2,147 research outputs found

    Path computation in multi-layer networks: Complexity and algorithms

    Full text link
    Carrier-grade networks comprise several layers where different protocols coexist. Nowadays, most of these networks have different control planes to manage routing on different layers, leading to a suboptimal use of the network resources and additional operational costs. However, some routers are able to encapsulate, decapsulate and convert protocols and act as a liaison between these layers. A unified control plane would be useful to optimize the use of the network resources and automate the routing configurations. Software-Defined Networking (SDN) based architectures, such as OpenFlow, offer a chance to design such a control plane. One of the most important problems to deal with in this design is the path computation process. Classical path computation algorithms cannot resolve the problem as they do not take into account encapsulations and conversions of protocols. In this paper, we propose algorithms to solve this problem and study several cases: Path computation without bandwidth constraint, under bandwidth constraint and under other Quality of Service constraints. We study the complexity and the scalability of our algorithms and evaluate their performances on real topologies. The results show that they outperform the previous ones proposed in the literature.Comment: IEEE INFOCOM 2016, Apr 2016, San Francisco, United States. To be published in IEEE INFOCOM 2016, \<http://infocom2016.ieee-infocom.org/\&g

    Reduced-Dimension Linear Transform Coding of Correlated Signals in Networks

    Full text link
    A model, called the linear transform network (LTN), is proposed to analyze the compression and estimation of correlated signals transmitted over directed acyclic graphs (DAGs). An LTN is a DAG network with multiple source and receiver nodes. Source nodes transmit subspace projections of random correlated signals by applying reduced-dimension linear transforms. The subspace projections are linearly processed by multiple relays and routed to intended receivers. Each receiver applies a linear estimator to approximate a subset of the sources with minimum mean squared error (MSE) distortion. The model is extended to include noisy networks with power constraints on transmitters. A key task is to compute all local compression matrices and linear estimators in the network to minimize end-to-end distortion. The non-convex problem is solved iteratively within an optimization framework using constrained quadratic programs (QPs). The proposed algorithm recovers as special cases the regular and distributed Karhunen-Loeve transforms (KLTs). Cut-set lower bounds on the distortion region of multi-source, multi-receiver networks are given for linear coding based on convex relaxations. Cut-set lower bounds are also given for any coding strategy based on information theory. The distortion region and compression-estimation tradeoffs are illustrated for different communication demands (e.g. multiple unicast), and graph structures.Comment: 33 pages, 7 figures, To appear in IEEE Transactions on Signal Processin

    Jointly Optimal Routing and Caching for Arbitrary Network Topologies

    Full text link
    We study a problem of fundamental importance to ICNs, namely, minimizing routing costs by jointly optimizing caching and routing decisions over an arbitrary network topology. We consider both source routing and hop-by-hop routing settings. The respective offline problems are NP-hard. Nevertheless, we show that there exist polynomial time approximation algorithms producing solutions within a constant approximation from the optimal. We also produce distributed, adaptive algorithms with the same approximation guarantees. We simulate our adaptive algorithms over a broad array of different topologies. Our algorithms reduce routing costs by several orders of magnitude compared to prior art, including algorithms optimizing caching under fixed routing.Comment: This is the extended version of the paper "Jointly Optimal Routing and Caching for Arbitrary Network Topologies", appearing in the 4th ACM Conference on Information-Centric Networking (ICN 2017), Berlin, Sep. 26-28, 201

    Throughput-Optimal Multihop Broadcast on Directed Acyclic Wireless Networks

    Get PDF
    We study the problem of efficiently broadcasting packets in multi-hop wireless networks. At each time slot the network controller activates a set of non-interfering links and forwards selected copies of packets on each activated link. A packet is considered jointly received only when all nodes in the network have obtained a copy of it. The maximum rate of jointly received packets is referred to as the broadcast capacity of the network. Existing policies achieve the broadcast capacity by balancing traffic over a set of spanning trees, which are difficult to maintain in a large and time-varying wireless network. We propose a new dynamic algorithm that achieves the broadcast capacity when the underlying network topology is a directed acyclic graph (DAG). This algorithm is decentralized, utilizes local queue-length information only and does not require the use of global topological structures such as spanning trees. The principal technical challenge inherent in the problem is the absence of work-conservation principle due to the duplication of packets, which renders traditional queuing modelling inapplicable. We overcome this difficulty by studying relative packet deficits and imposing in-order delivery constraints to every node in the network. Although in-order packet delivery, in general, leads to degraded throughput in graphs with cycles, we show that it is throughput optimal in DAGs and can be exploited to simplify the design and analysis of optimal algorithms. Our characterization leads to a polynomial time algorithm for computing the broadcast capacity of any wireless DAG under the primary interference constraints. Additionally, we propose an extension of our algorithm which can be effectively used for broadcasting in any network with arbitrary topology

    Surfing the Internet-of-Things: lightweight access and control of wireless sensor networks using industrial low power protocols

    Get PDF
    Internet-of-Things (IoT) is emerging to play an important role in the continued advancement of information and communication technologies. To accelerate industrial application developments, the use of web services for networking applications is seen as important in IoT communications. In this paper, we present a RESTful web service architecture for energy-constrained wireless sensor networks (WSNs) to enable remote data collection from sensor devices in WSN nodes. Specifically, we consider both IPv6 protocol support in WSN nodes as well as an integrated gateway solution to allow any Internet clients to access these nodes.We describe the implementation of a prototype system, which demonstrates the proposed RESTful approach to collect sensing data from a WSN. A performance evaluation is presented to illustrate the simplicity and efficiency of our proposed scheme

    A Simple and General Operational Framework to Deploy Optimal Routes with Source Routing

    Full text link
    Source Routing, currently facilitated by Segment Routing (SR), enables precise control of forwarding paths by specifying detours (or segments) to deviate IP packets along routes with advanced properties beyond typical shortest IGP paths. Computing the desired optimal segment lists, known as encoding, leads to interesting challenges as the number of detours is tightly constrained for hardware performance. Existing solutions either lack generality, correctness, optimality, or practical computing efficiency-in particular for sparse realistic networks. In this paper, we address all such challenges with GOFOR-SR. Our framework extends usual path computation algorithms to inherently look at optimal and feasible segment lists, streamlining the deployment of TE-compliant paths. By integrating encoding within the path computation itself and modifying the distance comparison method, GOFOR allows algorithms with various optimization objectives to efficiently compute optimal segment lists. Despite the loss of substructure optimality induced by SR, GOFOR proves particularly efficient, inducing only a linear overhead at worst. It also offers different strategies and path diversity options for intricate TE-aware loadbalancing. We formally prove the correctness and optimality of GOFOR, implement our framework for various practical usecases, and demonstrate its performance and benefits on both real and challenging topologies
    • …
    corecore