4 research outputs found

    Waveform libraries: Measures of effectiveness for radar scheduling

    Get PDF
    Our goal was to provide an overview of a circle of emerging ideas in the area of waveform scheduling for active radar. Principled scheduling of waveforms in radar and other active sensing modalities is motivated by the nonexistence of any single waveform that is ideal for all situations encountered in typical operational scenarios. This raises the possibility of achieving operationally significant performance gains through closed-loop waveform scheduling. In principle, the waveform transmitted in each epoch should be optimized with respect to a metric of desired performance using all information available from prior measurements in conjunction with models of scenario dynamics. In practice, the operational tempo of the system may preclude such on-the-fly waveform design, though further research into fast adaption of waveforms could possibly attenuate such obstacles in the future. The focus in this article has been on the use of predesigned libraries of waveforms from which the scheduler can select in lieu of undertaking a real-time design. Despite promising results, such as the performance gains shown in the tracking example presented here, many challenges remain to be addressed to bring the power of waveform scheduling to the level of maturity needed to manifest major impact as a standard component of civilian and military radar systems.Douglas Cochran, Sofia Suvorova, Stephen D. Howard and Bill Mora

    Cognitive Radar Detection in Nonstationary Environments and Target Tracking

    Get PDF
    Target detection and tracking are the most fundamental and important problems in a wide variety of defense and civilian radar systems. In recent years, to cope with complex environments and stealthy targets, the concept of cognitive radars has been proposed to integrate intelligent modules into conventional radar systems. To achieve better performance, cognitive radars are designed to sense, learn from, and adapt to environments. In this dissertation, we introduce cognitive radars for target detection in nonstationary environments and cognitive radar networks for target tracking.For target detection, many algorithms in the literature assume a stationary environment (clutter). However, in practical scenarios, changes in the nonstationary environment can perturb the parameters of the clutter distribution or even alter the clutter distribution family, which can greatly deteriorate the target detection capability. To avoid such potential performance degradation, cognitive radar systems are envisioned which can rapidly recognize the nonstationarity, accurately learn the new characteristics of the environment, and adaptively update the detector. To achieve this cognition, we propose a unifying framework that integrates three functions: (i) change-point detection of clutter distributions by using a data-driven cumulative sum (CUSUM) algorithm and its extended version, (ii) learning/identification of clutter distribution by using kernel density estimation (KDE) methods and similarity measures (iii) adaptive target detection by automatically modifying the likelihood-ratio test and the corresponding detection threshold. We also conduct extensive numerical experiments to show the merits of the proposed method compared to a nonadaptive case, an adaptive matched filter (AMF) method, and the clairvoyant case.For target tracking, with remarkable advances in sensor techniques and deployable platforms, a sensing system has freedom to select a subset of available radars, plan their trajectories, and transmit designed waveforms. Accordingly, we propose a general framework for single target tracking in cognitive networks of radars, including joint consideration of waveform design, path planning, and radar selection. We formulate the tracking procedure using the theories of dynamic graphical models (DGM) and recursive Bayesian state estimation (RBSE). This procedure includes two iterative steps: (i) solving a combinatorial optimization problem to select the optimal subset of radars, waveforms, and locations for the next tracking instant, and (ii) acquiring the recursive Bayesian state estimation to accurately track the target. Further, we use an illustrative example to introduce a specific scenario in 2-D space. Simulation results based on this scenario demonstrate that the proposed framework can accurately track the target under the management of a network of radars

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore