5 research outputs found

    Fast consensus via predictive pinning control

    Get PDF
    By incorporating some predictive mechanism into a few pinning nodes, we show that convergence procedure to consensus can be substantially accelerated in networks of interconnected dynamic agents while physically maintaining the network topology. Such an acceleration stems from the compression mechanism of the eigenspectrum of the state matrix conferred by the predictive mechanism. This study provides a technical basis for the roles of some predictive mechanisms in widely-spread biological swarms, flocks, and consensus networks. From the engineering application point of view, inclusion of an efficient predictive mechanism allows for a significant increase in the convergence speed towards consensus. © 2011 IEEE.published_or_final_versio

    On the Positive Effect of Delay on the Rate of Convergence of a Class of Linear Time-Delayed Systems

    Full text link
    This paper is a comprehensive study of a long observed phenomenon of increase in the stability margin and so the rate of convergence of a class of linear systems due to time delay. We use Lambert W function to determine (a) in what systems the delay can lead to increase in the rate of convergence, (b) the exact range of time delay for which the rate of convergence is greater than that of the delay free system, and (c) an estimate on the value of the delay that leads to the maximum rate of convergence. For the special case when the system matrix eigenvalues are all negative real numbers, we expand our results to show that the rate of convergence in the presence of delay depends only on the eigenvalues with minimum and maximum real parts. Moreover, we determine the exact value of the maximum rate of convergence and the corresponding maximizing time delay. We demonstrate our results through a numerical example on the practical application in accelerating an agreement algorithm for networked~systems by use of a delayed feedback

    Consensusability of discrete-time multi-agent systems

    Get PDF
    The study of multi-agent systems (MAS) focuses on systems in which many intelligent agents interact within an environment. The agents are considered to be autonomous entities. MAS can be used to solve problems that are difficult or impossible for an individual agent to solve. The main feature which is achieved when developing MAS, if they work, is flexibility, since MAS can be added to, modified and reconstructed, without the need for detailed rewriting of the application. MAS can manifest self-organization as well as self-steering related complex behaviors even when the individual strategies of all their agents are simple. The goal of MAS research is to find methods that allow us to build complex systems composed of autonomous agents who, while operating on local knowledge and possessing only limited abilities, are nonetheless capable of enacting the desired global behaviors. We want to know how to take a description of what a system of agents should do and break it down into individual agent behaviors. This thesis investigates the problem when discrete-time MAS are consensusable under undirected graph. A discussion is provided to show how the problem differs from continuous time system. Then a consensusability condition is derived in terms of the Mahler measure of the agent system for single input single out systems (SISO) and result shows that there is an improved consensusability by a power of two. An algorithm is proposed for distributed consensus feedback control law when the consensusability holds. Also the case of output feedback is considered in which the consensusability problem becomes more complicated. To solve this we decompose the problem into two parts i.e. state feedback and state estimation. Simulation results demonstrate the effectiveness of the established results
    corecore