124,676 research outputs found

    MACS: Multi-agent COTR system for Defense Contracting

    Get PDF
    The field of intelligent multi-agent systems has expanded rapidly in the recent past. Multi-agent architectures and systems are being investigated and continue to develop. To date, little has been accomplished in applying multi-agent systems to the defense acquisition domain. This paper describes the design, development, and related considerations of a multi-agent system in the area of procurement and contracting for the defense acquisition community

    Multi-Agent Only Knowing

    Full text link
    Levesque introduced a notion of ``only knowing'', with the goal of capturing certain types of nonmonotonic reasoning. Levesque's logic dealt with only the case of a single agent. Recently, both Halpern and Lakemeyer independently attempted to extend Levesque's logic to the multi-agent case. Although there are a number of similarities in their approaches, there are some significant differences. In this paper, we reexamine the notion of only knowing, going back to first principles. In the process, we simplify Levesque's completeness proof, and point out some problems with the earlier definitions. This leads us to reconsider what the properties of only knowing ought to be. We provide an axiom system that captures our desiderata, and show that it has a semantics that corresponds to it. The axiom system has an added feature of interest: it includes a modal operator for satisfiability, and thus provides a complete axiomatization for satisfiability in the logic K45.Comment: To appear, Journal of Logic and Computatio

    Arena: A General Evaluation Platform and Building Toolkit for Multi-Agent Intelligence

    Full text link
    Learning agents that are not only capable of taking tests, but also innovating is becoming a hot topic in AI. One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logics and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided game set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide Python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard. All the implementations and accompanied tutorials have been open-sourced for the community at https://sites.google.com/view/arena-unity/

    Multi Agent Micromanipulation System

    Get PDF
    In the area of biotechnology, a micromanipulation is widely used for such purposes as operating on genes and transferring biological materials into cells. For the some experiments, such as biochemical experiment, a large number of cells have to be manipulated in a short time. We have developed an automatic micromanipulation system under the stereoscopic microscope. Micromanipulation system carries out various processes, such as detection of the target, the detection of the needle head, and motor control. By sharing these processes with several computers, the micromanipulation can be performed at high speed. As a result, computer cooperation becomes very important. In this paper, we propose a multi agent micromanipulation system. At first, we developed a multi agent system, which performs image processing, motor control, and management of the micromanipulation processes. Secondarily, we proposed to operate computers cooperative. We use a computer as a single agent. And several computers are connected to a local area network. The multi agent micromanipulation system performed the micromanipulation at a realistic rate through cooperation of multi agents.</p

    Multi-agent-based DDoS detection on big data systems

    Get PDF
    The Hadoop framework has become the most deployed platform for processing Big Data. Despite its advantages, Hadoop s infrastructure is still deployed within the secured network perimeter because the framework lacks adequate inherent security mechanisms against various security threats. However, this approach is not sufficient for providing adequate security layer against attacks such as Distributed Denial of Service. Furthermore, current work to secure Hadoop s infrastructure against DDoS attacks is unable to provide a distributed node-level detection mechanism. This thesis presents a software agent-based framework that allows distributed, real-time intelligent monitoring and detection of DDoS attack at Hadoop s node-level. The agent s cognitive system is ingrained with cumulative sum statistical technique to analyse network utilisation and average server load and detect attacks from these measurements. The framework is a multi-agent architecture with transducer agents that interface with each Hadoop node to provide real-time detection mechanism. Moreover, the agents contextualise their beliefs by training themselves with the contextual information of each node and monitor the activities of the node to differentiate between normal and anomalous behaviours. In the experiments, the framework was exposed to TCP SYN and UDP flooding attacks during a legitimate MapReduce job on the Hadoop testbed. The experimental results were evaluated regarding performance metrics such as false-positive ratio, false-negative ratio and response time to attack. The results show that UDP and TCP SYN flooding attacks can be detected and confirmed on multiple nodes in nineteen seconds with 5.56% false-positive ration, 7.70% false-negative ratio and 91.5% success rate of detection. The results represent an improvement compare to the state-of the-ar
    • …
    corecore