149 research outputs found

    Blockchain-Coordinated Frameworks for Scalable and Secure Supply Chain Networks

    Full text link
    Supply chains have progressed through time from being limited to a few regional traders to becoming complicated business networks. As a result, supply chain management systems now rely significantly on the digital revolution for the privacy and security of data. Due to key qualities of blockchain, such as transparency, immutability and decentralization, it has recently gained a lot of interest as a way to solve security, privacy and scalability problems in supply chains. However conventional blockchains are not appropriate for supply chain ecosystems because they are computationally costly, have a limited potential to scale and fail to provide trust. Consequently, due to limitations with a lack of trust and coordination, supply chains tend to fail to foster trust among the network’s participants. Assuring data privacy in a supply chain ecosystem is another challenge. If information is being shared with a large number of participants without establishing data privacy, access control risks arise in the network. Protecting data privacy is a concern when sending corporate data, including locations, manufacturing supplies and demand information. The third challenge in supply chain management is scalability, which continues to be a significant barrier to adoption. As the amount of transactions in a supply chain tends to increase along with the number of nodes in a network. So scalability is essential for blockchain adoption in supply chain networks. This thesis seeks to address the challenges of privacy, scalability and trust by providing frameworks for how to effectively combine blockchains with supply chains. This thesis makes four novel contributions. It first develops a blockchain-based framework with Attribute-Based Access Control (ABAC) model to assure data privacy by adopting a distributed framework to enable fine grained, dynamic access control management for supply chain management. To solve the data privacy challenge, AccessChain is developed. This proposed AccessChain model has two types of ledgers in the system: local and global. Local ledgers are used to store business contracts between stakeholders and the ABAC model management, whereas the global ledger is used to record transaction data. AccessChain can enable decentralized, fine-grained and dynamic access control management in SCM when combined with the ABAC model and blockchain technology (BCT). The framework enables a systematic approach that advantages the supply chain, and the experiments yield convincing results. Furthermore, the results of performance monitoring shows that AccessChain’s response time with four local ledgers is acceptable, and therefore it provides significantly greater scalability. Next, a framework for reducing the bullwhip effect (BWE) in SCM is proposed. The framework also focuses on combining data visibility with trust. BWE is first observed in SC and then a blockchain architecture design is used to minimize it. Full sharing of demand data has been shown to help improve the robustness of overall performance in a multiechelon SC environment, especially for BWE mitigation and cumulative cost reduction. It is observed that when it comes to providing access to data, information sharing using a blockchain has some obvious benefits in a supply chain. Furthermore, when data sharing is distributed, parties in the supply chain will have fair access to other parties’ data, even though they are farther downstream. Sharing customer demand is important in a supply chain to enhance decision-making, reduce costs and promote the final end product. This work also explores the ability of BCT as a solution in a distributed ledger approach to create a trust-enhanced environment where trust is established so that stakeholders can share their information effectively. To provide visibility and coordination along with a blockchain consensus process, a new consensus algorithm, namely Reputation-based proof-of cooperation (RPoC), is proposed for blockchain-based SCM, which does not involve validators to solve any mathematical puzzle before storing a new block. The RPoC algorithm is an efficient and scalable consensus algorithm that selects the consensus node dynamically and permits a large number of nodes to participate in the consensus process. The algorithm decreases the workload on individual nodes while increasing consensus performance by allocating the transaction verification process to specific nodes. Through extensive theoretical analyses and experimentation, the suitability of the proposed algorithm is well grounded in terms of scalability and efficiency. The thesis concludes with a blockchain-enabled framework that addresses the issue of preserving privacy and security for an open-bid auction system. This work implements a bid management system in a private BC environment to provide a secure bidding scheme. The novelty of this framework derives from an enhanced approach for integrating BC structures by replacing the original chain structure with a tree structure. Throughout the online world, user privacy is a primary concern, because the electronic environment enables the collection of personal data. Hence a suitable cryptographic protocol for an open-bid auction atop BC is proposed. Here the primary aim is to achieve security and privacy with greater efficiency, which largely depends on the effectiveness of the encryption algorithms used by BC. Essentially this work considers Elliptic Curve Cryptography (ECC) and a dynamic cryptographic accumulator encryption algorithm to enhance security between auctioneer and bidder. The proposed e-bidding scheme and the findings from this study should foster the further growth of BC strategies

    On distributed ledger technology for the internet of things: design and applications

    Get PDF
    Distributed ledger technology (DLT) can used to store information in such a way that no individual or organisation can compromise its veracity, contrary to a traditional centralised ledger. This nascent technology has received a great deal of attention from both researchers and practitioners in recent years due to the vast array of open questions related to its design and the assortment novel applications it unlocks. In this thesis, we are especially interested in the design of DLTs suitable for application in the domain of the internet of things (IoT), where factors such as efficiency, performance and scalability are of paramount importance. This work confronts the challenges of designing IoT-oriented distributed ledgers through analysis of ledger properties, development of design tools and the design of a number of core protocol components. We begin by introducing a class of DLTs whose data structures consist of directed acyclic graphs (DAGs) and which possess properties that make them particularly well suited to IoT applications. With a focus on the DAG structure, we then present analysis through mathematical modelling and simulations which provides new insights to the properties of this class of ledgers and allows us to propose novel security enhancements. Next, we shift our focus away from the DAG structure itself to another open problem for DAG-based distributed ledgers, that of access control. Specifically, we present a networking approach which removes the need for an expensive and inefficient mechanism known as Proof of Work, solving an open problem for IoT-oriented distributed ledgers. We then draw upon our analysis of the DAG structure to integrate and test our new access control with other core components of the DLT. Finally, we present a mechanism for orchestrating the interaction between users of a DLT and its operators, seeking to improves the usability of DLTs for IoT applications. In the appendix, we present two projects also carried out during this PhD which showcase applications of this technology in the IoT domain.Open Acces

