1,938 research outputs found

    Contextual Bandits with Cross-learning

    Full text link
    In the classical contextual bandits problem, in each round tt, a learner observes some context cc, chooses some action aa to perform, and receives some reward ra,t(c)r_{a,t}(c). We consider the variant of this problem where in addition to receiving the reward ra,t(c)r_{a,t}(c), the learner also learns the values of ra,t(c′)r_{a,t}(c') for all other contexts c′c'; i.e., the rewards that would have been achieved by performing that action under different contexts. This variant arises in several strategic settings, such as learning how to bid in non-truthful repeated auctions (in this setting the context is the decision maker's private valuation for each auction). We call this problem the contextual bandits problem with cross-learning. The best algorithms for the classical contextual bandits problem achieve O~(CKT)\tilde{O}(\sqrt{CKT}) regret against all stationary policies, where CC is the number of contexts, KK the number of actions, and TT the number of rounds. We demonstrate algorithms for the contextual bandits problem with cross-learning that remove the dependence on CC and achieve regret O(KT)O(\sqrt{KT}) (when contexts are stochastic with known distribution), O~(K1/3T2/3)\tilde{O}(K^{1/3}T^{2/3}) (when contexts are stochastic with unknown distribution), and O~(KT)\tilde{O}(\sqrt{KT}) (when contexts are adversarial but rewards are stochastic).Comment: 48 pages, 5 figure

    Decentralized Exploration in Multi-Armed Bandits

    Full text link
    We consider the decentralized exploration problem: a set of players collaborate to identify the best arm by asynchronously interacting with the same stochastic environment. The objective is to insure privacy in the best arm identification problem between asynchronous, collaborative, and thrifty players. In the context of a digital service, we advocate that this decentralized approach allows a good balance between the interests of users and those of service providers: the providers optimize their services, while protecting the privacy of the users and saving resources. We define the privacy level as the amount of information an adversary could infer by intercepting the messages concerning a single user. We provide a generic algorithm Decentralized Elimination, which uses any best arm identification algorithm as a subroutine. We prove that this algorithm insures privacy, with a low communication cost, and that in comparison to the lower bound of the best arm identification problem, its sample complexity suffers from a penalty depending on the inverse of the probability of the most frequent players. Then, thanks to the genericity of the approach, we extend the proposed algorithm to the non-stationary bandits. Finally, experiments illustrate and complete the analysis

    A Neural Networks Committee for the Contextual Bandit Problem

    Get PDF
    This paper presents a new contextual bandit algorithm, NeuralBandit, which does not need hypothesis on stationarity of contexts and rewards. Several neural networks are trained to modelize the value of rewards knowing the context. Two variants, based on multi-experts approach, are proposed to choose online the parameters of multi-layer perceptrons. The proposed algorithms are successfully tested on a large dataset with and without stationarity of rewards.Comment: 21st International Conference on Neural Information Processin
    • …
    corecore