920 research outputs found

    A Review of Power Domain Non-Orthogonal Multiple Access in 5G Networks

    Get PDF
    This paper highlights the fundamentals of the strong candidate Power Domain Non-Orthogonal Multiple Access (PD-NOMA) technique, and how it can best fit the requirements of fifth Generation (5G) in practical applications. PD-NOMA ensures flexibility in radio resource to improve user’s access performance. Multiple users share the same radio resources in PD-NOMA, and therefore better spectrum efficiency can be achieved. The practical system design aspects of PD-NOMA are considered in this paper by exploring different network scenarios. Optimal performances of PD-NOMA system can be obtained by suitable power allocation schemes, with reduce the computational complexity, and advanced user pairing strategy. Theoretical formulation and solutions are also explained prior to the concept of downlink PD-NOMA. Challenges and future research windows are discussed before conclusion of this paper

    Cooperative Resource Management and Interference Mitigation for Dense Networks

    Get PDF

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    Power Allocation for Uplink Communications of Massive Cellular-Connected UAVs

    Get PDF
    Cellular-connected unmanned aerial vehicle (UAV) has attracted a surge of research interest in both academia and industry. To support aerial user equipment (UEs) in the existing cellular networks, one promising approach is to assign a portion of the system bandwidth exclusively to the UAV-UEs. This is especially favorable for use cases where a large number of UAV-UEs are exploited, e.g., for package delivery close to a warehouse. Although the nearly line-of-sight (LoS) channels can result in higher powers received, UAVs can in turn cause severe interference to each other in the same frequency band. In this contribution, we focus on the uplink communications of massive cellular-connected UAVs. Different power allocation algorithms are proposed to either maximize the minimal spectrum efficiency (SE) or maximize the overall SE to cope with severe interference based on the successive convex approximation (SCA) principle. One of the challenges is that a UAV can affect a large area meaning that many more UAV-UEs must be considered in the optimization problem, which is essentially different from that for terrestrial UEs. The necessity of single-carrier uplink transmission further complicates the problem. Nevertheless, we find that the special property of large coherent bandwidths and coherent times of the propagation channels can be leveraged. The performances of the proposed algorithms are evaluated via extensive simulations in the full-buffer transmission mode and bursty-traffic mode. Results show that the proposed algorithms can effectively enhance the uplink SEs. This work can be considered the first attempt to deal with the interference among massive cellular-connected UAV-UEs with optimized power allocations
    • …
    corecore