3,587 research outputs found

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Inter-organizational Interoperability through integration of Multiagent, Web Service, and Semantic Web Technologies

    Get PDF
    This paper presents a software architecture for inter-organizational multiagent systems. The architecture integrates Web service technology into multiagent systems to overcome the technical interoperability problem of current multiagent systems in the fast growing service-oriented environments. We integrate Semantic Web technology to make multiagent systems semantically interoperable. We address the problem of interoperability regarding interfaces, messaging protocols, data exchanged, and security whilst considering a dynamic e-business environment. The proposed architecture enables service virtualization, secure service access across organizational boundaries, service-to-agent communication, and OWL reasoning within agents

    Managing Requirement Volatility in an Ontology-Driven Clinical LIMS Using Category Theory. International Journal of Telemedicine and Applications

    Get PDF
    Requirement volatility is an issue in software engineering in general, and in Web-based clinical applications in particular, which often originates from an incomplete knowledge of the domain of interest. With advances in the health science, many features and functionalities need to be added to, or removed from, existing software applications in the biomedical domain. At the same time, the increasing complexity of biomedical systems makes them more difficult to understand, and consequently it is more difficult to define their requirements, which contributes considerably to their volatility. In this paper, we present a novel agent-based approach for analyzing and managing volatile and dynamic requirements in an ontology-driven laboratory information management system (LIMS) designed for Web-based case reporting in medical mycology. The proposed framework is empowered with ontologies and formalized using category theory to provide a deep and common understanding of the functional and nonfunctional requirement hierarchies and their interrelations, and to trace the effects of a change on the conceptual framework.Comment: 36 Pages, 16 Figure

    An ontology-based spatial group decision support system for site selection application

    Get PDF
    This paper presents a new ontology-based multicriteria spatial group decision support system (GDSS) dedicated to site selection problems. Site selection is one of the most complex problems in the construction of a new building. It presents a crucial problem in terms of selecting the appropriate site among a group of decision makers with multiple alternatives (sites); in addition, the site must satisfy several criteria. To deal with this, the present paper introduces an ontology based multicriteria analysis method to solve semantic heterogeneity in vocabulary used by participants in spatial group decision support systems. The advantages of using ontology in GDSS are many: i) it enables the integration of heterogeneous sources of data available on the web and ii) it enables to facilitate meaning and sharing of data used in GDSS by participants. In order to facilitate cooperation and collaboration between participants in GDSS, our work aims to apply ontology at the model's structuration phase. The proposed system has been successfully implemented and exploited for a personalized environment

    Extensible Modeling and Simulation Framework (XMSF) Opportunities for Web-Based Modeling and Simulation

    Get PDF
    Technical Opportunities Workshop Whitepaper, 14 June 2002Purpose: As the Department of Defense (DoD) is engaged in both warfighting and institutional transformation for the new millennium, DoD Modeling & Simulation (M&S) also needs to identify and adopt transformational technologies which provide direct tactical relevance to warfighters. Because the only software systems that composably scale to worldwide scope utilize the World Wide Web, it is evident that an extensible Web-based framework shows great promise to scale up the capabilities of M&S systems to meet the needs of training, analysis, acquisition, and the operational warfighter. By embracing commercial web technologies as a shared-communications platform and a ubiquitous-delivery framework, DoD M&S can fully leverage mainstream practices for enterprise-wide software development

    Adapting Agent Platforms to Web Service Environments

    Get PDF
    This master thesis tries to address the above-mentioned issues by creating an agent plat- form suitable for encapsulating web-services into agents, providing them with typical agent capabilities (such as learning or complex communication and reasoning mechanisms). The objective of this point is to create a generic, modular agent platform that is able to run lightweight agents. The agents should be able to easily invoke web-services, e ectively encapsulating them. They also should be able to easily coordinate for composing the invoked services in order to perform complex tasks. Thus, the platform must provide facilities to allow the agents perform these service invocations

    Ontology for cyber-physical-social systems self-organisation

    Get PDF
    Cyber-Physical-Social Systems (CPSSs) integrate various resources from physical, cyber, and social worlds. Efficient interaction of these resources is essential for CPSSs operation. Ontologies do not only provide for semantic operability between different resources but also provide means to create sharable ontology-based context models specified for actual settings. Usage of the context supports situation-driven behavior of CPSSs resources and thus is an enabler for their self-organisation. The present research inherits the idea of context ontologies usage for modelling context in CPSSs. In this work, an upper level context ontology for CPSSs is proposed. This ontology is applied in the domain of self-organising resource network

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains
    corecore