    The Authority of Distributed Consensus Systems Trust, Governance, and Normative Perspectives on Blockchains and Distributed Ledgers

    Get PDF
    The subjects of this dissertation are distributed consensus systems (DCS). These systems gained prominence with the implementation of cryptocurrencies, such as Bitcoin. This work aims at understanding the drivers and motives behind the adoption of this class of technologies, and to – consequently – evaluate the social and normative implications of blockchains and distributed ledgers. To do so, a phenomenological account of the field of distributed consensus systems is offered, then the core claims for the adoption of systems are taken into consideration. Accordingly, the relevance of these technologies on trust and governance is examined. It will be argued that the effects on these two elements do not justify the adoption of distributed consensus systems satisfactorily. Against this backdrop, it will be held that blockchains and similar technologies are being adopted because they are regarded as having a valid claim to authority as specified by Max Weber, i.e., herrschaft. Consequently, it will be discussed whether current implementations fall – and to what extent – within the legitimate types of traditional, charismatic, and rational-legal authority. The conclusion is that the conceptualization developed by Weber does not capture the core ideas that appear to establish the belief in the legitimacy of distributed consensus systems. Therefore, this dissertation describes the herrschaft of systems such as blockchains by conceptualizing a computational extension of the pure type of rational-legal authority, qualified as algorithmic authority. The foundational elements of algorithmic authority are then discussed. Particular attention is focused on the idea of normativity cultivated in systems of algorithmic rules as well as the concept of decentralization. Practical suggestions conclude the following dissertation

    A P2P Networking Simulation Framework For Blockchain Studies

    Full text link
    Recently, blockchain becomes a disruptive technology of building distributed applications (DApps). Many researchers and institutions have devoted their resources to the development of more effective blockchain technologies and innovative applications. However, with the limitation of computing power and financial resources, it is hard for researchers to deploy and test their blockchain innovations in a large-scape physical network. Hence, in this dissertation, we proposed a peer-to-peer (P2P) networking simulation framework, which allows to deploy and test (simulate) a large-scale blockchain system with thousands of nodes in one single computer. We systematically reviewed existing research and techniques of blockchain simulator and evaluated their advantages and disadvantages. To achieve generality and flexibility, our simulation framework lays the foundation for simulating blockchain network with different scales and protocols. We verified our simulation framework by deploying the most famous three blockchain systems (Bitcoin, Ethereum and IOTA) in our simulation framework. We demonstrated the effectiveness of our simulation framework with the following three case studies: (a) Improve the performance of blockchain by changing key parameters or deploying new directed acyclic graph (DAG) structure protocol; (b) Test and analyze the attack response of Tangle-based blockchain (IOTA) (c) Establish and deploy a new smart grid bidding system for demand side in our simulation framework. This dissertation also points out a series of open issues for future research

    Blockchain, business and the fourth industrial revolution:Whence, whither, wherefore and how?

    Get PDF
    Blockchain is one the most remarkable technological innovations of the 21st century. The most notable application of blockchain is in the development and operation of cryptocurrencies (e.g. bitcoin, ethereum, among others). Besides the financial services industry, blockchain is also considered in other sectors such as international trade, taxation, supply chain management, business operations and governance. However, blockchain has not been examined comprehensively in all areas of relevant literature. This article conducts a survey of the literature to gain an understanding of the opportunities and issues presented by blockchain in various business functions. The article begins by providing a discussion regarding how the blockchain technology operates. The paper takes a broad focus in its analysis of the prospects of blockchain for various business functions, including banking and the capital markets, corporate governance, international trade, and taxation. The paper demonstrates how organisations and regulators can leverage blockchain to upscale business operations, enhance efficiency and reduce operational costs. The key drawbacks of blockchain that stakeholders need to bear in mind before adopting the technology are also highlighted. The article also reflects on how organisations can tap into blockchain to reap the full potential of the fourth industrial revolution

    Decentralized Finance – A Systematic Literature Review and Research Directions

    Get PDF
    Decentralized Finance (DeFi) is the (r)evolutionary movement to create a solely code-based, intermediary-independent financial system—a movement which has grown from 4bnto4bn to 104bn in assets locked in the last three years. We present the first systematic literature review of the yet fragmented DeFi research field. By identifying, analyzing, and integrating 83 peer-reviewed DeFi-related publications, our results contribute fivefold. First, we confirm the increasing growth of academic DeFi publications through systematic analysis. Second, we frame DeFi-related literature into three levels of abstraction (micro, meso, and macro) and seven subcategories. Third, we identify Ethereum as the blockchain in main academic focus. Fourth, we show that prototyping is the dominant research method applied whereas only one paper has used primary research data. Fifth, we derive four prioritized research avenues, namely concerning i) DeFi protocol interaction and aggregation platforms, ii) decentralized off-chain data integration to DeFi, iii) DeFi agents, and iv) regulation
    • …
    corecore