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ABSTRACT OF THE DISSERTATION

Cognitive Radar Detection in Nonstationary Environments and Target Tracking

by

Yijian Xiang

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2020

Professor Arye Nehorai, Chair

Target detection and tracking are the most fundamental and important problems in a wide

variety of defense and civilian radar systems. In recent years, to cope with complex environ-

ments and stealthy targets, the concept of cognitive radars has been proposed to integrate

intelligent modules into conventional radar systems. To achieve better performance, cognitive

radars are designed to sense, learn from, and adapt to environments. In this dissertation, we

introduce cognitive radars for target detection in nonstationary environments and cognitive

radar networks for target tracking.

For target detection, many algorithms in the literature assume a stationary environment

(clutter). However, in practical scenarios, changes in the nonstationary environment can

perturb the parameters of the clutter distribution or even alter the clutter distribution fam-

ily, which can greatly deteriorate the target detection capability. To avoid such potential

performance degradation, cognitive radar systems are envisioned which can rapidly recog-

nize the nonstationarity, accurately learn the new characteristics of the environment, and

xi



adaptively update the detector. To achieve this cognition, we propose a unifying framework

that integrates three functions: (i) change-point detection of clutter distributions by using

a data-driven cumulative sum (CUSUM) algorithm and its extended version, (ii) learn-

ing/identification of clutter distribution by using kernel density estimation (KDE) meth-

ods and similarity measures (iii) adaptive target detection by automatically modifying the

likelihood-ratio test and the corresponding detection threshold. We also conduct extensive

numerical experiments to show the merits of the proposed method compared to a nonadap-

tive case, an adaptive matched filter (AMF) method, and the clairvoyant case.

For target tracking, with remarkable advances in sensor techniques and deployable platforms,

a sensing system has freedom to select a subset of available radars, plan their trajectories,

and transmit designed waveforms. Accordingly, we propose a general framework for single

target tracking in cognitive networks of radars, including joint consideration of waveform

design, path planning, and radar selection. We formulate the tracking procedure using

the theories of dynamic graphical models (DGM) and recursive Bayesian state estimation

(RBSE). This procedure includes two iterative steps: (i) solving a combinatorial optimization

problem to select the optimal subset of radars, waveforms, and locations for the next tracking

instant, and (ii) acquiring the recursive Bayesian state estimation to accurately track the

target. Further, we use an illustrative example to introduce a specific scenario in 2-D space.

Simulation results based on this scenario demonstrate that the proposed framework can

accurately track the target under the management of a network of radars.

xii



Chapter 1

Introduction

Target detection and tracking have long been the most relevant and important problems in

a wide variety of civilian and military radar systems, such as air traffic control, navigation,

and weather prediction. In these applications, target detection answers whether a target is

present or not in a certain area, while target tracking predicts and estimates the trajectory

of a moving target. For example, in aircraft navigation, the radar continuously reports

the existence of potential objects, such as other aircraft, by detection, and then tracks

the objects to avoid collision. A similar idea is also used in the emerging technology of

autonomous vehicles, where, assisted by radars installed in the vehicle, detection and tracking

algorithms provide position and velocity information about pedestrians, other cars, and the

environments. In meteorology, radars detect atmospheric conditions and track them to

predict the weather. Further, detection and tracking results can be input data for higher

level processing, such as target classification and recognition, so that targets can be classified

into different categories and hostile targets can be recognized. As the foundations of many

real applications, target detection and tracking algorithms should be carefully designed to

perform well and serve practical uses accurately.

1



1.1 Target Detection

In active radar systems, a radar transmits modulated electromagnetic waves to the surveil-

lance space, and the receiver of the radar receives their echo [1]. The echo may contain a

combination of the back-scattered signal from the target, some unwanted “signals” returned

from objects that are not the target, and noise. The unwanted “signals” are called clutter,

and are typically caused by returns from the ground, sea, rain, chaff, and atmospheric tur-

bulence in the surveillance space. When clutter is present, it usually dominates the noise

and can seriously hinder the performance of detection and tracking. Thus, it is critical to

accurately model and capture the characteristics of the clutter constantly.

In general, in the literature and in practical use, the target detection problem in the presence

of clutter and noise is formulated as a binary statistical hypothesis testing [2, 3]. The null

hypothesis assumes that there is no target in a certain range bin or Doppler bin, which

implies that only clutter and noise are collected by the radar. The alternative hypothesis

assumes that the received echo contains the signal back-scattered from the target, which is

corrupted by some clutter and noise. A test statistic is designed to compare with a threshold

to decide whether a target is present or not. The design of the test statistic and the choice

of the threshold are highly relevant to the underlying clutter distribution. If the clutter

distribution changes, then the detection algorithm should be changed accordingly.

1.2 Target Tracking

Target tracking estimates the state of a target, e.g., its position and velocity, by using

measurements received at multiple time steps in conjunction with one or more assumed

2



kinematic models [4, 5]. For example, radar detection may collect the range and radial

Doppler information for a target at each processing step. Given these measurements, and

assuming that the target is moving in a certain mode, e.g., turning mode, we can estimate

the position and velocity of the target better than by using the range and radial Doppler

information from only one step.

In most target tracking algorithms, the goal is to accurately estimate the posterior distri-

bution of the target state given the measurement collected from the current time step and

all the previous measurements. Recursive Bayesian estimation is widely used for this pur-

pose. In general, a recursive Bayesian estimation algorithm updates the belief of the state

at the current time step by using the belief of the state from the last time step and new

measurement information collected from the current time step. Sequentially, a recursion is

built for the beliefs of target states in adjacent time steps. The Kalman filter, one of the

most famous algorithms for target tracking, is optimal under two key assumptions. First,

it assumes that the kinematic model (i.e., the state transition model) of the target and the

measurement model are linear; Second, it assumes that the process noise and the measure-

ment noise are both Gaussian. However, for target tracking in radar and many other areas,

these assumptions may not hold. For example, a marine X-band radar measures the range

and the azimuth of the target, while the target state is usually modeled in the x-y coordinate.

The non-linearity between the measurements and target state limits the usage of the Kalman

filter. To loosen the first assumption for linearity, the extended Kalman filter (EKF) and

unscented Kalman filter (UKF) have been proposed. The EFK approximates the nonlinear

functions in the kinematic model and measurement model by using Taylor series expansion

at the predicted target state, and the first order approximation is used in the framework of

the Kalman filter. The UKF uses a deterministic sampling technique known as unscented

transformation to pick a set of sigma points around the mean. Then the sigma points are
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propagated through the nonlinear function to generate a new mean and covariance estimate.

To further remove the second Gaussian assumption, the particle filter (PF) was proposed

which uses random sampling and Monte-Carlo simulation techniques. The posterior dis-

tributions of the target state are represented by a set of random samples (particles), and

then the recursive Bayesian estimation is manipulated by propagating the random samples

and resampling. The merit of the Kalman filter family is that the posterior distribution of

the target state can be represented by only the estimated mean and covariance, while the

particle filter needs to store a large set of samples.

1.3 Cognitive Radar

In recent years, the concept of cognitive radar has been proposed, which requires that the

radar system can effectively sense the environment, learn from its experience, and adapt

to the environment by integrating more complex but intelligent modules [6–8]. Fig. 1.1

shows comparative views of a traditional radar system and a cognitive radar system. As

we can see, a traditional radar system usually lacks a learning module, which can collects

useful information from the environments and targets, and thus it fails to adjust its detec-

tion/tracking algorithms and communicate with its transmitters to adapt to the constantly

changing environments and targets. In contrast, a cognitive radar system can avoid the

target detection and tracking performance degradation by making use of the received and

processed information.

For example, in target detection, due to spatial or temporal variations in radar operational

scenarios, the statistical characteristics of clutter can vary enormously [9], which can greatly

deteriorate the target detection capability if the radar system does not realize the changes
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Figure 1.1: A comparison of a traditional radar system and a cognitive radar system. The
gray dashed box includes the basic modules of a traditional radar system. The red dashed
box includes modules of a cognitive radar system.

and maintains the non-optimized detector. An scenario of target detection in a nonstationary

environment is shown in Fig.1.2. A target is moving across a sea coast, and the underlying

clutter changes from land clutter to sea clutter. The characteristics of sea clutter are starkly

different from those of land-clutter. Through an environment learning module, the radar

system may be able to rapidly realize the changes in clutter distributions and learn the new

clutter distribution. Since a detection algorithm is usually designed based on a specific clutter

distribution, the radar detector can adapt its detection algorithm accordingly to maintain

the optimal properties.
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Figure 1.2: An illustrative example of target detection in nonstationary environment. The
target is moving across a sea coast, and the underlying clutter changes from land clutter to
sea clutter.

Another example involves target tracking. With remarkable advances in radar techniques,

radars now can design various transmitted waveforms to extract more target information.

Further, radar systems have evolved to include multiple static or mobile platforms that co-

ordinate among themselves to view the target in different perspectives [10]. For example,

tracking targets in urban environments using a fleet of self-controlled and self-tasked un-

manned aerial vehicles (UAVs) is much more prevalent now than it was a few years ago.

Thus, when a cognitive radar network receives measurements from a target, the learning

model can control the transmitters to emit proper waveforms, plan the radar trajectories,

and select the appropriate subset of radars, in order to accurately track the target and

efficiently manage the resources on-line. An example of the cognitive radar network that

includes the above functions is given in Fig.1.3, where radars are installed on mobile plat-

forms.
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Figure 1.3: A design of a cognitive radar network. The green dot denotes the target in the
space. The radar network is formed by radars installed on unmanned aerial vehicles (UAVs).
At every time step, the cognitive radar network designs radars’ waveforms, plans their paths,
and selects a subset of radars to accurately track the target.

1.4 Contribution of This Work

In this dissertation, we design frameworks for target detection in nonstationary environments

and for target tracking in cognitive radar networks. We also conduct extensive numerical

experiments to demonstrate the advantages of the proposed frameworks. Our main contri-

butions are summarized as follows.

Cognitive radar detection in nonstationary environments: In this work, we propose

a unifying framework for adaptive target detection in nonstationary environments, integrat-

ing change-point detection, clutter distribution learning, and adaptive detection. To the best
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of our knowledge, this is the first unified target detection mechanism that truly implements

the cognitive radar framework in detecting, learning, and adapting to changes in nonstation-

ary environments. Specifically, we detail and apply an extended cumulative sum (CUSUM)

algorithm to detect multiple change-points that arise in various common complex clutter

distributions. We also apply a learning algorithm to identify the new clutter distribution

after the extended CUSUM algorithm realizes the change-point, and we compare it with the

classical Ozturk algorithm. We first evaluate the detection performance by focusing on one

change-point, and use Wilcoxon rank-sum tests to quantitatively show the statistical signif-

icance of the improvements. We next examine the dynamic behaviors of the methods along

the time axis while multiple change-points are present, which reflects the new framework’s

capability for real-time applications.

Target tracking in cognitive radar networks: In this work, we propose a target tracking

framework that simultaneously designs the transmit waveform, plans the radar trajectory,

and selects the appropriate radar subset. Building on the established theories of dynamic

graphical models (DGM) and recursive Bayesian state estimation (RBSE), we choose the

expected cross-entropy as the objective function and solve a combinatorial optimization

problem to select the optimal subset of radars that transmit well-designed waveforms from

their best locations for receiving the most informative measurements during the next tracking

instant. The received measurements associated with history information are then processed

by a tracker to achieve a more accurate target state estimation. Additionally, we validate the

proposed framework by constructing an illustrative case, where radars with certain movement

constraints track a single target in a 2-D space. Specifically, we choose this simplified case

as it is a representation of a large-scale network of cognitive radars which have certain

constraints on their coverage areas and paths. These constraints reflect real-time scenarios,

especially when each radar in the network is aware of the locations of the other radars in the
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network and when overlapping coverage among radars along same path is avoided by using

the location information, assuming that the target is in the far-field.

1.5 Organization of This Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we present our proposed

methods for target detection in nonstationary environments, which involves change-point

detection, clutter distribution learning, and adaptive detection. In Chapter 3, we introduce

the framework for target tracking in cognitive radar networks, jointly considering waveform

design, path planning, and radar selection. In Chapter 4, we summarize our work and discuss

possible future work to improve the proposed methods for target detection and tracking.
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Chapter 2

Cognitive Target Detection in

Nonstationary Environments

In this chapter, we introduce our proposed framework for cognitive target detection in non-

stationary environments.1

We begin with a common target detection model in the presence of clutter. The target

detection problem is formulated as a statistical hypothesis testing. Then we introduce the

mathematical formulation of the change-point detection problem and our proposed extended

CUSUM algorithm that detects changes in the clutter distributions. Next, we present the

clutter distribution learning method that identifies the new underlying clutter distribution,

so that we can adaptively adjust the detection algorithm. Finally, with extensive numerical

experiments, we demonstrate the validity of our proposed unifying framework, taking into

consideration potential effects caused by the change-point detection module and clutter

distribution learning module.

1This chapter is based on Y. Xiang, M. Akcakaya, S. Sen, and A. Nehorai, “Target detection via cognitive
radars using change-point detection, learning, and adaptation,” in revision for Circuits, Systems, and Signal
Processing.
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2.1 Introduction

In this section, we briefly introduce related previous work and our work on target detection

in nonstationary environments.

2.1.1 Related Work

In previous work, many radar detection algorithms that assume a stationary environment

(clutter) have been proposed [2, 3]. However, in practice, due to spatial or temporal vari-

ations in radar operational scenarios, the statistical characteristics of the clutter can vary

enormously [9], which can greatly deteriorate the target detection capability if the radar

system does not realize the changes and continues to use a non-optimized detector. Nonsta-

tionary clutter is not rare in real applications, and it can have many causes, for example,

changes of allocation positions of radar beams, weather conditions, and versatile hostile

countermeasures and jamming. These factors can perturb the parameters of the clutter

distributions, or even worse, can alter the underlying clutter distribution family.

The Gaussian assumption for clutter distribution is common in the literature, due to its sim-

plicity and roots in the central limit theorem. This assumption is feasible if the range cell of

interest contains a large number of scatterers. However, previous papers have pointed out

that the Gaussian clutter model is not well-behaved in some scenarios [11–13], for example,

target detection with sea clutter, whose distribution usually has a heavier tail than the Gaus-

sian distribution. Further, to improve target detection in these scenarios, more sophisticated

clutter models have been proposed, such as the compound-Gaussian model [14–16], spheri-

cally invariant random vector (SIRV) model [17,18], and log-normal distributed model [19].
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However, most of these proposed techniques derive the optimal detectors by relying on one

specific clutter model. They imply stationary environments, or they assume that the pro-

posed clutter model can sufficiently cope with the parameter-changes of the clutter.

To address the target detection problem in nonstationary environments and maintain optimal

or nearly optimal performance, radar systems should minimize the mismatch between the

assumed clutter model and the real clutter measurements. In other words, the radar systems

need to adjust the threshold of the detector if the parameters of the underlying distribution

of the clutter fluctuate, or even redesign the detector if the clutter distribution starts to

follow a different family. In recent years, the concept of cognitive radar has been proposed,

which requires that the radar system can effectively sense the environment, learn from its

experience, and adapt to the changes by integrating more complex but intelligent modules [6–

8]. In implementing this conceptual cognitive radar, several methods have been proposed

to address the clutter parameter estimation and target detection problem. For example,

with the help of a pre-learned dictionary that contains possible distributions of clutter,

radar systems can intelligently choose the model from the dictionary by using a distribution

identification method, such as the Ozturk method [20,21]. Furthermore, [22,23] also extend

the Ozturk method and propose a clutter identification method and detection threshold

setting method based on an artificial neural network. Other works utilize auto-regressive

models and prior information of the covariance matrix to develop a knowledge-aided Bayesian

covariance matrix estimation method [24–27]. In addition, still others assign exponentially

decaying weights to the clutter covariance estimates and adapt the covariance matrix in

space-time adaptive processing (STAP) by an adaptive weighted sum technique [28,29].

