149 research outputs found

    Multi-Agent-Based CBR Recommender System for Intelligent Energy Management in Buildings

    Get PDF
    [EN] This paper proposes a novel case-based reasoning (CBR) recommender system for intelligent energy management in buildings. The proposed approach recommends the amount of energy reduction that should be applied in a building in each moment, by learning from previous similar cases. The k-nearest neighbor clustering algorithm is applied to identify the most similar past cases, and an approach based on support vector machines is used to optimize the weight of different parameters that characterize each case. An expert system composed by a set of ad hoc rules guarantees that the solution is adequate and applicable to the new case scenario. The proposed CBR methodology is modeled through a dedicated software agent, thus enabling its integration in a multi-agent systems society for the study of energy systems. Results show that the proposed approach is able to provide suitable recommendations on energy reduction, by comparing its results with a previous approach based on particle swarm optimization and with the real reduction in past cases. The applicability of the proposed approach in real scenarios is also assessed through the application of the results provided by the proposed approach on a house energy resources management system

    Multi-Agent-Based CBR Recommender System for Intelligent Energy Management in Buildings

    Get PDF
    This paper proposes a novel case-based reasoning (CBR) recommender system for intelligent energy management in buildings. The proposed approach recommends the amount of energy reduction that should be applied in a building in each moment, by learning from previous similar cases. The k-nearest neighbor clustering algorithm is applied to identify the most similar past cases, and an approach based on support vector machines is used to optimize the weight of different parameters that characterize each case. An expert system composed by a set of ad hoc rules guarantees that the solution is adequate and applicable to the new case scenario. The proposed CBR methodology is modeled through a dedicated software agent, thus enabling its integration in a multi-agent systems society for the study of energy systems. Results show that the proposed approach is able to provide suitable recommendations on energy reduction, by comparing its results with a previous approach based on particle swarm optimization and with the real reduction in past cases. The applicability of the proposed approach in real scenarios is also assessed through the application of the results provided by the proposed approach on a house energy resources management system.This work was supported in part by the EU's H 2020 research and innovation programme under the Marie SklodowskaCurie Grant Agreement 641794 (project DREAM-GO) and Grant Agreement 703689 (project ADAPT), in part by the FEDER Funds through COMPETE program, and in part by the National Funds through FCT under the Project UID/EEA/00760/2013. (Corresponding author: Tiago Pinto.)info:eu-repo/semantics/publishedVersio

    Smart Buildings

    Get PDF
    This talk presents an efficient cyberphysical platform for the smart management of smart buildings http://www.deepint.net. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart building is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study at Salamanca - Ecocasa. This platform could enable smart building to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques

    The role of Artificial Intelligence and distributed computing in IoT applications

    Get PDF
    [EN]The exchange of ideas between scientists and technicians, from both academic and business areas, is essential in order to ease the development of systems which can meet the demands of today’s society. Technology transfer in this field is still a challenge and, for that reason, this type of contributions are notably considered in this compilation. This book brings in discussions and publications concerning the development of innovative techniques of IoT complex problems. The technical program focuses both on high quality and diversity, with contributions in well-established and evolving areas of research. Specifically, 10 chapters were submitted to this book. The editors particularly encouraged and welcomed contributions on AI and distributed computing in IoT applications.Financed by regional government of Castilla y León and FEDER funds

    The role of Artificial Intelligence and Distributed computing in IoT applications

    Get PDF
    [ES] La serie «El rol de la inteligencia artificial y la computación distribuida en las aplicaciones IoT» contiene publicaciones sobre la teoría y aplicaciones de la computación distribuida y la inteligencia artificial en el Internet de las cosas. Prácticamente todas las disciplinas como la ingeniería, las ciencias naturales, la informática y las ciencias de la información, las TIC, la economía, los negocios, el comercio electrónico, el medio ambiente, la salud y las ciencias de la vida están cubiertas. La lista de temas abarca todas las áreas de los sistemas inteligentes modernos y la informática como: inteligencia computacional, soft computing incluyendo redes neuronales, inteligencia social, inteligencia ambiental, sistemas auto-organizados y adaptativos, computación centrada en el ser humano y centrada en el ser humano, sistemas de recomendación, control inteligente, robótica y mecatrónica, incluida la colaboración entre el ser humano y la máquina, paradigmas basados en el conocimiento, paradigmas de aprendizaje, ética de la máquina, análisis inteligente de datos, gestión del conocimiento, agentes inteligentes, toma de decisiones inteligentes y apoyo, seguridad de la red inteligente, gestión de la confianza, entretenimiento interactivo, inteligencia de la Web y multimedia. Las publicaciones en el marco de «El rol de la inteligencia artificial y la computación distribuida en las aplicaciones IoT» son principalmente las actas de seminarios, simposios y conferencias. Abarcan importantes novedades recientes en la materia, tanto de naturaleza fundacional como aplicable. Un importante rasgo característico de la serie es el corto tiempo de publicación. Esto permite una rápida y amplia difusión de los resultados de las investigaciones[EN] The series «The Role of Artificial Intelligence and Distributed Computing in IoT Applications» contains publications on the theory and applications of distributed computing and artificial intelligence in the Internet of Things. Virtually all disciplines such as engineering, natural sciences, computer and information sciences, ICT, economics, business, e-commerce, environment, health and life sciences are covered. The list of topics covers all areas of modern intelligent systems and computer science: computational intelligence, soft computing including neural networks, social intelligence, ambient intelligence, self-organising and adaptive systems, human-centred and people-centred computing, recommendation systems, intelligent control, robotics and mechatronics including human-machine collaboration, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, web intelligence, and multimedia. The publications in the framework of «The Role of Artificial Intelligence and Distributed Computing in IoT Applications» are mainly the proceedings of seminars, symposia and conferences. They cover important recent developments in the field, whether of a foundational or applicable character. An important feature of the series is the short publication time. This allows for the rapid and wide dissemination of research results

