153 research outputs found

    Efficient Learning with Partially Observed Attributes

    Full text link
    We describe and analyze efficient algorithms for learning a linear predictor from examples when the learner can only view a few attributes of each training example. This is the case, for instance, in medical research, where each patient participating in the experiment is only willing to go through a small number of tests. Our analysis bounds the number of additional examples sufficient to compensate for the lack of full information on each training example. We demonstrate the efficiency of our algorithms by showing that when running on digit recognition data, they obtain a high prediction accuracy even when the learner gets to see only four pixels of each image.Comment: This is a full version of the paper appearing in The 27th International Conference on Machine Learning (ICML 2010

    An Efficient Primal-Dual Prox Method for Non-Smooth Optimization

    Full text link
    We study the non-smooth optimization problems in machine learning, where both the loss function and the regularizer are non-smooth functions. Previous studies on efficient empirical loss minimization assume either a smooth loss function or a strongly convex regularizer, making them unsuitable for non-smooth optimization. We develop a simple yet efficient method for a family of non-smooth optimization problems where the dual form of the loss function is bilinear in primal and dual variables. We cast a non-smooth optimization problem into a minimax optimization problem, and develop a primal dual prox method that solves the minimax optimization problem at a rate of O(1/T)O(1/T) {assuming that the proximal step can be efficiently solved}, significantly faster than a standard subgradient descent method that has an O(1/T)O(1/\sqrt{T}) convergence rate. Our empirical study verifies the efficiency of the proposed method for various non-smooth optimization problems that arise ubiquitously in machine learning by comparing it to the state-of-the-art first order methods

    Scalable Kernel Methods via Doubly Stochastic Gradients

    Full text link
    The general perception is that kernel methods are not scalable, and neural nets are the methods of choice for nonlinear learning problems. Or have we simply not tried hard enough for kernel methods? Here we propose an approach that scales up kernel methods using a novel concept called "doubly stochastic functional gradients". Our approach relies on the fact that many kernel methods can be expressed as convex optimization problems, and we solve the problems by making two unbiased stochastic approximations to the functional gradient, one using random training points and another using random functions associated with the kernel, and then descending using this noisy functional gradient. We show that a function produced by this procedure after tt iterations converges to the optimal function in the reproducing kernel Hilbert space in rate O(1/t)O(1/t), and achieves a generalization performance of O(1/t)O(1/\sqrt{t}). This doubly stochasticity also allows us to avoid keeping the support vectors and to implement the algorithm in a small memory footprint, which is linear in number of iterations and independent of data dimension. Our approach can readily scale kernel methods up to the regimes which are dominated by neural nets. We show that our method can achieve competitive performance to neural nets in datasets such as 8 million handwritten digits from MNIST, 2.3 million energy materials from MolecularSpace, and 1 million photos from ImageNet.Comment: 32 pages, 22 figure

    Labeled Memory Networks for Online Model Adaptation

    Full text link
    Augmenting a neural network with memory that can grow without growing the number of trained parameters is a recent powerful concept with many exciting applications. We propose a design of memory augmented neural networks (MANNs) called Labeled Memory Networks (LMNs) suited for tasks requiring online adaptation in classification models. LMNs organize the memory with classes as the primary key.The memory acts as a second boosted stage following a regular neural network thereby allowing the memory and the primary network to play complementary roles. Unlike existing MANNs that write to memory for every instance and use LRU based memory replacement, LMNs write only for instances with non-zero loss and use label-based memory replacement. We demonstrate significant accuracy gains on various tasks including word-modelling and few-shot learning. In this paper, we establish their potential in online adapting a batch trained neural network to domain-relevant labeled data at deployment time. We show that LMNs are better than other MANNs designed for meta-learning. We also found them to be more accurate and faster than state-of-the-art methods of retuning model parameters for adapting to domain-specific labeled data.Comment: Accepted at AAAI 2018, 8 page

    Differentially Private Linear Models for Gossip Learning through Data Perturbation

    Get PDF
    Privacy is a key concern in many distributed systems that are rich in personal data such as networks of smart meters or smartphones. Decentralizing the processing of personal data in such systems is a promising first step towards achieving privacy through avoiding the collection of data altogether. However, decentralization in itself is not enough: Additional guarantees such as differential privacy are highly desirable. Here, we focus on stochastic gradient descent (SGD), a popular approach to implement distributed learning. Our goal is to design differentially private variants of SGD to be applied in gossip learning, a decentralized learning framework. Known approaches that are suitable for our scenario focus on protecting the gradient that is being computed in each iteration of SGD. This has the drawback that each data point can be accessed only a small number of times. We propose a solution in which we effectively publish the entire database in a differentially private way so that linear learners could be run that are allowed to access any (perturbed) data point any number of times. This flexibility is very useful when using the method in combination with distributed learning environments. We show empirically that the performance of the obtained model is comparable to that of previous gradient-based approaches and it is even superior in certain scenarios

    ODN: Opening the Deep Network for Open-set Action Recognition

    Full text link
    In recent years, the performance of action recognition has been significantly improved with the help of deep neural networks. Most of the existing action recognition works hold the \textit{closed-set} assumption that all action categories are known beforehand while deep networks can be well trained for these categories. However, action recognition in the real world is essentially an \textit{open-set} problem, namely, it is impossible to know all action categories beforehand and consequently infeasible to prepare sufficient training samples for those emerging categories. In this case, applying closed-set recognition methods will definitely lead to unseen-category errors. To address this challenge, we propose the Open Deep Network (ODN) for the open-set action recognition task. Technologically, ODN detects new categories by applying a multi-class triplet thresholding method, and then dynamically reconstructs the classification layer and "opens" the deep network by adding predictors for new categories continually. In order to transfer the learned knowledge to the new category, two novel methods, Emphasis Initialization and Allometry Training, are adopted to initialize and incrementally train the new predictor so that only few samples are needed to fine-tune the model. Extensive experiments show that ODN can effectively detect and recognize new categories with little human intervention, thus applicable to the open-set action recognition tasks in the real world. Moreover, ODN can even achieve comparable performance to some closed-set methods.Comment: 6 pages, 3 figures, ICME 201
    • …
    corecore