavoo, M. Pont, and S. Parker, “Using simulation to support the

design of distributed embedded control systems: a case study,” in In
Proceedings of 1st UK Embedded Forum, Brimingham, UK, 2004.

[12] T. Andel and A. Yasinac, “On the credibility of manet simulations,”
IEEE Computer, pp. 48–54, July 2006.

[13] “Ns-2,” Home page: http://www.isi.edu/nsnam/ns/index.html, 2004.
[14] J.-M. Dricot and P. De Doncker, “High-accuracy physical layer model

for wireless network simulations in NS-2,” in In Proceedings of the

Int. Workshop on Wireless Ad-Hoc Networks (IWWAN), Oulu, Finland,
2004.

[15] “Omnet++,” Home page: http://www.omnetpp.org, 2004.
[16] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and

scalable simulation of entire TinyOS applications,” in Proceedings

of the 1st international conference on Embedded networked sensor
systems, Los Angeles, CA, USA, 2003, pp. 126–137.

[17] F. Österlind, “A Sensor Network Simulator for the Contiki OS,” SICS
– Swedish Institute of Computer Science, Tech. Rep. T2006-05, Feb.
2006. [Online]. Available: ftp://ftp.sics.se/pub/SICS-reports/Reports/
SICS-T--2006-05--SE.pdf

[18] “NAB (Network in A Box),” Home page: http://nab.epfl.ch/, 2004.
[19] H.-Y. Tyan, “Design, realization and evaluation of a component-based

compositional software architecture for network simulation,” Ph.D.
dissertation, Ohio State University, 2002.

[20] P. Magnusson, “Simulation of parallel hardware,” in In Proceedings of
the Int. Workshop on Modeling Analysis and Simulation of Computer
And Telecommunication Systems (MASCOTS), San Diego, CA, 1993.

[21] L. Palopoli, L. Abeni, and G. Buttazzo, “Real-time control system
analysis: An integrated approach,” in Proceedings of the 21st IEEE
Real-Time Systems Symposium, Orlando, Florida, December 2000.

[22] J. El-Khoury and M. Törngren, “Towards a toolset for architectural
design of distributed real-time control systems,” in Proceedings of
the 22nd IEEE Real-Time Systems Symposium, London, England,
December 2001.

[23] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao, “Modeling of
sensor nets in Ptolemy II,” in IPSN’04: Proceedings of the third in-

ternational symposium on Information processing in sensor networks.
ACM Press, 2004, pp. 359–368.

[24] M. Branicky, V. Liberatore, and S. M. Phillips, “Networked control
systems co-simulation for co-design,” in Proc. American Control

Conference, 2003.

WeD15.5

4308