    Managing smart cities with deepint.net

    Get PDF
    In this keynote, the evolution of intelligent computer systems will be examined. The need for human capital will be emphasised, as well as the need to follow one’s “gut instinct” in problem-solving. We will look at the benefits of combining information and knowledge to solve complex problems and will examine how knowledge engineering facilitates the integration of different algorithms. Furthermore, we will analyse the importance of complementary technologies such as IoT and Blockchain in the development of intelligent systems. It will be shown how tools like "Deep Intelligence" make it possible to create computer systems efficiently and effectively. "Smart" infrastructures need to incorporate all added-value resources so they can offer useful services to the society, while reducing costs, ensuring reliability and improving the quality of life of the citizens. The combination of AI with IoT and with blockchain offers a world of possibilities and opportunities

    AIoT for Smart territories

    Get PDF
    Artificial Intelligence revived in the last decade. The need for progress, the growing processing capacity and the low cost of the Cloud have facilitated the development of new, powerful algorithms. The efficiency of these algorithms in Big Data processing, Deep Learning and Convolutional Networks is transforming the way we work and is opening new horizons. Thanks to them, we can now analyse data and obtain unimaginable solutions to today’s problems. Nevertheless, our success is not entirely based on algorithms, it also comes from our ability to follow our “gut” when choosing the best combination of algorithms for an intelligent artefact. It's about approaching engineering with a lot of knowledge and tact. This involves the use of both connectionist and symbolic systems, and of having a full understanding of the algorithms used. Moreover, to address today’s problems we must work with both historical and real-time data

    DeepTech – AI-IoT in smart cities

    Get PDF
    In this keynote, the evolution of intelligent computer systems will be examined. The need for human capital will be emphasised, as well as the need to follow one’s “gut instinct” in problem-solving. We will look at the benefits of combining information and knowledge to solve complex problems and will examine how knowledge engineering facilitates the integration of different algorithms. Furthermore, we will analyse the importance of complementary technologies such as IoT and Blockchain in the development of intelligent systems. It will be shown how tools like "Deep Intelligence" make it possible to create computer systems efficiently and effectively. "Smart" infrastructures need to incorporate all added-value resources so they can offer useful services to the society, while reducing costs, ensuring reliability and improving the quality of life of the citizens. The combination of AI with IoT and with blockchain offers a world of possibilities and opportunities

    Learning AI with deepint.net

    Get PDF
    This keynote will examine the evolution of intelligent computer systems over the last years, underscoring the need for human capital in this field, so that further progress can be made. In this regard, learning about AI through experience is a big challenge, but it is possible thanks to tools such as deepint.net, which enable anyone to develop AI systems; knowledge of programming is no longer necessary

    Smart territories

    Get PDF
    The concept of smart cities is relatively new in research. Thanks to the colossal advances in Artificial Intelligence that took place over the last decade we are able to do all that that we once thought impossible; we build cities driven by information and technologies. In this keynote, we are going to look at the success stories of smart city-related projects and analyse the factors that led them to success. The development of interactive, reliable and secure systems, both connectionist and symbolic, is often a time-consuming process in which numerous experts are involved. However, intuitive and automated tools like “Deep Intelligence” developed by DCSc and BISITE, facilitate this process. Furthermore, in this talk we will analyse the importance of complementary technologies such as IoT and Blockchain in the development of intelligent systems, as well as the use of edge platforms or fog computing
    corecore