However, these methods usually do not answer the questions of whether there is a change in

the sequentially received clutter measurements and when the change arises. To be considered
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cognitive, radar systems need to (i) rapidly detect the change points of the characteristics

of the clutter, (ii) accurately learn the new distributions of the clutter, and (iii) adaptively

apply the optimal or nearly optimal detectors. Our previous works have separately addressed

these issues, but with strong assumptions and limited analyses.

2.1.2 Our Work

To address the first issue of the cognitive radar, in our previous work [30], we have used a

data-driven cumulative sum (CUSUM) algorithm [31,32] and its extended version for detect-

ing changes in the clutter distribution, and we showed a potential improvement in perfor-

mance if the clutter distribution after the change is accurately identified. However, the work

in [30] was limited to investigating the case in which the clutter distribution changes from a

Gaussian model to a particular compound Gaussian model. It provided only basic scenar-

ios and did not consider various clutter distribution models. Further, the target detection

performance of the proposed method was compared to only the conventional nonadaptive

method, and perfect knowledge was assumed for the change-point, so that the effects of the

change-point detection algorithm on the detection performance were not fully considered. It

also did not learn the clutter distribution after the change-point, and the clutter distributions

before and after the change-point were assumed to be known when investigating the target

detection performance. In this dissertation, we not only provide versatile simulation scenar-

ios and comparisons, but also remove these assumptions for evaluating adaptive detection

performance.

To address the second requirement of the cognitive radar, we proposed a clutter distribution

identification method based on sparse theory and a kernel density estimation method [33],
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investigated the parameter selection and model selection [34], and compared our proposed

method with the Ozturk method [35]. However, in these works [33–35], we did not consider

the change-point detection problem; in other words, we implicitly assumed a perfect change-

point detection result. In order to achieve an effective real-time cognitive radar application,

the continuous examination of change-points should be highly coupled with clutter distribu-

tion learning. Further, these papers did not employ the adaptive detection module after the

clutter distribution learning, rather, they addressed this learning as an independent prob-

lem. In this dissertation, we overcome these limitations and develop a unifying framework

for adaptive detection in nonstationary environments.

2.2 Target Detection Model

In radar target detection, after receiving the echo for each coherent processing interval (CPI),

the radar system usually passes the signal through a matched filter and tests the existence

of the target in the cells of interest (COI). Accordingly, we have the following hypothesis

testing problem for a cell under test (CUT) in the kth CPI:

 H0 : y
(k)
0 = n

(k)
c

H1 : y
(k)
0 = p(k) + n

(k)
c

, (2.1)

where y
(k)
0 is the received signal in the CUT, p(k) denotes the signal corresponding to the

target response, and n
(k)
c denotes the clutter in the CUT. If N pulses are considered in one

CPI, then each of the above vectors is of dimension N . Note that the distribution of n
(k)
c is

not known to the radar in advance, and usually the radar collects secondary target-absent

data to learn the distribution of n
(k)
c . For example, under a homogeneous assumption in
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Figure 2.1: An illustration of the cell under test and target absent cells (secondary data) at
the kth CPI.

space-time adaptive processing (STAP), the secondary data are usually selected near the

CUT and do not overlap with its guard cells. Here we assume that the secondary data are

available and denote them as

Y(k)
c = {y(k)

c1 ,y
(k)
c2 , . . . ,y

(k)
cL }, (2.2)

where elements in the set of secondary data Y(k)
c are independent, and L is the total number

of elements in Y(k)
c . Further, each element in Y(k)

c follows the same clutter distribution as

that of n
(k)
c . Note that in this dissertation, n

(k)
c may follow different distributions or even

different families of distributions as the time k proceeds. An illustrative example of CUT

and the secondary data is given in Fig. 2.1.
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Figure 2.2: An example of a change-point point detection problem. Blue points and green
points are samples from a time series before and after the change point, respectively.

2.3 Change-Point Detection and the Extended CUSUM

Algorithm

2.3.1 Sequential Hypothesis Test and CUSUM Algorithm

Change-point detection aims to identify the time instants when the probability distribution

of a time series changes. An illustrative example is given in Fig. 2.2. Blue points and green

points are samples from a time series before and after the change point, respectively. The

distribution of the samples changes from pθ0 to pθ1 . In this figure, we can see that the

variance of the time series changes at the change point. In general, a change-point detection

algorithm runs along the time axis, and at each time step, it checks whether there is a change

point in the previous time step or not. If a change point is found by the algorithm, then it

stops. It is a common goal to minimize the estimation delay, i.e., the time interval between

the change point and the stopping time, under certain constraints.
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Mathematically, the change-point detection problem for a time series {z(k) : k = 1, 2, 3, . . .}

is formulated as a sequential hypothesis testing problem, as below:


D0 : z(k) ∼ pθ0 k = 1, 2, . . .

D1 : z(k) ∼ pθ0 k = 1, 2, . . . , k0

z(k) ∼ pθ1 k = k0 + 1, k0 + 2, . . .

, (2.3)

where k0 is an unknown time instant after which the time series starts to follow a different

distribution, i.e., a change point, and θ0 and θ1 are parameters for two distributions. In

order to solve the above test, we adopt the optimal rule as follows [36,37]:

τ = arg min
τ

sup
n≥1

ess supEn
[
(τ − n)+|z(1), . . . ,z(n−1)

]
s.t. E∞[τ ] ≥ α, (2.4)

where τ is the stopping time, i.e., the time that the decision can be made by a rule to

claim D1 using the received data. The notation (x)+ = max(0, x). Note that En[·] is the

expectation operation assuming that the change-point k0 arises at time n, and E∞[·] is the

expectation operation assuming that there is no change-point in the time series. Here α is a

user-defined parameter to ensure that the decision policy cannot have a very early stop on

average if there is no change-point. The essential supremum, ess sup, of a random variable

X is the smallest number r such that P (X ≤ r) = 1, thus leading to the largest average

detection delay (τ − n)+ under the worst realization of {z(1), . . . ,z(n−1)}.
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In general, the optimization problem solves a minimax problem to seek a stopping policy that

minimizes change-point detection delay. A solution to the above problem is found in [31,32]:

τ = inf
{
m ≥ 1 : g

(
z(1), . . . ,z(m)

)
≥ bc

}
g(z(1), . . . ,z(m))

def
= Rm − min

1≤k≤m
Rk, (2.5)

where bc is a predefined threshold for determining the stopping time, andRk =
∑k

i=1 ln
pθ1 (z(i))

pθ0 (z(i))

is the cumulative sum of the likelihood ratio. The above method is referred as the cumulative

sum (CUSUM) algorithm in the literature.

Note that the stopping time τ depends on the threshold bc, the probability distribution

before the change-point pθ0 , and the probability distribution after the change-point pθ1 . A

data-driven method was proposed in [30] to determine the threshold bc, by assuming the

existence of the calibration/training data Zt = {zt1, . . . , ztJ} where each element shares

the same probability distribution as that before the change-point, i.e., pθ0 . In real radar

applications, we can collect more secondary data to form the calibration data, or generate

some data if we have identified the underlying clutter distribution. Denoting g(zt1, . . . ,ztj) =

Rj−min1≤k≤j Rk, we can train the threshold as bc = max1≤j≤J g(zt1, . . . ,ztj). In the original

version of the CUSUM algorithm, the distributions pθ0 and pθ1 are known. However, in

practice, they are not always available. There are many technique to extend the CUSUM

algorithm. In this dissertation, we use the asymptotically Gaussian property of the mean of

i.i.d. random variables to extend the CUSUM algorithm.
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2.3.2 Extended CUSUM Algorithm

First, we take the amplitude/modulus of the secondary data shown in (2.2), i.e.,

acl = |ycl|, for l = 1, 2, . . . , L, (2.6)

where the superscript (k) is omitted here for generality, and the modulus operation | · | is

elementwisely applied to the data vector. Then, we use acl,i to denote the ith entry of acl,

and average every adjacent M entries of acl to have

ācl =
1

M

M∑
d=1

[acl,d, acl,d+M , . . . , acl,d+M∗( N
M
−1)]

T, (2.7)

where M can be selected by the user so that N/M is an integer. Here {ācl : l = 1, 2, . . . , L}

are approximately regarded as i.i.d. Gaussian vectors. Further, z, shown in the original

CUSUM algorithm at every time instant, is given by

z =
[
āT

c1, ā
T
c2, . . . , ā

T
cL

]T
. (2.8)

To be clear, both time series z(k) and the calibration data {ztj} are formulated as in (2.8).

An illustration for the above averaging is given in Fig. 2.3.

Next, we use the calibration data Zt to estimate the parameters θ0 of the Gaussian distri-

bution. In general, θ1 can be determined by the extremas of the confidence interval of θ0.

To further clarify the idea, we suppose for simplicity that, after the averaging process, zt,j

follows N (µ01N/M∗L, σ
2
0IN/M∗L), where 1N/M∗L is a (NL/M)-dimension column vector with

all entries equal to 1, and IN/M∗L is an identity matrix of dimension NL/M×NL/M . Thus,
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Figure 2.3: An illustration of the averaging procedure.

for θ0 = (µ0, σ
2
0), we have the estimation

µ̂0 =
1

NLJ/M

J∑
j=1

1T
NL/Mzt,j, (2.9)

σ̂2
0 =

1

NLJ/M − 1
×

J∑
j=1

(
zt,j − µ̂01NL/M

)T (
zt,j − µ̂01NL/M

)
. (2.10)

Now, considering the 95% confidence interval extremas of the mean and variance, we have

µ0l = µ̂0 − tNLJ/M−1(0.975)
σ̂0√

NLJ/M
(2.11)

µ0u = µ̂0 + tNLJ/M−1(0.975)
σ̂0√

NLJ/M
(2.12)

σ2
0l =

(NLJ/M − 1)σ̂2
0

χ2
NLJ/M(0.025)

(2.13)

σ2
0u =

(NLJ/M − 1)σ̂2
0

χ2
NLJ/M(0.975)

. (2.14)
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Algorithm 1: Change-Point Detection

Input : Calibration data Zt, and secondary data at time m, Y(m)
c , for m = 1, 2, . . ..

1 Use the calibration data to train the parameter θ0, four parameters θ1,ll, θ1,ul, θ1,lu, and
θ1,uu, and four corresponding thresholds bc.

2 m = 0;
3 repeat
4 m = m+ 1;

5 Collects the secondary data Y(m)
c at time step m;

6 Generate z(m) as in (2.6), (2.7), and (2.8);

7 until g
(
z(1), . . . ,z(m)

)
≥ bc for any (θ0,θ1) pair ;

8 A change-point is found.

where t·(·) and χ2
· (·) are coefficients dependent on the t-distribution and χ2-distribution,

respectively [38].

Now, we use θ0 = (µ̂0, σ̂
2
0) and four different θ1, i.e., θ1,ll = (µ0l, σ

2
0l), θ1,ul = (µ0u, σ

2
0l),

θ1,lu = (µ0l, σ
2
0u), and θ1,uu = (µ0u, σ

2
0u), to compute four g

(
z(1), . . . ,z(m)

)
in parallel. Once

the threshold of change-point detection is exceeded, i.e., one or more g
(
z(1), . . . ,z(m)

)
≥ bc,

the change-point detection algorithm stops and a clutter distribution identification module

(to be introduced in Section 2.4) takes over. We summarize the above process in Algorithm 1.

2.4 Clutter Distribution Identification

In general, for clutter distribution identification, we assume that there exists a pre-trained

dictionary D, containing versatile clutter distributions that the radar may meet in practice.

Once the radar system detects a change-point, it identifies the underlying clutter distribution

as one distribution in the dictionary, based on the collected clutter data.
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In [33], a method inspired from sparse recovery was proposed for clutter distribution identi-

fication, i.e., the following optimization problem is solved:

γ̂ = argmin||g (x)−Dγ||22, subject to ||γ||0 ≤ C, (2.15)

where γ̂ is the estimated coefficient vector denoting atoms chosen from the dictionary, and

C is a sparsity level defined by the users. The dictionary D = [f1(x), f2(x), . . . , fZ(x)], and

fz(x) is the probability density function (pdf) pre-learned in advance for z = 1, 2, . . . , Z.

Note that g(x) is the pdf of the clutter distribution after the change-point, learned from the

clutter secondary data by using kernel density estimation (KDE),

g(x) =
1

S

S∑
i=1

KH (x− yi) , (2.16)

where {yi} are clutter data samples, x denotes any value that a clutter sample can take, S is

the total number of samples, and KH(·) is a kernel function associated with a scale-relevant

parameter H. Further, g(x) and {fz(x)} are discretized and vectorized, and each of {fz(x)}

is normalized to be an unit vector. If C = 1 or C > 1, γ̂ or the dominant element of γ̂ can

identify one of the clutter distributions in D. From another perspective, the optimization

in (2.15) identifies the largest projection of g(x) on the pdfs in D. Denoting the vectorized

g(x) and {fz(x)} as g and fz, we summarize the process in Algorithm 2 .

In addition, it is also possible to use other similarity/distance measures to compute the

similarity between g(x) and fz(x). It is worth noting that we investigated and applied three

L1-norm type probabilistic distance measures in our work [39] for this clutter distribution

identification problem.
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Algorithm 2: Clutter Distribution Identification

Input : Clutter secondary data {yi}, pre-trained dictionary D = [f1,f2, . . . ,fZ ], and
kernel function KH(·).

Output: I, the index of a distribution in D that is the best match of the distribution
of {yi}.

1 Use kernel density estimation to estimate the distribution of {yi}, i.e.,

g(x) = 1
S

∑S
i=1KH (x− yi);

2 Discretize and vectorize g(x) into g by sampling the function at equal intervals;
3 I = arg maxi∈{1,2,...,Z} g

Tfi;

2.5 Adaptive Detection

The likelihood-ratio test is common in radar detection, because it reaches the optimal de-

cision that maximizes the probability of detection when the false alarm rate is fixed or less

than a fixed level α. It is given by

Φ(y0, pθ) =
f(y0|H1, pθ)

f(y0|H0, pθ)

H1

≷
H0

b, (2.17)

where f(y0|Hi, pθ) is the likelihood function of y0 under the hypothesisHi (for i = 0, 1), when

the clutter data follow a distribution pθ. We recall that here y0 denotes the received data

in the cell of interest, H0 and H1 are hypotheses given in (2.1). In addition, b is a threshold

calculated using a predefined false alarm rate α. In other word, we solve the threshold b̄(pθ)

from PFA = P (Φ(y0, pθ) > b|H0, pθ) = α. For example, by using the notations in (2.1), if

the clutter sample nc follows a complex Gaussian distribution, i.e., pθ ∼ CN (0, σ2I), then

we can derive that Φ(y0, pθ) = exp
[

1
σ2 (2Re{pHy0} − pHp)

]
. To solve the threshold b̄(pθ)

from a predefined level α, i.e., to solve PFA = P (Φ(y0, pθ) > b|H0, pθ) = α, we usually need

to use some numerical methods like numerical integral and interpolation, and cannot have a

closed form for a general clutter distribution. If the clutter distribution pθ changes, both the
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Algorithm 3: Adaptive Target Detection

Input : An initial detector and its corresponding threshold, a pre-learned clutter
distribution dictionary, and calibration data for the change-point detection.

1 while radar is operating do
2 if change-point detection is triggered then
3 Implement clutter distribution identification method to find the matching

distribution in the dictionary;
4 Use the new detector and threshold based on the newly learned distribution;
5 Collect the calibration data for the next change-point detection;

6 else
7 Continue using the detector and threshold;

detector Φ(y0, pθ) and the threshold b̄(pθ) need to be carefully addressed to maintain the

constant false alarm rate α. In other words, once a change-point is detected and the clutter

distribution after the change is identified, the detector and the corresponding threshold must

be modified from Φ(y0, pθ0) and b̄(pθ0) to Φ(y0, pθ1) and b̄(pθ1).

The framework of adaptive target detection is summarized in Algorithm 3. To further

illustrate the framework, we show a flowchart for the proposed framework in Fig.2.4.

2.6 Simulation Setup

2.6.1 Simulation Settings

In this section, we first introduce the clutter model, some common clutter distributions, and

the target model that we used in the simulation. We further describe the simulation details

for the numerical experiments.
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Figure 2.4: A flowchart of the proposed cognitive radar detection in nonstationary environ-
ments.
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2.6.1.1 Clutter Model

In order to demonstrate the performance of the proposed adaptive target detection frame-

work, we use a simplified but illustrative clutter model in a simulation. We assume that the

entries of the clutter vector in each range cell are independent, which means that entries in

n
(k)
c are independent. This assumption also applies to the secondary data, because the sec-

ondary data has the same distribution as that of n
(k)
c . Further, each entry n (corresponding

to one pulse in one range cell) has the following form:

n = ρeiψ = c+ id, (2.18)

where ρ is the real amplitude of the clutter, and the phase ψ ∼ U [0, 2π) due to the random

reflections on the surfaces of the clutter-scatters. Further, ρ and ψ are independent. Readers

can recognize that one-dimensional spherical invariant random vector (SIRV) is a special case

of (2.18) [17, 23]. Note that the relation between c, d, ρ, and ψ is as follows:

c = ρ cosψ, (2.19)

d = ρ sinψ. (2.20)

Denoting that n ∼ fn(n), ρ ∼ fρ(ρ), and (c, d) ∼ fc,d(c, d), we have the relation of pdfs, i.e.,

fn(n) = fc,d(c, d) = fρ,ψ (ρ(c, d), ψ(c, d))

∣∣∣∣∂(ρ, ψ)

∂(c, d)

∣∣∣∣
=

1

2π
fρ

(√
c2 + d2

) ∣∣∣∣ ∂(c, d)

∂(ρ, ψ)

∣∣∣∣−1

=
1

2π
fρ (|n|) 1

|n|
. (2.21)
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For the model in (2.18), the complex clutter distribution depends on only the distribution of

its real amplitude. Thus, for Algorithm 2 in this simulation, we can generate the dictionary

and the clutter distribution awaiting identification with the one-dimensional real distribution

rather than the high-dimensional complex distribution, which may speed the simulation. In

other words, for Algorithm 2, we use only the real amplitudes of the one-dimensional clutter

samples to generate all the pdfs. In practical applications, one can flexibly modify the

algorithm according to the particular structure of the clutter data.

2.6.1.2 Clutter Distributions and Parameters

The following distributions are considered in our simulation:

• Complex Gaussian (CG) distribution:

fn(n;σG) =
1

πσ2
G

e−|n|
2/σ2

G , (2.22)

where the real and imaginary parts are sampled from two i.i.d. independent Gaussian

distributions, respectively, i.e., n ∼ N (0, σ2
G/2) + jN (0, σ2

G/2). Note that

E|n|2 = σ2
G. (2.23)

• Complex Weibull (CW) distribution:

fn(n;λW, kW) =
1

2π|n|
kW

λW

(
|n|
λW

)kW−1

e−(|n|/λ)kW , (2.24)
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where the λW is the scale parameter, and kW is the shape parameter. Note that the

amplitude |n| is sampled from Weibull(λW, kW), while its phase ψ is sampled from

U [0, 2π). Note that

E|n|2 = λ2
WΓ(1 + 2/kW). (2.25)

• Complex K (CK) distribution:

fn(n;σK, kK, θK) =
2θ
− 1+kK

2
K (|n|/σK)kK

π|n|Γ(kK)σK

KkK−1

(
2|n|√
θKσK

)
, (2.26)

where Γ(·) is the Gamma function, and Kα(·) is the modified Bessel function of the

second kind. Let an auxiliary variable µ be sampled from Gamma(kK, θK), where kK

is the shape parameter and θK is the scale parameter. Let another auxiliary variable

h be sampled from N (0, σ2
K/2) + jN (0, σ2

K/2). Then a complex-K-distributed sample

can be generated by n =
√
µh [13, 14]. Note that

E|n|2 = kKθKσ
2
K. (2.27)

2.6.1.3 Target Model

In our simulation, we assume that we know the target response in advance, and denote

p(k) = a1 without loss of generality and we fix a = 1 for the simulation. We represent the

clutter power in dB (CPDB) level, and define

CPDB = 10 log10

(
1

E|n|2

)
, (2.28)
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In the rest of this dissertation, we use this CPDB to indicate the variance of a clutter

distribution, i.e., E|n|2. When the variance is larger, CPDB is lower.

2.6.1.4 Simulation details

We provide the details of our simulations in the following:

• First, we build up the pre-trained dictionary D. We use KDE to generate the pdfs

in the pre-trained dictionary D, based on pre-collected sets of random samples. For

each pdf, the set of random samples is generated from the corresponding distribution

with CPDB ∈ {−5,−7.5,−10,−12.5,−15, −17.5,−20}dB. Each set contains 3500

random samples. Because three families of distributions (i.e., CG, CW, and CK) are

considered, there are Z = 7 × 3 = 21 pdfs in the dictionary D. Specifically, for the

CW and CK distributions, which have multiple parameters, we fix kW = 4, σK = 1,

and kK = 2. The rest of the parameters (σG, λK, and θK) are accordingly computed

with different CPDB values based on (2.23), (2.25), (2.27), and (2.28).

• Second, we simulate the nonstationarity of the clutter distribution. We have an initial

clutter distribution pA with CPDB = −12.5dB. Note that pA can be fixed to be any

of the CG, CW, or CK distributions. Then the change-point k0 is randomly selected

from [50, 70], and after step k0, the clutter distribution starts to follow a different

distribution pB that is randomly selected from a sub-dictionary of D. In order to

examine the performance of the proposed method with respect to the CPDB after

the change-point, we intentionally divide the dictionary D into three sub-dictionaries

DS, DE, and DL, which respectively collect pdfs with smaller, equal, or larger CPDB

values in D. For example, DS collects the pdfs with CPDB=−5, −7.5, and −10dB. It
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is worth noting that DE does not contain the distribution pA because pB should not

be equal to pA. For each pA and each sub-dictionary, we randomly select 50 different

k0, and for each k0, we randomly select the distribution pB in the sub-dictionary 30

times. Thus, we have 1500 Monte-Carlo runs for each pA and each sub-dictionary.

• Third, we consider the details of the radar measurements. For each time step/CPI

k, the radar transmits N = 50 pulses to the target. It collects the secondary data

in L = 7 cells besides the data in CUT. Note that because we use the clutter model

in Section 2.6.1.1, we actually have 350 i.i.d. samples from the underlying clutter

distribution. If we use a multivariate clutter distribution model, we may need more

secondary data. In the simulation, the extended CUSUM algorithm in Section 2.3

is applied to detect the change-point. We select the value of user-defined parameter

M = 10, and the number of calibration data J = 2000. For the clutter distribution

identification, the real amplitudes of the 350 i.i.d. samples are used to choose the most

similar distribution from the dictionary D. Once the change-point is detected and

the clutter distribution is identified, the new detector is used and its threshold b is

determined by a predefined false alarm rate Pfa.

2.6.2 Comparison Cases

In the numerical experiments, we will compare the proposed adaptive method, which is

hereinafter called “adaptive case”, with the following cases:

• Nonadaptive case, i.e., the radar system always uses the same likelihood ratio detector

and the same threshold designed for the clutter distribution before the change-point

according to a preset false alarm rate;
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• Clairvoyant case, i.e., the radar system has perfect knowledge of the clutter distribution

and the change-point, and uses the optimal detector;

• Adaptive matched filter (AMF) case, i.e., the radar system applies a cell-averaging

technique, which is widely used in constant false alarm rate (CFAR) detection tech-

niques and STAP, to estimate the covariance/variance of the assumed Gaussian clutter,

using the secondary data. Then the covariance/variance estimator is substituted into

the AMF as follows:

tAMF =
|y(k)H

0 R−11|2

1HR−11

H1

≷
H0

b. (2.29)

In this simulation, R = σ2I, where each entry of y
(k)
0 follows CN (0, σ2). The estimator

of the variance is given by σ̂2 = 1
LN

∑L
l=1

∑N
i=1 |y

(k)
cli |2. Note that y

(k)
cli is the ith entry of

the secondary data y
(k)
cl in (2.2). From the above, (2.29) becomes

t̂AMF =
|y(k)H

0 1|2

σ̂21H1

H1

≷
H0

b, (2.30)

where the left-hand-side follows an F -distribution under H0, by the Gaussian clutter

assumption. More specifically, t̂AMF|H0 ∼ F (2, 2LN), which demonstrates the CFAR

property. A simple proof is shown in Appendix A. We can use this F -distribution to

determine the threshold b of the AMF if we want to reach a preset false alarm rate.

2.7 Simulation Results

In this section, we firstly show the performance of the extended CUSUM algorithm and

clutter identification method by parts in Section 2.7.1 and Section 2.7.2, respectively. Then
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we focus on one change point, and investigate the performance of our proposed adaptive

detection framework in Section 2.7.3, by using plots and statistical analysis. Finally, we

emulate the practical scenarios with multiple change-points, and investigate the performance

along the time axis in Section 2.7.4.

2.7.1 Performance of Change-point Detection Method

In this section, we show the performance of the change-point detection algorithm in Figs. 2.5,

2.6, and 2.7. Note that τ is the stopping time, and k0 + 1 is the time at which the change

arises. The difference between these two time instants denotes the delay of the change-

point detection. Further, the y-axis P (τ − k0 − 1 ≤ t) denotes the numerically computed

probability that the change-point is found by the extended CUSUM algorithm before a given

time delay t. For example, in Figs. 2.5, the initial clutter distribution before the change-

point (i.e., pA) is a Gaussian distribution with CPDB = −12.5dB, and the clutter distribution

changes to another distribution after the change-point with CPDB ∈ {−5,−7.5,−10,−12.5,

−15,−17.5,−20}dB.

We see that if the CPDB values of the distributions before and after the change-point

remain the same, the extended CUSUM algorithm has the worst performance of all the cases,

because the extended CUSUM algorithm applies an averaging pre-processing and introduces

a Gaussian assumption. Thus, after the pre-processing, the outputs of the clutter data

before and after the change-point may behave like those from the Gaussian distributions

with close power, making the extended CUSUM does not easily detect the change-point.

Hence, more time steps/CPIs are needed to trigger the change-detection. However, even in

this worst case, the probability of change-point detection still reaches almost 100% within
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Figure 2.5: Performance of the change-point detection with initial clutter distribution as
Gaussian at CPDB = −12.5dB.

20 steps. For other cases, the probabilities of the change-point detection reach 100% within

fewer steps. We observe that if the difference of the CPDB values is larger, the delay of

change-point detection is smaller. Fig. 2.6 and Fig. 2.7 show the cases where the initial

clutter distributions are Weibull distributions and K distributions, respectively. As we see,

the behaviors of these two figures are similar to that in Fig. 2.5.

2.7.2 Performance of Clutter Distribution Identification Method

We show that accuracy of the clutter distribution identification in Table 2.1. In the table,

CPDBAC denotes the CPDB values for the clutter distributions after the change-points. The

second row I-CG Accuracy shows the clutter distribution identification accuracy when the

clutter distribution before the change-point is complex Gaussian. The third row and fourth

row are corresponding to the performances of complex Weibull and complex K distributions,

respectively. We observe that the accuracy of the clutter distribution identification is high,
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Figure 2.6: Performance of the change-point detection with initial clutter distribution as
Weibull at CPDB = −12.5dB.
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Figure 2.7: Performance of the change-point detection with initial clutter distribution as K
at CPDB = −12.5dB.
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Table 2.1: Clutter distribution identification accuracy with different initial clutter distribu-
tions

CPDBAC(dB) -5 -7.5 -10 -12.5 -15 -17.5 -20
I-CG Accuracy 98.9% 99.0% 98.7% 99.5% 99.0% 99.1% 99.1%
I-CW Accuracy 99.3% 98.8% 99.2% 98.9% 98.1% 99.0% 99.3%
I-CK Accuracy 99.3% 99.2% 98.5% 99.7% 99.1% 98.6% 98.7%

achieving 99% for most cases. Hence, the numerical results demonstrate the capability of the

method in Section 2.4, and the high accuracy will contribute to the success of the adaptive

detection framework.

To further demonstrate the merits of our method, we compare the proposed clutter distri-

bution identification method with the classical Ozturk method. To keep the flow of this

dissertation, we present the simulation settings and results in Appendix B. We show there

that, in comparison to the Ozturk method, our method provides improved accuracy in iden-

tifying clutter distributions that have different parameters, but are from the same family.

2.7.3 Performance of the Unified Adaptive Detection Framework:

One Change-point

In this section, focusing on one change-point, we show the performance of the proposed

adaptive detection framework, and compare it with those of the nonadaptive case, AMF

case, and clairvoyant case, which are defined in Section 2.6.2
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2.7.3.1 Target Detection Performance Comparison

The target detection performance and the case comparisons are shown in two sets of figures,

i.e., {Fig. 2.8, Fig. 2.9, Fig. 2.10} and {Fig. 2.11, Fig. 2.12, Fig. 2.13}. The first set of

figures correspond to the scenario where the clutter distribution before the change-point is

K with CPDB=-12.5dB, and the radar system have a preset false alarm rate Pfa = 0.05.

The second set of figures correspond to the scenario where the clutter distribution before

the change-point is Weibull with CPDB=-12.5dB, and the radar system have a preset false

alarm rate Pfa = 0.01. Note that in each figure we show the detection performance (Pfa or

Pd) of the clairvoyant case and one specific case indicated by the title of the figure, i.e., one

of adaptive case, nonadaptive case, and AMF case. The detection performance is computed

using the data after the extended CUSUM algorithm claims a change-point in each Monte-

Carlo run. In each figure, there are two plot symbols. The “line and circle” symbol denotes

a clairvoyant case, while the “box and two line segments” is a boxplot symbol that denotes

a specific case. For the boxplot symbol, the box contains 25%-75% data, and the line in

the middle denotes the median of the data. The two outermost line segments denote the

maximum and the minimum of the data except the outliers. Green color indicates the preset

false alarm rate (clairvoyant false alarm rate) Pfa that the radar system hopes to maintain.

Blue denotes a case in which the clutter distribution is complex Gaussian (CG) after the

change-point. Similarly, magenta corresponds to the complex K (CK) distribution, and cyan

corresponds the complex Weibull (CW) distribution.

As we see, the adaptive cases and the AMF cases usually achieve the preset Pfa, while

the nonadaptive cases usually have significant biases, by observing the first plot in each

of Fig. 2.8-2.13. Further, the behaviors of Pd for the nonadaptive cases are not easy to

predict. The Pd of adaptive cases can achieve that of the clairvoyant cases, as they are
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almost overlapped in the figures, while the Pd of the AMF cases are usually lower than the

Pd of clairvoyant cases, by observing the second plot in each of Fig. 2.8-2.13.

2.7.3.2 Statistical Significance Analysis

To quantitatively show the above conclusion, we use the clairvoyant cases as the ground truth,

and compare the absolute deviations of Pfa or Pd computed in the adaptive cases, nonadaptive

cases, and AMF cases after the detected change-points. We use the one-sided Wilcoxon rank-

sum test [40,41] to show whether one group of absolute deviations are statistically less than

another group. The Wilcoxon rank-sum test works as a non-parametric alternative to the

well-known t-test to compare the medians of two groups of data. In our case, we have the

following hypothesis testing problem:

 H0 : MedianA = MedianB

H1 : MedianA < MedianB

, (2.31)

where A and B are two groups of absolute deviations that we want to compare. We use A

to denote the adaptive case, and B to denote one of nonadaptive case and AMF case. We

expect that the data can support rejecting the null hypothesis, i.e., the p-value of the test

is smaller than a significance level, if the proposed adaptive method is better than the other

method in comparison.

By using the Wilcoxon rank-sum test, the results of Figs. 2.8, 2.9, and 2.10 are summarized

into Table 2.2, while the results of Figs. 2.11, 2.12, and 2.13 are summarized into Table 2.3.

These two tables show the p-values of the tests. Note that “CPDBAC” denotes the CPDB

values after the change-points, while “Overall” means that the absolute deviations of all the
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Figure 2.8: Performance of the adaptive detection framework. The initial clutter distribution
is K with CPDB = −12.5dB. The preset Pfa = 0.05.
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Figure 2.9: Performance of the nonadaptive detection case. The initial clutter distribution
is K with CPDB = −12.5dB. The preset Pfa = 0.05.
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Figure 2.10: Performance of the AMF case. The initial clutter distribution is K with
CPDB = −12.5dB. The preset Pfa = 0.05.
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Figure 2.11: Performance of the adaptive detection framework. The initial clutter distribu-
tion is Weibull with CPDB = −12.5dB. The preset Pfa = 0.01.
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Figure 2.12: Performance of the nonadaptive detection case. The initial clutter distribution
is Weibull with CPDB = −12.5dB. The preset Pfa = 0.01.
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Figure 2.13: Performance of the AMF case. The initial clutter distribution is Weibull with
CPDB = −12.5dB. The preset Pfa = 0.01.
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CPDB cases are grouped to compare. In addition, other cells in the first row of each table

indicate the groups of absolute deviations we compare in (2.31). For example, “Pfa: AD v.s.

NAD” means that absolute deviations of Pfa are compared, and in the test (2.31), group A

corresponds to the adaptive case, while group B corresponds to the nonadaptive case.

In our tests, we set the significance level to 0.05. If the p-value is lower than 0.05, then we

reject the null hypothesis, and we claim H1, i.e., the absolute deviations of the proposed

adaptive case are statistically less than the other case we compare. Otherwise, if the p-value

is larger than 0.05, we claim that we fail to rejectH0, i.e., it is very likely that the performance

of the proposed adaptive case is comparable to that of the other case we compare. From the

tables, we see that:

• For false alarm rate Pfa, the adaptive cases and AMF cases have comparable perfor-

mance, as the p-values are greater than 0.05. This observation is consistent with what

is shown in Figs. 2.8, 2.10, 2.11, and 2.13, i.e., the adaptive case and the AMF case

can achieve the false alarm rate of the clairvoyant case. On the contrary, by comparing

the adaptive case and the nonadaptive case, the p-values are less than 0.0001, which

means that H0 in (2.31) is rejected, which is consistent with that the performance of

the nonadaptive cases is unpredictable, and usually has large deviations from that of

the clairvoyant cases.

• For probability of detection Pd, the p-values for both “AD v.s. NAD” and “AD v.s.

AMF” are small enough to reject H0, and we can claim that the absolute deviations

of the proposed adaptive case are statistically smaller than the others’. It is consistent

with that, in Figs. 2.8-2.13, compared to two other cases, the Pd for the proposed

adaptive case is closer to the Pd for the clairvoyant case.
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Table 2.2: P -values of Wilcoxon rank-sum one-sided tests for false alarm rate and proba-
bility of detection after detected change-points with initial K-distributed clutter (CPDB =
−12.5dB) and preset Pfa = 0.05

CPDBAC Pfa: AD v.s. NAD Pfa: AD v.s. AMF Pd: AD v.s. NAD Pd: AD v.s. AMF
-20dB <0.0001 0.0826 <0.0001 <0.0001

-17.5dB <0.0001 0.4493 <0.0001 <0.0001
-15dB <0.0001 0.7222 <0.0001 <0.0001

-12.5dB <0.0001 0.4144 <0.0001 <0.0001
-10dB <0.0001 0.4167 <0.0001 <0.0001
-7.5dB <0.0001 0.3939 <0.0001 <0.0001
-5dB <0.0001 0.1743 <0.0001 <0.0001

Overall <0.0001 0.1654 <0.0001 <0.0001

Table 2.3: P -values of Wilcoxon rank-sum one-sided tests for false alarm rate and probability
of detection after detected change-points with initial Weibull-distributed clutter (CPDB =
−12.5dB) and preset Pfa = 0.01

CPDBAC Pfa: AD v.s. NAD Pfa: AD v.s. AMF Pd: AD v.s. NAD Pd: AD v.s. AMF
-20dB <0.0001 0.4273 <0.0001 <0.0001

-17.5dB <0.0001 0.4656 <0.0001 <0.0001
-15dB <0.0001 0.4697 <0.0001 <0.0001

-12.5dB <0.0001 0.3556 <0.0001 <0.0001
-10dB <0.0001 0.4656 <0.0001 <0.0001
-7.5dB <0.0001 0.4733 <0.0001 <0.0001
-5dB <0.0001 0.6556 <0.0001 <0.0001

Overall <0.0001 0.4193 <0.0001 <0.0001

2.7.4 Performance of the Unified Adaptive Detection Framework:

Multiple Change-points

In the previous sections, we focused on the effects of one change-point. In this section, we

highlight the adaptive property of the proposed framework by investigating the detection

performance with multiple change-points along the time axis .
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2.7.4.1 Simulation Settings

For illustration, we fix three change-points, at 60, 120, and 180th CPIs, in all the following

experiments. We also fix four clutter-distributions during four time intervals [1, 60), [60, 120),

[120, 180), and [180, 240] when repeating Monte Carlo runs. We emphasize that although the

change-points and the clutter distributions are fixed, they are unknown to the radar systems,

except for the initial clutter distribution during [1, 60), which is pre-learned. The dictionary

setup and the extended CUSUM algorithm setup remain the same as in Section 2.6.1. For

the detection, the detector thresholds are chosen to meet the a predefined false alarm rate

Pfa.

2.7.4.2 Target Detection Performance Comparison

With a pre-defined false alarm Pfa = 0.05, we show the numerical results based on 3000

Monte Carlo runs in Figs. 2.14, 2.15, and 2.16. Then underlying clutter distributions for

four intervals are indicated by the captions of the figures. The x-axis is the time axis,

which is divided into CPIs. The left y-axes are either the probability of false alarm or the

probability of detection, as indicated by the title of each subplot. In order to simultaneously

show performance of the extended CUSUM algorithm, we use the right y-axis and the blue

curve to show the behavior of change-point detection delay.

From Fig. 2.14-(a), we observe that AMF case maintains the predefined false alarm rate, i.e.,

Pfa in clairvoyant case. The nonadaptive case fails to achieve this false alarm rate during

[60, 120) CPIs, because it does not adaptively choose its detector and threshold to handle the

change-points. The adaptive case almost maintains the predefined false alarm rate, except

for some CPIs after the change points. For example, “spikes” are shown around the 60th and
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120th CPIs. After several CPIs, the adaptive case returns to the predefined false alarm rate.

Each of the blue curves shows the probability that the extended CUSUM algorithm finds a

change-point within a t-CPI delay. We refer this probability as the “delay probability”, and

here we plot only t ∈ [0, 31]. As we can observe, when this probability approaches 1, the

adaptive case approaches the predefined false alarm rate.

From Fig. 2.14-(b), we observe that the AMF case now cannot reach the clairvoyant prob-

ability of detection. The nonadaptive case can reach the same performance as that of the

clairvoyant case in the [0, 60) and [180, 240] CPI intervals, because the nonadaptive case

happens to use the same detector and threshold as the clairvoyant case. However, there

is a performance gap between these two cases over [60, 180). For the adaptive case, the

probability of detection usually does not follow that of the clairvoyant case after a change-

point at the first several steps because it does not use the correct detector and threshold.

However, as the extended CUSUM algorithm finds the change-point, which is illustrated by

the increasing delay probability, the probability of detection for the adaptive case returns to

that of the clairvoyant case.

We show two other experimental results with Pfa = 0.05 in Fig. 2.15 and Fig. 2.16, respec-

tively. The overall behaviors among different cases are similar. It is worth noting that in

Fig. 2.15-(b), the nonadaptive case produces even better Pd value than that of the clairvoy-

ant case over [60, 120) CPIs, because the wrong use of the detector and threshold produces

larger/worse Pfa value. In Fig. 2.16, because we use clutter distributions with the same

power, the false alarm rate of the nonadaptive case achieves the predefined Pfa. However,

the Pd value of the nonadaptive case is worse than that of the clairvoyant case. For the

adaptive case, the delay effects are also shown, but after several CPIs, it reaches the desired

performance.
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Figure 2.14: Performance of the adaptive detection framework, in comparison with the
nonadaptive case, AMF case, and clairvoyant case. The clutter distributions are CG(-
12.5dB)→CK(-10dB)→CW(-10dB)→CG(-12.5dB) with change-points at the 60, 120, and
180th CPIs. The predefined false alarm rate is Pfa = 0.05.
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Figure 2.15: Performance of the adaptive detection framework, in comparison with the
nonadaptive case, AMF case, and clairvoyant case. The clutter distributions are CG(-
12.5dB)→CK(-15dB)→CW(-7.5dB)→CG(-12.5dB) with change-points at the 60, 120, and
180th CPIs. The predefined false alarm rate is Pfa = 0.05.
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Figure 2.16: Performance of the adaptive detection framework, in comparison with the
nonadaptive case, AMF case, and clairvoyant case. The clutter distributions are CG(-
12.5dB)→CK(-12.5dB)→CW(-12.5dB)→CG(-12.5dB) with change-points at the 60, 120,
and 180th CPIs. The predefined false alarm rate is Pfa = 0.05.

Two other sets of results with pre-defined false alarm rates Pfa = 0.005 and Pfa = 5 × 10−4

are given in {Figs. 2.17, 2.18, 2.19} and {Figs. 2.20, 2.21, 2.22}, respectively. Note that

{Figs. 2.17, 2.18, 2.19} are based on 3000 Monte Carlo runs, while {Figs. 2.20, 2.21, 2.22}

are based on 50000 Monte Carlo runs due to its smaller false alarm rate. Similarly, we can

see that in each figure, the adaptive case can maintain the predefined false alarm rate and its

probability of detection can follow that of the clairvoyant case, except for some CPIs after

the change points. For these CPIs, the adaptive case does not use the optimal detector, thus

it suffers from performance degradation. It rapidly reaches the desired performance once

the change-points are detected. The behaviors of the nonadaptive case and the AMF case

are also similar to those in Figs. 2.14, 2.15, and 2.16. In each figure, since the nonadaptive

case always uses a detector designed for the scenario before the first change point, it cannot

achieve the predefined false alarm rate when its detector is not the same as the optimal

detector. This difference also causes a performance gap for Pd between the nonadaptive
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case and the clairvoyant case. The AMF case can achieve the predefined false alarm rate,

however, it cannot reach the clairvoyant probability of detection.

2.8 Chapter Summary

We proposed a framework for target detection in nonstationary environments, utilizing the

extended CUSUM algorithm to detect the possible change-points of the clutter distribu-

tions. Once a change-point was found, we used a sparse-theory-inspired clutter distribution

identification method to learn the new clutter distributions, and we adaptively adjusted the

detectors based on the newly learned clutter distributions. We numerically demonstrated

the performance of the change-point detection algorithm and the clutter distribution identi-

fication technique by parts, and further showed the performance of the framework, compared

to the clairvoyant case, the nonadaptive detection case, and the AMF case. We showed that

once the extended CUSUM algorithm found the change-point, our method could adaptively

use the optimal detector and achieve the performance of the clairvoyant case.
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Figure 2.17: Performance of the adaptive detection framework, in comparison with the
nonadaptive case, AMF case, and clairvoyant case. The clutter distributions are CG(-
12.5dB)→CK(-10dB)→CW(-10dB)→CG(-12.5dB) with change-points at the 60, 120, and
180th CPIs. The predefined false alarm rate is Pfa = 0.005.
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Figure 2.18: Performance of the adaptive detection framework, in comparison with the
nonadaptive case, AMF case, and clairvoyant case. The clutter distributions are CG(-
12.5dB)→CK(-15dB)→CW(-7.5dB)→CG(-12.5dB) with change-points at the 60, 120, and
180th CPIs. The predefined false alarm rate is Pfa = 0.005.
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Figure 2.19: Performance of the adaptive detection framework, in comparison with the
nonadaptive case, AMF case, and clairvoyant case. The clutter distributions are CG(-
12.5dB)→CK(-12.5dB)→CW(-12.5dB)→CG(-12.5dB) with change-points at the 60, 120,
and 180th CPIs. The predefined false alarm rate is Pfa = 0.005.
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Figure 2.20: Performance of the adaptive detection framework, in comparison with the
nonadaptive case, AMF case, and clairvoyant case. The clutter distributions are CG(-
10dB)→CK(-7.5dB)→CW(-10dB)→CG(-7.5dB) with change-points at the 60, 120, and
180th CPIs. The predefined false alarm rate is Pfa = 5× 10−4.
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Figure 2.21: Performance of the adaptive detection framework, in comparison with the
nonadaptive case, AMF case, and clairvoyant case. The clutter distributions are CG(-
10dB)→CK(-7.5dB)→CW(-12.5dB)→CG(-10dB) with change-points at the 60, 120, and
180th CPIs. The predefined false alarm rate is Pfa = 5× 10−4.
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Figure 2.22: Performance of the adaptive detection framework, in comparison with the
nonadaptive case, AMF case, and clairvoyant case. The clutter distributions are CG(-
10dB)→CK(-12.5dB)→CW(-7.5dB)→CG(-10dB) with change-points at the 60, 120, and
180th CPIs. The predefined false alarm rate is Pfa = 5× 10−4.
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Chapter 3

Target Tracking in Cognitive Radar

Networks

3.1 Introduction

In this chapter, we will introduce our proposed framework for Target Tracking in Cognitive

Radar Networks.2

We begin with the dynamic graphical model that describes the general idea of the proposed

framework. Then, we introduce signal models for the transmitted and received signals.

We also present a target kinematic model, a measurement model, and a recursive Bayesian

estimation technique for target tracking. Next, we formulate the cognitive target tracking

problem as two iterative steps: (i) solving a combinatorial optimization problem to select

the optimal subset of radars, waveforms, and locations for the next tracking instant, and (ii)

acquiring the recursive Bayesian state estimation to accurately track the target. We further

2This chapter is based on Y. Xiang, M. Akcakaya, S. Sen, D. Erdogmus, and A. Nehorai, “Target tracking
via recursive Bayesian state estimation in cognitive radar networks,” Signal Processing, Vol. 155, pp. 157-
169, Feb. 2019. DOI:10.1016/j.sigpro.2018.09.035. c© Elsevier 2019.
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discuss scenarios where multiple target models are considered in the target tracking. To

demonstrate the proposed framework, we use an illustrative example to introduce a specific

scenario in 2-D space. The results based on this scenario show that the proposed framework

can accurately track the target under the management of a network of radars.

3.1.1 Related Work

A few works in the literature adopt one or combine two of the above three techniques in

target tracking; however, no other work thus far has simultaneously applied waveform-agile

sensing, planned the corresponding paths, and intelligently selected the subset of radars.

For example, dynamic waveform adaption has been extensively investigated in target de-

tection [42–48] and tracking [49–62] to meet a radar’s constantly changing requirements

for target information. The motivation behind the adaptive waveform design techniques is

to gain better tracking performance by integrating the radar transmitter and receiver in a

closed-loop fashion. Previous works focus on analyzing the output of a matched filter and

on improving the resolution [63] by treating the radar and tracker as independent subsys-

tems [64]. In recent works, as the tracker recursively estimates the target state, the radar

transmitter is adapted to design the next transmitted waveform according to a predefined

utility function, such as the mean-square tracking error [53, 54], the trace of the posterior

Cramér-Rao lower bound (PCRLB) [49,65], and the mutual information [50,66,67]. In gen-

eral, the utility function provides one-step ahead design (i.e., greedy); only a few articles dis-

cuss multi-step ahead waveform selection [53,68]. Some works directly design the frequency

spectrum of the waveform by using optimal frequencies [42, 43, 69], while others select the

waveform from a parameterized waveform library [67], such as a linear frequency-modulated

(LFM) library [49]. Additionally, waveform design for multistatic target tracking is also
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investigated [70]. Although waveform design and scheduling applications show promising

results, they face challenges in selecting proper design metrics, designing optimal or nearly-

optimal waveform families with respect to these criteria, and formulating computationally

tractable scheduling policies [71].

Path planning is another important and fundamental issue for radars, particularly for those

which are installed on moving platforms, such as UAVs. To improve the performance of

target localization and tracking, careful design of radar paths to actively steer them to the

optimal places within the kinematic capabilities [72–78] provides another degree of freedom

in utilizing the feedback information from receivers. A simple case of obtaining the optimal

trajectory of a single radar by maximizing the determinant of the Fisher information matrix

in a passive bearings-only case for fixed target localization is introduced in [74]. Multiple

radars cases are considered in [72, 73, 75–77], and cooperative path planning strategies are

derived for both passive and active radars. However, in general, it is extremely complicated

to plan the paths of multiple radars simultaneously under certain kinematic constraints while

appropriately adopting non-myopic policies.

Sensor selection and resource allocation schemes are generally employed in sensor network

management problems to intelligently assign a subset of sensors to accomplish the task with

satisfactory performance or minimized usage of resources. A sensor selection problem is

usually a combinatorial optimization problem, which can be NP hard to solve for the optimal

solution, and therefore approximate techniques are necessary to search for an acceptable

solution. In the literature, the sensor selection problem is usually cast in one of three

ways. It can be formulated as a convex optimization problem with a heuristic searching

method [79], as the maximization of a submodular function problem (which can be solved

by a greedy algorithm with guaranteed performance) [80], or as a linear programming and
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a semi-definite programming (SDP) problem by respectively considering the measurement

noises to be uncorrelated and correlated [81]. In regard to target tracking, the sensor selection

and resource allocation schemes are adaptively applied from time to time [81–88].

In addition, a few works combine two of the three techniques (waveform design, path plan-

ning, and sensor selection) to further improve the tracking performance or decrease the

resource usage. For example, waveform design and path planning are jointly considered

in [62] and [89]. In [62], adaptive selection of the optimal pulse repetition interval (PRI)

from a set of allowed values, and optimization of the radar trajectory using the trace of

weighted PCRLB, are proposed, whereas [89] jointly optimizes the waveform parameters of

Gaussian-LFM pulses and the guiding commands of multistatic radars using the trace of the

PCRLB. Although multiple radars are taken into account, no subset selection strategy is

adopted in [89], implying that the radars use all the available resources to track the target,

which may lead to a waste of resources. In [90,91], waveform design and sensor selection are

combined for static radars to select adaptive waveforms and a subset of sensors in accordance

with the resource constraints.

3.1.2 Our Work

In our preliminary work [92], we proposed a framework for single target tracking based on

the theories of dynamic graphical models (DGM) and recursive Bayesian state estimation

(RBSE), jointly considering radar selection and path planning. However, the advantages of

waveform-agility were not exploited to further improve the tracking performance and system

intelligence.
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In the work of this dissertation, we propose a target tracking framework that simultaneously

designs the transmit waveform, plans the radar trajectory, and selects the appropriate radar

subset. Building on DGM and RBSE [93, 94], we choose the expected cross-entropy as the

objective function and solve a combinatorial optimization problem to select the optimal sub-

set of radars that transmit well-designed waveforms from their best locations for receiving

the most informative measurements during the next tracking instant. The received mea-

surements associated with history information are then processed by a tracker to achieve a

more accurate target state estimation. Additionally, we validate the proposed framework

by constructing an illustrative case, where radars with certain moving constraints track a

single target in a 2-D space. Specifically, we choose this simplified case because it is a rep-

resentation of a large-scale network of cognitive radars which have certain constraints on

their coverage area and path. Our main contribution in this dissertation is to consider the

path design, waveform design and radar subset selection simultaneously. Even though the

concept of cognitive radar was proposed more than a decade ago [6], until now a real-time

implementation of a cognitive radar has not been presented.

3.2 Framework of Target Tracking in Network of Radars

Our proposed framework formulates the sensor (radar) network management for single target

tracking as a combinatorial optimization problem. By solving the combinatorial optimization

problem, we choose the optimal subset of radars to transmit well-designed waveforms in the

best locations in order to receive the most informative echos in the next tracking step.

The echos are then processed by the tracker associated with history information to achieve a

reasonable state estimation. Fig. 3.1 depicts our proposed framework of single target tracking
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Figure 3.1: Graphical model (step k). The evolution of the state xk is dependent on the
contextual evidence ck. Here D(Uk) indicates the selected radars, the transmitted waveforms,
and the radar states; Zk denotes noisy measurements of the state xk if D(Uk) is applied.

in cognitive network of radars based on a DGM. Without loss of generality, similar to most

target tracking application, order-1 Markov processes with finite-dimensional state vectors

are considered. The notations of variables of interest and their dependence relationships at

time k are defined as follows:

1. The state of the target is denoted as xk, which needs to be estimated from the noisy

measurement and contextual information. The state of xk usually includes the target’s

current location and velocity. It can be augmented to contain more variables, such as

the acceleration of the target and the radar cross section (RCS) of the echos.

2. The target kinematic model, the history information provided by previous measure-

ments, and the statistical environment model are represented as probabilistic contex-

tual evidence, ck.

3. A set (dictionary) is denoted as D = {(Ds,Dw,Dp)}, where Ds contains all the possible

radars that can be managed in the network, Dw contains all the possible waveforms
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that can be transmitted by the radars, and Dp includes all the states of radars (e.g.,

positions and velocities) that can be achieved.

4. A set of indices is denoted as Uk = {(U sk ,Uwk ,U
p
k )}, where U sk denotes the set of radars

that are selected to transmit the corresponding waveforms represented by the index

set Uwk with their states indicated by Upk at time step k.

5. The measurements at time k that are collected by the subset of radars with certain

waveforms and states suggested by D(Uk) are denoted as Zk = {z(i)
k |i ∈ U sk}, where

z
(i)
k is the measurement of ith radar.

The probabilistic contextual evidence ck could include any information that might affect

the estimation of the target state. It could involve several kinematic models to describe the

possible motion modes of the target. A commonly used type of contextual evidence is pre-

viously collected measurements, which influence the state via estimations of previous states.

Further, the contextual evidence also could be provided by a pre-trained environment model

in the workspace. For instance, the sensing system has an environment model describing

the distribution of obstacles, and prior knowledge that the target tends to avoid obstacles

rather than strike them. In this dissertation, we use only one kinematic model together

with previous measurements as the probabilistic contextual evidence ck. In order to further

describe the framework in detail, we define the signal model, kinematic model, measurement

model, and recursive Bayesian estimation technique in the following subsections.
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3.2.1 Signal Model

The narrowband waveform of the transmitted signal of the ith radar has the following form,

g(i)(t) = s(i)(t)ej2πf
(i)
c t, (3.1)

where s(i)(t) is the complex envelope of the signal, and f
(i)
c is the carrier frequency. The

corresponding echo from the target in the baseband is

r(i)(t) = α(f (i))s(i)(t− τ (i))ej2πν
(i)(t−τ (i))e−j2πf

(i)
c τ (i) + n(i)(t), (3.2)

where τ (i) is the time delay, ν(i) is the Doppler frequency, n(i)(t) is the complex Gaussian

noise, f (i) is the frequency that ith radar transmits after frequency modulation, and α(f (i))

is the complex reflectivity caused by the radar cross section (RCS) of the target and phase

shift. Note that here we assume that the complex reflectivity is a function of the frequency

that the radar transmits. Note that if we consider the scenario in a 2-D space, we have

τ (i) =
2
√

(x− x(i))2 + (y − y(i))2

c
, (3.3)

ν(i) = −2f
(i)
c

c

(ẋ− ẋ(i))(x− x(i)) + (ẏ − ẏ(i))(y − y(i))√
(x− x(i))2 + (y − y(i))2

, (3.4)

where c is the speed of light, (x, y) is the position of the target, (x(i), y(i)) is the position of

the ith radar, (ẋ, ẏ) is the velocity of the target, and (ẋ(i), ẏ(i)) is the velocity of the ith radar.

The above formulas can be easily extended to the case of 3-D space.
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Here we give a specific example of the signal models used by a network of radars. Assuming

that all the radars in the network share the same carrier frequency fc, and we let

s(i)(t) = u(t)ej2πf
(i)
ξ t, (3.5)

where u(t) can be a square pulse which is shared by all the radars, and the waveform

agility is dependent on the frequency f
(i)
ξ that is modulated by each radar separately. Note

that the modulated frequency f
(i)
ξ is chosen from a library {fξ,1, . . . , fξ,W}, which contains

different discrete frequencies designed in advance. The range resolution is determined by

the bandwidth of u(t), thus leading to the same range resolution for each radar even though

different waveforms could be transmitted. In this case, the complex reflectivity α(·) of the

echo in Eqn. 3.2 is a function of the modulated frequency f
(i)
ξ , i.e., α(f (i)) can be denoted

as α(f
(i)
ξ ).

3.2.2 Kinematic Model

The target moving in the surveillance space follows the kinematic model,

xk+1 = fk(xk) + vk, (3.6)

where k is the time index, xk is the target state, fk(·) is the state transition function, and

vk denotes the process noise.

A common example of the kinematic model is the noisy constant velocity (CV) model [4],

xk+1 = Akxk + vk, (3.7)
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where xk = [xk, ẋk, yk, ẏk]
T if a 2-D scenario is considered, (xk, yk) and (ẋk, ẏk) are the

position and velocity of the target at time k, respectively, and the process noise vk is white

Gaussian noise. In addition, the state transition matrix is

Ak = I2 ⊗ Āk, (3.8)

Āk =

1 Tin,k

0 1

 , (3.9)

where I2 is the 2 × 2 identity matrix, ⊗ is the Kronecker product, and Tin,k is the time

interval between two tracking steps. Furthermore, we have that

E(vk) = 0, (3.10)

E(vkv
T
j ) = Vkδkj, (3.11)

where δkj is the Kronecker delta function, and the noise covariance matrix is

Vk = diag(q1, q2)⊗

1
3
T 4

in,k
1
2
T 3

in,k

1
2
T 3

in,k T 2
in,k

 , (3.12)

where q1 and q2 are the process noise intensities of the x and y directions, respectively.

3.2.3 Measurement Model

A general measurement model is given by

zk = hk(xk;D(Uk)) + nk, (3.13)
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where hk(·) is a nonlinear mapping from the target state xk to the noiseless measurement,

and nk is the measurement noise. Note that zk could be the time delay τ , Doppler frequency

ν, or other measurements extracted from the echo via signal processing techniques [64]. In

addition, it is optional to use the raw discretized received signal as zk [49]. In practical

applications, the choice of zk is dependent on the channel capacity, computational resources,

and requirements of the algorithms. The dimension of zk is NJ , where N is the dimension

of the measurement of a single radar, and J is the total number of selected radars.

In this dissertation, we take the raw discretized received signal as an example. We assume

that the ith radar is selected by the sensing system to operate at time k; i.e., i ∈ U sk . In

addition, we denote the ith radar, the corresponding selected waveform, and its state as D
(i)
k .

According to (3.2) and assuming that the echo from the target is collected by the ith radar,

we have

r
(i)
k (t) = h

(i)
k (t,xk;D

(i)
k ) + n

(i)
k (t), t = t1, . . . , tN , (3.14)

where the measurement noise n
(i)
k (t) is white circularly-symmetric complex Gaussian noise,

and

h
(i)
k (t,xk;D

(i)
k ) = α(f

(i)
k )s

(i)
k (t− τ (i)

k )ej2πν
(i)
k (t−τ (i)k )e−j2πf

(i)
c τ

(i)
k . (3.15)
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We lump all the samples together to obtain

r̃
(i)
k =


h

(i)
k (t1,xk;D

(i)
k )

...

h
(i)
k (tN ,xk;D

(i)
k )

+


n

(i)
k (t1)

...

n
(i)
k (tN)


= h̃

(i)
k (xk;D

(i)
k ) + ñ

(i)
k . (3.16)

Since many tracking filters prefer a real expression of the measurement model, we further

modify (3.16) to

z
(i)
k = r

(i)
k =

Re{h̃(i)
k (xk;D

(i)
k )}

Im{h̃(i)
k (xk;D

(i)
k )}

+

Re{ñ(i)
k }

Im{ñ(i)
k }


= h

(i)
k (xk;D

(i)
k ) + n

(i)
k , (3.17)

where Re{·} and Im{·} represent the real and imaginary parts of a complex number, respec-

tively. Note that n
(i)
k remains Gaussian. By collecting all the z

(i)
k into one vector zk, such

that i ∈ U sk , we have

zk = vecZk = vec{z(i)
k |i ∈ U

s
k}

= vec{h(i)
k (xk;D

(i)
k ) + n

(i)
k |i ∈ U

s
k}

= hk(xk;D(Uk)) + nk, (3.18)

where the vec operator lumps the elements in a set into a vector. Furthermore, we define

the covariance matrix as,

E(nkn
T
j ) = Rkδkj. (3.19)
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We should note that the measurement model given by (3.18) assumes the ideal scenario, in

which the radars’ beams can always cover the target. However, when the beamwidths are

narrow or in other practical situations, it is possible that echo received by a selected radar

contains only noise when the target is not covered by its beam. For these cases, the actual

measurement should be adjusted to h
(i)
k (xk;D

(i)
k ) = 0.

3.2.4 Recursive Bayesian Estimation

In target tracking, we aim to recursively estimate the posterior distribution

p(xk|Z1:k;D(Uk)) =
p(xk|Z1:k−1)p(Zk|xk;D(Uk))∫
p(xk|Z1:k−1)p(Zk|xk;D(Uk))dxk

, (3.20)

where Z1:k = {Z1,Z2, . . . ,Zk} and

p(xk|Z1:k−1) =

∫
p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1. (3.21)

Note that (3.20) and (3.21) formulate the recursion of the posterior distribution p(xk|Z1:k;D(Uk))

via the state transition probability p(xk|xk−1), the latest measurement model p(Zk|xk;D(Uk))

parametrized by D(Uk), and the posterior distribution of the last step p(xk−1|Z1:k−1).

Here we give an example of the extended Kalman filter to clarify the formulations above. The

extended Kalman filter gives the sufficient statistics (i.e., the posterior mean and error co-

variance matrix) to represent the assumed Gaussian posterior distribution P (xk|Z1:k;D(Uk))

by linearizing the kinematic model and measurement model [5]. The complete recursion of
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the extended Kalman filter is given as,

x̂k|k−1 =fk−1(x̂k−1|k−1), (3.22)

Pk|k−1 =Fk−1Pk−1|k−1F
T
k−1 + Vk−1, (3.23)

Kk =Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1, (3.24)

x̂k|k =x̂k|k−1 +Kk(zk − hk(x̂k|k−1;D(Uk))), (3.25)

Pk|k =(I −KkHk)Pk|k−1, (3.26)

where x̂k|k−1 is the predicted state, Pk|k−1 is the corresponding predicted covariance matrix,

x̂k|k is the updated state, and Pk|k is the corresponding updated covariance matrix. Note

that in the extended Kalman filter, P (xk|Z1:k−1) is assumed to be Gaussian with mean x̂k|k−1

and covariance matrix Pk|k−1, and P (xk|Z1:k;D(Uk)) is assumed to be Gaussian with mean

x̂k|k and covariance matrix Pk|k. Furthermore, we have

Fk−1 =
∂fk−1(x)

∂xT

∣∣∣∣
x=x̂k−1|k−1

, (3.27)

Hk =
∂hk(x;D(Uk))

∂xT

∣∣∣∣
x=x̂k|k−1

. (3.28)

Note that if noisy CV model is used, then Fk−1 can be replaced by Ak−1.

3.2.5 Adaptive Tracking and Recursive Bayesian Estimation

In order to improve the tracking performance, we solve a combinatorial optimization problem

for every tracking step after the measurements are received. According to the optimal

solution, the radar network adaptively modifies its geometry and assigns a subset of radars

to collect measurements using the designed waveforms for the next step. In summary, the
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tracking procedure is iterated by alternating between the following two steps:

(1) D(Uk) = arg max
Q

f(Q) (3.29)

s.t. U sk ∈ Πk(Isk),

Upk ∈ Lk(U
s
k ,S

p
k−1),

(2) x̂k = arg max
xk

P (xk|Z1:k;D(Uk)), (3.30)

where f(·) is the utility function that evaluates the expected performance of the selected

D(Uk), Isk is set of the indices of radars that are available for management at time k, and

Πk(Isk) is the collection of the subsets of Isk according to a given policy. For example,

Πk(Isk) = {U ⊂ Isk : |U| ≤ c̃}, where c̃ is a given constant, is commonly used in sensor

selection. In addition, Spk−1 denotes the states of all the radars in the sensor network at time

k − 1, and Lk(U sk ,S
p
k−1) is the set of states (e.g., positions and velocities) that the selected

radars can achieve at time k within the kinematic capabilities of the radars or as dictated

by some predefined searching rules. For example, a radar may be responsible for exploring

and monitoring a certain region, and unable to move far away from the initial position.

Furthermore, the utility function f(·) can be one step ahead or multi-step ahead, depending

on the demands and computational capacity.

As an illustrative example, an one-step ahead objective function could be the expected cross-

entropy between the probability density functions (pdfs) of the predicted state and updated

state, i.e.,

f(D(Uk)) = Ep(zk|xk−1=x̂k−1|k−1;D(Uk))[−Ep(xk|z1:k−1) log p(xk|z1:k;D(Uk)], (3.31)
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where the term in the square bracket is the cross-entropy, measuring the dissimilarity of the

two pdfs. We need to take expectation of the cross-entropy with respect to zk since zk is not

collected when solving the combinatorial optimization in (3.31). In order to compute the

objective function, we can approximate p(xk|z1:k−1) and p(xk|z1:k;D(Uk)) using the output

of the extended Kalman filter as suggested by (3.22)-(3.28), regardless of whether zk includes

some measurements containing only noise. For simplicity, the noisy CV model is used here.

Also, note that

p(zk|xk−1 = x̂k−1|k−1;D(Uk)) =

∫
p(zk|xk;D(Uk))p(xk|xk−1 = x̂k−1|k−1)dxk (3.32)

≈
∑
j

p(zk|x̃jk;D(Uk))
q(L(x̃jk)|xk−1 = x̂k−1|k−1)

C
(3.33)

where an approximation is used to remove the annoying integral in (3.32) to get (3.33) by

discretizing the state xk into 4-D grids with centers x̃jk, and

q(L(x̃jk)|xk−1 = x̂k−1|k−1) =

∫
L(x̃jk)

p(xk|xk−1 = x̂k−1|k−1)dxk, (3.34)

where L(x̃jk) is the grid that x̃jk locates, and C is the normalizing constant such that the

summation of q(L(x̃jk)|xk−1 = x̂k−1|k−1) is equal to 1. Furthermore, we can assume that the

measurement collection processes of the selected radars are independent (i.e., E(n
(i)
k n

(j)T
k ) =

R
(i)
k δij), then

p(zk|x̃jk;D(Uk)) =
∏
i∈Usk

p(z
(i)
k |x̃

j
k;D

(i)
k ). (3.35)
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Note that p(z
(i)
k |x̃

j
k;D

(i)
k ) denotes the pdf of the measurement of ith radar when the target

state is given, and the expression is given as follows:

p(z
(i)
k |x̃

j
k;D

(i)
k ) =

 p
n

(i)
k

(z
(i)
k ) if scenario 1

p
n

(i)
k

(z
(i)
k − h

(i)
k (x̃jk;D

(i)
k )) if scenario 2

,

where p
n

(i)
k

(·) is the pdf of the measurement noise n
(i)
k . Note that the difference between the

two scenarios:

• Scenario 1: The beam of radar i does not cover x̃jk, and the measurement is only noise.

• Scenario 2: The beam of radar i covers x̃jk, and the measurement is the echo from the

target.

It follows that, we have that z
(i)
k |x̃

j
k ∼ N (µ(i)(x̃jk, D

(i)
k ), R

(i)
k ), where

µ(i)(x̃jk, D
(i)
k ) =

 0 if scenario 1

h
(i)
k (x̃jk;D

(i)
k ) if scenario 2

. (3.36)

Thus, we have zk|x̃jk ∼ N (µ(x̃jk,D(Uk)), Rk), where

µ(x̃jk,D(Uk)) = vec{µ(i)(x̃jk, D
(i)
k )|i ∈ U sk}, (3.37)

Rk = diag{R(i)
k |i ∈ U

s
k}, (3.38)

where diag is the operator that rearranges the elements in the set into a block diagonal

matrix.
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Hcross =− Ep(xk|z1:k−1) log p(xk|z1:k;D(Uk))

=Ep(xk|z1:k−1)[
1

2
log(2π)4 +

1

2
log |Pk|k|+

1

2
(xk − x̂k|k)TP−1

k|k (xk − x̂k|k)]

=
1

2
log(2π)4 +

1

2
log |Pk|k|+

1

2
tr(P−1

k|kPk|k−1) +
1

2
(x̂k|k − x̂k|k−1)TP−1

k|k (x̂k|k − x̂k|k−1)

(3.39)

f(D(Uk)) =Ep(zk|xk−1=x̂k−1|k−1;D(Uk))[Hcross]

≈1

2
log(2π)4 +

1

2
log |Pk|k|+

1

2
tr(P−1

k|kPk|k−1) +
1

2
tr(KT

k P
−1
k|kKkRk)

+
1

2C

∑
j

[q(L(x̃jk)|xk−1 = x̂k−1|k−1)×

(µ(x̃jk,D(Uk))− hk(x̂k|k−1))TKT
k P
−1
k|kKk(µ(x̃jk,D(Uk))− hk(x̂k|k−1))] (3.40)

Based on the above discussion and the extended Kalman filter, we can compute the cross-

entropy as in (3.39) and have the explicit expression of the objective function in (3.40). A

more detailed derivation is given in Appendix C.1 and C.2.

The state estimation shown by (3.30) is the maximum a posteriori (MAP) inference. Other

estimators, such as the posterior mean, can also be selected if they fit better in the prac-

tical design. For the extended Kalman filter, the updated state shown by (3.25) is a good

estimator.

3.2.6 Target Tracking with Multiple Target Models

Note that if the model of the complex reflectivity α(f
(i)
k ) with respect to f

(i)
k is known by

the sensing system, then the objective function like that in (3.40) can be directly applied.

However, in many real applications, since the sensing system does not know the type of the
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target to track, it is unable to know how f
(i)
k affects the complex reflectivity α(f

(i)
k ). In

this dissertation, we assume that there exists a target model library, which includes multiple

pre-trained target models. Note that each target model is associated with a mapping from

the modulated frequency f
(i)
k to α(f

(i)
k ). Formally, the target model library is given by

T = {α1(·), α2(·), . . . , αM(·)}, (3.41)

where M is total number of the target models in the library. We assume that the actual target

model is contained in the target model library. Now, we replace f(D(Uk)) with f(D(Uk);αm)

in order to emphasize the dependence of the objective function on the target model m.

Then we have the modified objective function which will be applied to the combinatorial

optimization problem in (3.29):

f̄(D(Uk)) =
1

M

M∑
m=1

f(D(Uk);αm). (3.42)

Note that for simplicity, here we just average f(D(Uk);αm) with respect to all the tar-

get models in the library by implicitly assuming the all the target models have the same

probability of being correct at every tracking step. A more complicated strategy could be

averaging the f(D(Uk);αm) by assigning different weights to the target models in the library

T , and updating the weights at every step, using the information from consecutively received

measurements.

Also, if the target model α(f
(i)
k ) is known in advance, then we can directly apply the recursive

Bayesian state estimation to compute the posterior pdf P (xk|Z1:k;D(Uk)). If the actual

target model is not available, then we need to average the posterior pdf derived from a single

target model m, denoted as Pm(xk|Z1:k;D(Uk)), on target models in the target model library.
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Using the extended Kalman filter as an example, let the updated state and the corresponding

covariance matrix with the mth target model be denoted as xk|k,m and Pk|k,m respectively,

and we have

x̂k|k =
1

M

M∑
m=1

x̂k|k,m, (3.43)

Pk|k =
1

M

M∑
m=1

(
Pk|k,m + P̂k,m

)
, (3.44)

where

P̂k,m = (x̂k|k,m − x̂k|k)(x̂k|k,m − x̂k|k)T. (3.45)

Note that the above multiple model estimation also treats multiple target models having

the same possibility as the actual model, as what we do when dealing with the objective

function. More complicated multiple model estimation methods could be employed [5].

The sketch of the target tracking procedure is described as algorithm 4. In general, nested

loops are needed to exhaustively search for the optimal solution of a combinatorial opti-

mization problem at every step. In practical applications, it is realistic to select the same

or nearly the same waveform parameters between consecutive dwells (steps) separated by a

very short time period, such that the computational complexity can be reduced on average.

Furthermore, the objective function of the optimization problem can be carefully designed

with some good properties, e.g., submodularity. In this way, some greedy methods can be

applied to solve the combinatorial optimization problem with guaranteed performance.

69



Algorithm 4: Target Tracking in a Network of Radars

Input : Initial pdf of the target state p(x0), and initial radars’ state Sp0
Output: The optimal set D̂(Uk), the posterior pdf P (xk|Z1:k;D(Uk)), and MAP

inference x̂

1 k ← 1;
2 while Stop condition is not met do
3 for each target model m do
4 for each subset of radars U sk ∈ Πk(Isk) do
5 for states of radars Upk ∈ Lk(U sk ,S

p
k−1) do

6 for waveforms of radars Uwk do
7 Compute f(D(Uk);αm);

8 Compute the objective function f̄(D(Uk));
9 Search the solution D̂(Uk) = arg max f̄(D(Uk));

10 Get the measurement zk by the setting D̂(Uk);
11 for each target model m do

12 Get Pm(xk|Z1:k; D̂(Uk)) using recursive Bayesian state estimation;

13 Average on the target model to get the posterior pdf P (xk|Z1:k; D̂(Uk));
14 Update radars’ state Spk by a predefined rule for the radars that are not selected;
15 k ← k + 1;

3.3 Simulation Results

The framework given by Section 3.2 is general, which would fit many tracking applications

in the sensor network, and numerical simulations are needed to demonstrate the framework.

In this section, an illustrative example is discussed in order to formulate a specific scenario

as shown in Figure 3.2. The Figure 3.2 illustrates a network with small number of radars

for the sake of simple illustration; however it represents a scenario with large-scale network

of cognitive radars which have certain constraints about coverage area and path. Especially,

assuming that each radar in the network is aware of the location of the other radars in the

network and also assuming that the target is in the far-field compared to all the radars in the

network, the scenario presents here a realistic case in which the overlap among the radars
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along the same path is avoided. Moreover, without loss of generality, the paths are assumed

to be along the x and y axes in Figure 3.2; however, in general these radar paths could be

rotated. Based on this scenario, a simulation-based validation demonstrates the feasibility

of the proposed method.

3.3.1 Simulation Settings (a Scenario)

As shown in Fig. 3.2, a total of Jtotal radars are moving along the x and y axes to track a

single target in a 2-D plane. A central processing system fuses the measurements from all the

operative radars and manages the network by dictating the waveform design, path planning,

and radar selection. In order to simplify the case, we make the following assumption for this

illustrative example.

• All the radars that move in the same direction transmit waveforms with the same range

resolution by using the waveforms given by the specific example in Section 3.2.1. Thus,

the 2-D plane can be divided into several lattices. Each lattice has the size δx × δy,

where δx and δy are the range resolutions of the waveforms transmitted by the radars

moving on the y and x axes, respectively.

• At every tracking step, each radar is located only at the discrete coordinates on x and

y axes corresponding to the centers of rows and columns formed by lattices.

• Each radar is able to emit a signal only in the direction orthogonal to its moving

direction. For example, radar xi can emit a signal only in y direction.
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• The beamwidths of the radars are considered to cover only one column or one row.

For example, if a radar is moving in the x direction, its beam covers only one column

of lattices if it is selected to operate.

• The target is moving in the far field, which is a common scenario in practice. Since the

beamwidth of a radar is comparable to its range resolution in this case, for the echo

from the target, we can approximate the time delay and Doppler frequency in simper

expressions. In other words, if ith radar on the x axis receives the echo from the target,

we can approximate (3.3) and (3.4) as

τ (i) ≈ 2y

c
, ν(i) ≈ −2fcẏ

c
, (3.46)

where the approximation is due to that the far field assumption results in |x− x(i)| �

|y − y(i)| = |y| for the ith radar on the x axis. A similar approximation can be applied

to radars on the y axis. We emphasize that the time delay and Doppler frequency of

the echo from the target are not functions of the position or velocity of the radar if it

receives the echo.

• In addition, since we have multiple radars moving on the each axis, we let each

radar have its own predefined assigned surveillance space which consists of contigu-

ous columns or rows, and the surveillance spaces of different radars are not overlapped

if they are moving in the same direction. Also, the union of the assigned surveil-

lance regions of the radars moving in the same direction covers the whole workspace

of interest. In this example, we assign each radar in the network the responsibility of

monitoring 3 consecutive columns or rows in the space. The centers of the assigned

surveillance regions of radar x1 and y1 correspond to the lattice that initial state x̂0|0
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Figure 3.2: Model settings of the illustrative example of the framework.

locates. In order to reduce the searching complexity of solving the combinatorial op-

timization problem, at each time k, only 5 columns or rows near the predicted state

x̂k+1|k and the corresponding radars are considered.

• Target remains in only one lattice during the time when the measurements of a tracking

step are collected.

• Radar measurement collection procedures are independent; i.e., the measurement of

one radar is not affected by signals emitted by other radars and is independent of the

measurements of other radars.

• The power of the measurement noise of each radar is assumed to be known in advance,

and the environment is assumed to be stationary.
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In summary, each radar is responsible for a predefined surveillance region, and it transmits

a signal covering one column or one row of the lattices in its region if it is selected by the

central processing system to operate.

In this illustrative example, we let the target start with a state sampled from a Gaus-

sian distribution N (x̂0|0, P0|0), where x̂0|0 = [630 m, 150 m/s, 630 m, 150 m/s]T and P0|0 =

diag(1, 0.01, 1, 0.01). For the signal model shared by all the radars in the network, we set u(t)

in (3.5) as a square pulse, with pulse width twidth = 10−7 s and power 1. The carrier frequency

is fc = 3 GHz, and the modulated frequency fc + f
(i)
ξ can be selected from [fc − (1 MHz),

fc, fc + (1 MHz)]T in every tracking step. In addition, the speed of light c = 3 × 108 m/s,

and the range resolutions can be computed as δx = δy = c× twidth/2 = 15 m.

We adopt the noisy constant velocity (CV) model suggested by (3.7) as the underlying

kinematic model, where the interval between two tracking steps is Tin = 0.005 s or 0.05 s,

which varies in the different experiments. The process noise intensities, q1 and q2, vary in

the different experiments. Also, we use the raw discretized signals received from the selected

radars as the measurements, and the corresponding measurement model is given by (3.18).

In this model, the sampling frequency is fs = 20 MHz. We take the first 334 sample points

as the measurement vector in the experiments. The power of the measurement noise is

E[n
(i)
k (tp)n

(i)
k (tq)

∗] = 0.02δpq for all time k and radar i, where tp and tq correspond to the

time of two sample points. We use the extended Kalman filter to do the recursive Baysian

state estimation, as stated in Section 3.2.4.

The objective function of the combinatorial optimization problem in (3.29) could be given

by the expected cross-entropy, where the definition is shown in (3.31), and the analytical

expression is given by (3.40). Note that in Section 3.2.5, we approximate the integral in

(3.32) with a summation by discretizing the state space of xk into 4-D grids. Here, we
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discretize only the position of the state space and fix the velocity of xk as the predicted

velocity of x̂k|k−1 in order to reduce the computational complexity.

The feasible set for the sensor selection within the constraints of (3.29) is defined as

Πk(Isk) = {U ⊂ Isk : |U| = 2, and two radars are moving on the x and y axes respectively},

(3.47)

which means that for each axis, we select one radar to get the measurements. This is a

reasonable policy since the assigned surveillance regions are not overlapped for radars that

move in the same direction. Based on this policy, U sk can be expressed by (xi,k, yj,k), where

xi,k and yj,k are two indices of radars moving on the x and y axes respectively.

For the path planning constraints Upk ∈ Lk(U sk ,S
p
k−1), we additionally assume that each radar

is capable of transmitting the signal to any column or row in its assigned surveillance region at

any step. In other words, each radar can move fast enough between any two tracking steps in

its assigned range. In this example, the path planning constraint Upk ∈ Lk(U sk ,S
p
k−1) dictates

that radars do not leave the ranges corresponding to their assigned surveillance regions.

Furthermore, we do not need to take the velocities of sensors into account when solving the

combinatorial optimization problem, since they do not affect the objective function and the

path planning constraint.

Moreover, multiple target models, as shown in Section 3.2.6, are considered in this example.

We assume that there are three target models in the target model library {αm(fξ) : m =

1, 2, 3}. Specifically, they are α1({−1, 0, 1}) = {1/
√

21, 2/
√

21, 4/
√

21}, α2({−1, 0, 1}) =

{2/
√

9, 1/
√

9, 2/
√

9}, and α3({−1, 0, 1}) = {1/
√

14, 2/
√

14, 3/
√

14}. In the simulation, we
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Algorithm 5: Target Tracking in the illustrative example

Input : Initial State x̂0|0 and Covariance Matrix P0|0
Output: Selected radar pair (xi,k, yj,k), radar waveforms (fwxξ,k , f

wy
ξ,k ), and the radar

positions (rpx(xi,k), r
py(yj,k)) in the ranges of the assigned surveillance regions

at every step k. The updated state x̂k|k and covariance matrix Pk|k.

1 k ← 1;
2 while Stop condition is not met do
3 for each target model m do
4 for each radar pair do
5 for each position pair in the ranges of the assigned regions of the selected

radar pair do
6 for each waveform pair do
7 Compute f(D(Uk);αm);

8 Compute the objective function f̄(D(Uk));
9 Search the solution D̂(Uk) = arg max f̄(D(Uk));

10 Get the measurement zk by the setting D̂(Uk);
11 for each target model m do
12 Get x̂k|k,m and Pk|k,m using the extended Kalman filter;

13 Average on the target model to get x̂k|k and Pk|k;
14 k ← k + 1;

use the first target model α1 as the underlying target model, which is not known by the

sensor system.

In summary, the sketch of the target tracking procedure in this illustrative example can be

described as algorithm 5.

3.3.2 Simulation Results

All the experiments conduct 60 tracking steps, and all the relative errors are computed using

30 Monte Carlo runs in this section. The performance of the framework on the illustrative
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example is illustrated in Fig. 3.3, Fig. 3.4, and Fig. 3.5. Fig. 3.3 shows the performance of

the tracking procedure with process noise intensities q1 = q2 = 0.1 and the tracking time

interval Tin = 0.005 s. Fig. 3.3(a) shows a representative example of the true trajectory

and estimated trajectory. Fig. 3.3(b)-3.3(e) show the relative errors of the positions and

velocities of the updated state. Fig. 3.3(f) shows the waveforms used by the radars on the x

and y axes in the representative example. Fig. 3.4 shows the corresponding performance with

q1 = q2 = 0.1 and Tin = 0.05 s. We can see from the results that the proposed framework is

capable of tracking a single target in the sensor network under these two sets of parameters.

From the representative examples of the trajectories, we note that the estimated states are

close to the true states, which is also verified by the behaviors of the relative errors. We

also notice that when the tracking time interval Tin (i.e., pulse repetition interval (PRI) in

this example), is relatively small, further decreasing it could provide better velocity tracking

performance after the algorithm converges, by comparing relative errors of velocities ẋ and

ẏ in Fig. 3.3 and Fig. 3.4. Note that shorter PRI usually requires the higher power usage,

and longer tracking time interval means higher uncertainty of the target state between two

tracking steps, thus hindering the tracking performance. Hence, in practical use, the sensor

network should utilize the freedom of choosing an appropriate PRI to balance the power

usage and tracking performance, or adaptively adjust the PRI to address different scenarios.

When the process noise intensities become larger, which is shown by Fig. 3.5 with q1 =

q2 = 10 and Tin = 0.05 s, the relative errors increase as tracking time moves on, especially

the relative errors of the velocities. This is in accordance with the intuition, since when

process noise intensities are larger, the motion of the target becomes more unpredictable. In

addition, the extended Kalman filter is a sub-optimal tracking filter and the errors caused

by linearization accumulate, resulting in such a scenario. Note that the simulation generates

the true state using this noisy CV kinematic model. In practice, the target maneuvers by

77



switching itself among several predefined motion modes, such as constant velocity mode,

accelerating mode, and turning mode. Thus, the noisy CV kinematic model with large

process intensities might not be a real case for target’s motion, and multiple model-based

tracking filters, such as the interacting multiple model (IMM) filter, are needed to address

practical situations.

The waveforms used by the radars moving on x and y axes are shown in Fig. 3.3(f), 3.4(f),

and 3.5(f) for these three sets of parameters. Note that for all the three cases, the radars

prefer to use the frequency fξ+fc = fc+(1 MHz). Note that the underlying true target model

is α1({−1, 0, 1}) = {1/
√

21, 2/
√

21, 4/
√

21}. Thus, the radars tend to use the frequencies

corresponding to highest signal-to-noise ratio (SNR), such that more information can be

collected from the measurements to maximize the objective function. Moreover, we need to

claim that the waveform design is also affected by the target model library. In this example,

we assume that all the target models in the library have the same probabilities to be correct

along the whole tracking time, and we can see that all the target models in the library

suggest that fξ + fc = fc + (1 MHz) corresponds to highest SNR. In practice, we may need

to update the probability of each target model by utilizing the received measurements.

3.4 Chapter Summary

In this chapter, we proposed a framework for single target tracking in a cognitive network

of radars, jointly considering waveform design, path planning, and radar selection. We

applied the theories of DGM and RBSE to formulate the framework, which consists of

alternately solving the combinatorial optimization problem and estimating the target state.

In addition, the framework was demonstrated by an illustrative example and verified by
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Figure 3.3: Tracking performance when process noise intensities q1 = q2 = 0.1, and the
tracking time interval Tin = 0.005 s. (a) Comparison of the true and estimated trajectories
of the target, (b) relative error of the position x, (c) relative error of the velocity ẋ, (d)
relative error of the position y, (e) relative error of the velocity ẏ, (f) waveforms used by
radars on the x and y.
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Figure 3.4: Tracking performance when process noise intensities q1 = q2 = 0.1, and the
tracking time interval Tin = 0.05 s. (a) Comparison of the true and estimated trajectories of
the target, (b) relative error of the position x, (c) relative error of the velocity ẋ, (d) relative
error of the position y, (e) relative error of the velocity ẏ, (f) waveforms used by radars on
the x and y.
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Figure 3.5: Tracking performance when process noise intensities q1 = q2 = 10, and the
tracking time interval Tin = 0.05 s. (a) Comparison of the true and estimated trajectories of
the target, (b) relative error of the position x, (c) relative error of the velocity ẋ, (d) relative
error of the position y, (e) relative error of the velocity ẏ, (f) waveforms used by radars on
the x and y.
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numerical simulations. We emphasize that the proposed framework is not limited to the

illustrative example, and it can be applied to much more complicated scenarios.
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Chapter 4

Conclusions and Future Work

In this chapter, we summarize the key contributions of our work in Section 4.1 and discuss

future work in Section 4.2.

4.1 Summary and Conclusions

In this dissertation, we focused on developing methods for cognitive radar detection in non-

stationary environments and on target tracking in cognitive radar networks.

To design a cognitive radar system for target detection in nonstationary environments, we

proposed a framework that integrates change-point detection, clutter distribution learning,

and adaptive detection. Specifically, we formulated the change-point detection as a se-

quential hypothesis test and utilized the extended CUSUM algorithm to rapidly detect the

possible change-points of the clutter distributions. We used kernel density estimation to

learn the new clutter distributions from random clutter samples and applied a similarity

measure to identify the clutter distribution from a pre-trained dictionary. Based on the

newly learned clutter distribution, we adaptively selected the corresponding likelihood ratio
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test and threshold to avoid performance degradation caused by detector mismatch. In the

simulation, we first demonstrated the performance of the extended CUSUM algorithm and

the clutter identification method. For the whole framework, we investigated not only the

adaptive detection performance when focusing on one change-point, but also the proposed

framework’s dynamic behavior along the time axis when handling multiple change-points,

which reflects the new framework’s capability for real-time applications.

To design a cognitive radar network that can intelligently track the target in its surveillance

space, we proposed a framework that jointly designs the transmit waveform, plans the radar

trajectory, and selects the appropriate radar subset. We built the system on the theories

of dynamic graphical models (DGM) and recursive Bayesian state estimation (RBSE), and

formulated the target tracking procedure as two iterative steps. In the first step, we chose

the expected cross-entropy as the objective function and solved a combinatorial optimization

problem to select the optimal subset of radars that transmit well-designed waveforms from

their best locations for receiving the most informative measurements during the next tracking

instant. In the second step, we acquired the RBSE to accurately track the target, based on

measurements collected by the radar network with these optimal waveforms, radar locations,

and selected radars. We also validated the proposed framework by constructing an illustrative

case, in which radars with certain movement constraints track a single target in a 2-D space.

We showed that the sensing system of the cognitive radar network can achieve satisfying

tracking performance with relatively low process noise.

4.2 Future Work

For cognitive target detection, we can extend our work to address the following topics:
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Correlated clutter model : In the current work, to illustrate the idea of the proposed frame-

work, an i.i.d. assumption was imposed for the clutter samples between pulses. This assump-

tion can be removed if, in the extended CUSUM algorithm, we can derive the confidence

boundary for the parameters of the multivariate distribution of the sample vector in one

range cell, and then use the multi-dimensional kernel density estimation (KDE) for the clut-

ter distribution identification. However, if the dimension of the clutter sample vector is high,

KDE may suffer from the curse of dimensionality. Thus, we will need to propose a change-

point detection method and a clutter distribution identification method that are robust in

high dimensional applications.

Off-grid effects : In this dissertation, we assumed that the clutter distribution that a radar

encounters on-the-fly can be found in the dictionary. In practice, this assumption may not

hold, and parameters of the true clutter distribution may be different from those of the most

similar clutter distribution in the dictionary. A naive method is to refine the dictionary

to include more clutter distributions, but this will require more memory and increase the

computational load. Another method is select several similar clutter distributions in the

dictionary and merge them to approximate the true clutter distribution, but the merging

algorithm must be careful designed for high approximation accuracy and efficiency. Further,

with this merging method, we will need to consider how a detector can be designed without

compromising the false alarm rate. In sum, we will need to propose an efficient algorithm

that can address off-grid effects.

Dynamic dictionary size: In this dissertation, we used a pre-trained dictionary that includes

versatile clutter distributions. The computational load of the clutter distribution identifica-

tion algorithm depends on the size of the dictionary. As mentioned, a large dictionary can

help to accurately identify clutter distribution, at the cost of increased computational load.
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We could develop a dynamic mechanism that controls the size of the dictionary to balance

the computational load and performance of adaptive detection.

For target tracking in cognitive radars, we can extend our work in the following directions:

Design objective functions : In this dissertation, we used only a grid search method to solve

the combinatorial optimization problem. For a more efficient solver, an objective function

with more particular properties can be designed. For example, if an objective is submodular,

then the combinatorial optimization can be solved in a greedy manner with guaranteed

performance. Further, sometimes, we will need to consider multiple goals in target tracking,

in which case a multi-objective optimization technique can be applied to achieve Pareto-

optimality.

Nonstationary environments : With regard to target tracking, this dissertation does not

consider nonstationary environments. We could build a bridge between our work on cognitive

target detection in nonstationary environments and target tracking in a network of radars, so

that the two topics could benefit each other. We could also develop a statistical environment

model that includes geographic information, which would make the nonstationarity of the

environment more predictable.
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Appendix A

Proof of t̂AMF ∼ F (2, 2LN) Under the

Null Hypothesis

First, from (2.30) we have

t̂AMF =
|y(k)H

0 1|2

σ̂21H1
. (A.1)

where

σ̂2 =
1

LN

L∑
l=1

N∑
i=1

|y(k)
cli |

2. (A.2)

Note that y
(k)
cli is the ith entry of the secondary data y

(k)
cl . Since the clutter samples are

assumed to be complex Gaussian distributed in AMF, we have

y
(k)
cli ∼ CN (0, σ2). (A.3)
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For the complex Gaussian distribution defined in (2.22), the real part and the imaginary

part of y
(k)
cli are independent and Gaussian. Thus, we have

|y(k)
cli |2

σ2/2
∼ χ2

2. (A.4)

In Section 2.6, we assume that the entries of the clutter vector in each range cell are inde-

pendent. In addition, clutter vectors in different range cells are commonly assumed to be

independent. Thus, we have

LN
σ̂2

σ2/2
∼ χ2

2LN . (A.5)

Further, because y
(k)H
0 1 ∼ CN (0, Nσ2), we have

|y(k)H
0 1|2

Nσ2/2
∼ χ2

2. (A.6)

Note that 1H1 = N , thus, we have

t̂AMF ∼
χ2

2/2

χ2
2LN/2LN

, (A.7)

where the right-hand-side coincides with definition of an F -distribution, because these two

χ2-distributions are independent due to the independence of the data in the cell under test

and the secondary data.
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Appendix B

Comparison of Ozturk Method and

Our Proposed Method

In this section, we first introduce the Ozturk algorithm, and then we show the comparison

results of our proposed method and Ozturk method.3

B.1 Ozturk Algorithm

The Ozturk algorithm provides a graphical distance measurement between the sampled data

and distributions in the dictionary [17,20,95]. This algorithm could be applied for univariate

and multivariate cases, by normalizing the ordered samples and then converting the ordered

samples into points in the two-dimensional plane. The distance between the endpoint of the

sampled data and that of a distribution in the dictionary presents the fitness of the sampled

data with the specific distribution [20].

3This chapter is based on Y. Xiang, M. Kelsey, H. Wang, S. Sen, M. Akcakaya, and A. Nehorai, “A
comparison of cognitive approaches for clutter-distribution identification in nonstationary environments,”
IEEE Radar Conference (RadarConf18), Oklahoma City, OK, April 23-27, 2018, pp.0467-0472. c©IEEE
2018.
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The Ozturk algorithm is originally designed for the fitness test. Assume that X1, X2, . . . , Xn

are randomly sampled from a distribution function F (x). Then the ordered samples are

written as X1:n ≤ X2:n ≤ · · · ≤ Xn:n. Assume that a location-scale distribution F0((x−µ)/σ)

is the null distribution (reference distribution), where µ and σ are the location and scale

parameters, respectively. Then we denote the expected order statistics from the standard

null distribution as m1:n,m2:n, . . . ,mn:n. The standardized ith sample order statistic could be

written as Yi:n =
∣∣Xi:n − X̄

∣∣ /S, where X̄ and S are the sample mean and standard deviation,

respectively. Then the two-dimensional location of ith point corresponding to the ith sample

order statistic could be defined by Qi:n = (Ui:n, Vi:n) , i = 1, 2, . . . , n, where

Ui:n =
1

n

i∑
j=1

cos (πF0(mj:n))Yi:n, (B.1)

and

Vi:n =
1

n

i∑
j=1

sin (πF0(mj:n))Yi:n. (B.2)

The graph starts from the origin in the two-dimensional system, and each point (Ui:n, Vi:n)

is plotted to form linked vectors. These vectors could reveal a certain pattern under the

null hypothesis [95]. Further, if samples are drawn from the hypothesized distribution then

it should create a pattern uniformly close to the expected linked vector pattern. In this

way, a (100 (1− α)) confidence contour for the expected endpoint (E(Un:n), E(Vn:n)) can

be generated, which is able to test whether samples are obtained from the hypothesized

distribution [95]. This fitness test method is extended to be a distribution identification

algorithm in [20] by selecting the nearest neighbour of the sample endpoint (Un:n, Vn:n) from

the graphical dictionary generated by the expected endpoints (E(Un:n), E(Vn:n)) of various
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Algorithm 6: Ozturk algorithm

1: Obtain the ordered sample observations Xi:n

2: Calculate the standard order statistics Yi:n
3: Calculate the statistics Un:n and Vn:n and plot the endpoint Qn:n = (Un:n, Vn:n).
4: Compare the sample endpoint Qn:n = (Un:n, Vn:n) with the expected endpoints

(E(Un:n), E(Vn:n)) generated by the existing distributions in the graphical dictionary,
and find the nearest neighbouring distribution.

predefined distributions. For the given samples X1, X2, · · · , Xn, the Ozturk algorithm for

the distribution identification could be summarized as in Algorithm 6.

As pointed out in [20], the statistic Qn:n is location and scale invariant. If the expected

endpoints (E(Un:n), E(Vn:n)) are plotted for different distributions, then any location-scale

family of distributions could be represented as a single point, while distributions having

shape parameters form a curve.

B.2 Simulation Results

In this section, we compare the performances of the proposed clutter identification method

introduced in Section 2 with that of the Ozturk algorithm based technique. We discuss the

drawbacks of the Ozturk algorithm based method and justify the advantages of the proposed

sparse recovery based technique via simulations. In the numerical examples, we consider the

following clutter distributions:

• Gaussian distribution: yG ∼ N (µG, σ
2
G), i.e., yG follows a Gaussian distribution with

mean µG and variance σ2
G. Note that for the Gaussian distribution, µG is the location

parameter and σG is the scale parameter.
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• K-distribution: yK = |
√
τn|, i.e., yK follows a K-distribution when τ ∼ Gamma(k, θ)

[where k is the shape parameter and θ is the scale parameter] and n ∼ CN (0, σ2
n), i.e.,

complex Gaussian distribution.

• Weibull distribution: yWbl ∼Wbl(α, β), i.e., yWbl follows a Weibull distribution with

the shape parameter α and the scale parameter β.

• Log-normal distribution: yLN ∼ LogN(µLN, σ
2
LN), i.e., yLN follows a log-normal distri-

bution, implying that (ln yLN − µLN)/σLN ∼ N (0, 1).

• Student-t distribution: ySt =
√
τw, i.e., ySt follows a non-standardized Student-t dis-

tribution when 1/τ ∼ Gamma(v, 1/v) and w ∼ N (0, σ2
w).

Based on these distributions, we first construct the dictionary D with l elements, where

each element is pre-learned using N i.i.d. samples from a specific clutter distribution. For

example, an element of dictionary in the Ozturk algorithm based method is an expected

endpoint generated by a clutter pdf. Then, considering the standard Gaussian distribution

as the reference distribution, i.e., considering F0 as a standard Gaussian cdf, the nearest

neighbouring distribution in the graphical dictionary is identified as the underlying clutter

distribution, as suggested by [20]. Note that the expectations of the endpoints are computed

by 10, 000 Monte Carlo trials in the dictionary generation. In addition, usually the expected

order statistics mi:n do not have closed-form expressions; therefore, we use 20, 000 Monte

Carlo runs to approximate them. For the our proposed method, an element of dictionary D

is a pre-learned discretized pdf (estimated by KDE method), which is then normalized. The

underlying clutter pdf is then identified by the proposed method with sparsity level C = 1.

For simplicity, we define a notation {l : ∆ : u} as a set that collects real numbers starting

from l to u with increment ∆. For instance, {1 : 0.5 : 3} = {1.0, 1.5, 2.0, 2.5, 3.0}.
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Figure B.1: Graphical dictionary generated by Weibull, Gaussian, and log-normal distribu-
tions.

B.2.1 Robustness to Location and Scale Parameters

As mentioned in [20], the endpoints generated by the Ozturk method are location and scale

invariant for a family of distributions. However, it might not be a fascinating property to

accurately identify the underlying clutter distributions from the same family, but having

different parameters. To illustrate this issue, we plot in Fig. B.1 the graphical dictionary

generated by the Gaussian, Weibull, and log-normal distributions. Specifically, in the dic-

tionary we have:

1. Gaussian distributions with means µG ∈ {−5 : 1 : 5} and standard deviation parame-

ters σG ∈ {1 : 1 : 5},

2. Weibull distributions with a fixed shape parameter α = 1, and scale parameters β ∈

{2 : 1 : 10},
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3. Weibull distributions with shape parameters α ∈ {1.1 : 0.1 : 2} ∪ {2.5 : 0.5 : 10} and a

scale parameter β = 1,

4. Log-normal distributions with a fixed µLN = 0, and σLN ∈ {0.1 : 0.1 : 2},

5. Log-normal distributions with µLN ∈ {−2 : 0.1 : 2} and a fixed σLN = 1. Note that

eµLN is the scale parameter for the log-normal distribution.

We observe from Fig. B.1 that the Gaussian distributions generate only one endpoint (ir-

respective of µG and σG values), since the Gaussian distribution is parameterized by only

location and scale parameters. For Weibull and log-normal distribution, each of Case (3)

and Case (5) (i.e., varied scale parameters with fixed other parameters) generates only one

endpoint. However, varied shape parameters β for Weibull distributions (Case (2)) and var-

ied σLN for log-normal distributions (Case (4)) can generate a curve for each one of them.

Therefore, we conclude that the Ozturk algorithm is unable to directly identify the location

and scale parameters for some specific types of distributions using the graphical dictionary.

We demonstrate this limitation of the Ozturk algorithm based clutter identification method

based on the Weibull distributions. The dictionary is generated by Weibull distributions

with shape parameters α ∈ {1, 1.2} and scale parameters β ∈ {1, 2}. Each endpoint in the

dictionary is learned by N = 1, 000 samples. To test the identification performance, we

randomly select a test pdf from the dictionary, which generates Nt = 1, 000 samples, and

then apply the Ozturk algorithm based method to identify the clutter distribution. We show

the overall performance of the Ozturk algorithm based method in Table B.1, where each

row tabulates the percentages of the distributions in the dictionary that are selected by the

identification method for a given true clutter distribution. The notation (T) indicates the

true parameters, while (S) indicates the parameters that are selected.
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Table B.1: Ozturk method performance on Weibull distributions
α = 1,

β = 1 (S)
α = 1,

β = 2 (S)
α = 1.2,
β = 1 (S)

α = 1.2,
β = 2 (S)

α = 1, β = 1
(T)

44.29% 49.80% 1.29% 4.63%

α = 1, β = 2
(T)

46.74% 47.80% 1.23% 4.23%

α = 1.2,
β = 1 (T)

2.12% 2.78% 45.73% 49.27%

α = 1.2,
β = 2 (T)

2.39% 3.51% 44.71% 49.38%

Table B.2: Proposed method performance on Weibull distributions
α = 1,

β = 1 (S)
α = 1,

β = 2 (S)
α = 1.2,
β = 1 (S)

α = 1.2,
β = 2 (S)

α = 1, β = 1
(T)

96.70% 0.00% 3.30% 0.00%

α = 1, β = 2
(T)

0.00% 98.50% 0.00% 1.50%

α = 1.2,
β = 1 (T)

0.08% 0.00% 99.92% 0.00%

α = 1.2,
β = 2 (T)

0.00% 0.24% 0.00% 99.76%

From Table B.1, we notice that the Weibull distributions with different shape parameters α

are correctly identified by the Ozturk algorithm based method. For example, the distribution

with α = 1, β = 1 (T) is identified with high probability (i.e., 44.29% + 49.80%) to be a

distribution with α = 1, regardless of the scale parameter β. However, the Ozturk algorithm

based method fails in distinguishing the Weibull distributions with different scale parameters

β. For example, for α = 1, β = 1 (T) case, α = 1, β = 1 (S) is not selected with

overwhelming probability compared to the α = 1, β = 2 (S).

Then, we demonstrate that the our method is capable of identifying clutter distributions with

the different scale parameters, which is beyond the capability of the Ozturk algorithm based
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method. We use the same shape and scale parameters that were used in the simulations with

Weibull distributions for Table B.1, along with the dictionary sample size N = 1, 000, and

test sample size Nt = 1, 000. The performance of proposed method is given in Table B.2. We

clearly observe that each distribution is correctly identified by the proposed method with high

probability (> 96%). Compared to Table B.1, the proposed method immediately shows a

superiority in distinguishing the distributions with different scale parameters. For example,

in Table B.2, the proposed method identify α = 1.2, β = 1 (T) as α = 1.2, β = 1 (S)

with 99.92% accuracy, while in Table B.1, α = 1.2, β = 1 (T) is incorrectly recognized as

α = 1.2, β = 2 (S) with 49.27% probability due to the scale-invariant property of the Ozturk

algorithm.

Furthermore, for Ozutrk method, we present the results of a similar clutter identification

case based on the log-normal distributions in Table B.3. For this simulation, we also consider

the dictionary sample size Nt = 1, 000 and test sample size N = 1, 000. Note that eµLN is

the scale parameter for the log-normal distribution. We observe that, similar to the Weibull

distributions, the Ozturk algorithm based method fails to accurately identify log-normal

distributions with distinct scale parameter values.

We also test the performance of the proposed method on the log-normal distributions using

the same simulation setup as that in Table B.3, and the resulting identification performances

are shown in Table B.4. As before, by comparing Table B.4 and Table B.3, we notice the

capability that the proposed method can easily distinguish the log-normal pdfs with different

µLN and σLN, while Ozturk algorithm based method cannot distinctively identify pdfs with

the same σLN but different µLN values.
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Table B.3: Ozturk method performance on Log-normal distributions
µLN = 0,
σLN = 0.4

(S)

µLN = −1,
σLN = 0.4

(S)

µLN = 0,
σLN = 0.5

(S)

µLN = −1,
σLN = 0.5

(S)
µLN = 0,

σLN = 0.4 (T)
37.85% 49.03% 0.81% 12.31%

µLN = −1,
σLN = 0.4 (T)

35.07% 51.09% 0.75% 13.09%

µLN = 0,
σLN = 0.5 (T)

14.91% 0.74% 42.96% 41.40%

µLN = −1,
σLN = 0.5 (T)

14.18% 0.58% 45.84% 39.39%

Table B.4: Proposed method performance on Log-normal distributions
µLN = 0,
σLN = 0.4

(S)

µLN = −1,
σLN = 0.4

(S)

µLN = 0,
σLN = 0.5

(S)

µLN = −1,
σLN = 0.5

(S)
µLN = 0,

σLN = 0.4 (T)
99.80% 0.00% 0.20% 0.00%

µLN = −1,
σLN = 0.4 (T)

0.00% 99.92% 0.00% 0.08%

µLN = 0,
σLN = 0.5 (T)

0.04% 0.00% 99.96% 0.00%

µLN = −1,
σLN = 0.5 (T)

0.00% 0.00% 0.00% 100.00%

B.2.2 Performance Comparison between Our Method and Ozturk

Method

In this section, we comprehensively compare the proposed clutter identification technique

with the Ozturk algorithm based method using a dictionary that includes the K, Weibull,

log-normal, and Student-t distributions. Specifically, we consider

1. K-distributions with fixed σn = 1, θ ∈ {1, 10}, and k ∈ {0.1 : 0.5 : 3.6} ∪ {4 : 5 : 24},
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Figure B.2: Comparison of proposed method and Ozturk method for clutter distribution
identification.

2. Weibull distributions with shape parameters α ∈ {0.5 : 0.5 : 3}∪{4 : 4 : 20}, and scale

parameters β ∈ {1, 2},

3. Log-normal distributions with µLN = 0, and σLN ∈ {0.05 : 0.2 : 0.85} ∪ {1 : 0.5 : 2},

4. Student-t distributions with σw = 1, and v ∈ {0.5 : 0.5 : 1.5} ∪ {2 : 3 : 8}.

In addition, we consider three dictionary sample sizes, N = 500, 1000, and 2500. For each of

them, the test sample sizes Nt vary from 300 to 2800. To test the identification performance,

we randomly select test pdfs from the dictionary, and apply the proposed method and Ozturk

based method to identify them. The resulting performance comparison is shown in Fig. B.2.

In general, we notice from Fig. B.2 that the proposed method for clutter identification

significantly outperforms the Ozturk algorithm based method. It is due to the fact that the
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deficiencies of the Ozturk algorithm, such as the location-scale invariant property, hinder

its identification performance. In addition, we observe that both methods have improved

performances with more test samples. Also, for proposed identification technique, the larger

the dictionary sample size, the better is the overall identification accuracy. However, for the

Ozturk algorithm based method, increasing the sample size in the dictionary generation does

not substantially change the overall identification performance.
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Appendix C

Derivation of (3.39) and (3.40)

C.1 Derivation of (3.39)

In this section, our goal is to derive

Hcross
∆
=− Ep(xk|z1:k−1) log p(xk|z1:k;D(Uk)). (C.1)

From the definition of the extended Kalman filter, we have xk|z1:k ∼ N(x̂k|k, Pk|k). Thus,

− log p(xk|z1:k;D(Uk)) =
1

2
log(2π)4 +

1

2
log |Pk|k|+

1

2
(xk − x̂k|k)TP−1

k|k (xk − x̂k|k). (C.2)

Here,

(xk − x̂k|k)TP−1
k|k (xk − x̂k|k)

=(xk − x̂k|k−1 + x̂k|k−1 − x̂k|k)TP−1
k|k (xk − x̂k|k−1 + x̂k|k−1 − x̂k|k)

=(xk − x̂k|k−1)TP−1
k|k (xk − x̂k|k−1) + 2(xk − x̂k|k−1)TP−1

k|k (x̂k|k−1 − x̂k|k)

+ (x̂k|k − x̂k|k−1)TP−1
k|k (x̂k|k − x̂k|k−1). (C.3)
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For the first term in (C.3), we have

Ep(xk|z1:k−1)

[
(xk − x̂k|k−1)TP−1

k|k (xk − x̂k|k−1)
]

= Ep(xk|z1:k−1)tr
[
(xk − x̂k|k−1)TP−1

k|k (xk − x̂k|k−1)
]

= Ep(xk|z1:k−1)tr
[
P−1
k|k (xk − x̂k|k−1)(xk − x̂k|k−1)T

]
= tr

[
P−1
k|kPk|k−1

]
, (C.4)

where tr(AB) = tr(BA) holds for any two matrices A and B is applied. For the second term

in (C.3), we have

Ep(xk|z1:k−1)

[
2(xk − x̂k|k−1)TP−1

k|k (x̂k|k−1 − x̂k|k)
]

= 2[Ep(xk|z1:k−1)(xk − x̂k|k−1)︸ ︷︷ ︸
=0

]TP−1
k|k (x̂k|k−1 − x̂k|k)

= 0. (C.5)

Combine the above equations, we have the desired expression,

Hcross =− Ep(xk|z1:k−1) log p(xk|z1:k;D(Uk))

=
1

2
log(2π)4 +

1

2
log |Pk|k|+

1

2
tr(P−1

k|kPk|k−1) +
1

2
(x̂k|k − x̂k|k−1)TP−1

k|k (x̂k|k − x̂k|k−1).

(C.6)
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C.2 Derivation of (3.40)

In this section, we derive (3.40), i.e.,

f(D(Uk))
∆
= Ep(zk|xk−1=x̂k−1|k−1;D(Uk))[Hcross], (C.7)

where Hcross is given in (C.6) and (3.39).

Focus on the fourth term in (C.6) and we denote it as Hcross,4. Based on (3.25), we have

Hcross,4
∆
=

1

2
(x̂k|k − x̂k|k−1)TP−1

k|k (x̂k|k − x̂k|k−1)

=
1

2

(
zk − hk(x̂k|k−1;D(Uk))

)T
KT
k P
−1
k|kKk

(
zk − hk(x̂k|k−1;D(Uk))

)
. (C.8)

According to (3.33), we have

Ep(zk|xk−1=x̂k−1|k−1;D(Uk))[Hcross,4]

≈
∑
j

q(L(x̃jk)|xk−1 = x̂k−1|k−1)

C

∫
p(zk|x̃jk;D(Uk))Hcross,4dzk

=
∑
j

q(L(x̃jk)|xk−1 = x̂k−1|k−1)

2C
Ep(zk|x̃jk;D(Uk))[2Hcross,4]. (C.9)

Reformulate 2Hcross,4 as follow,

2Hcross,4 =
(
zk − µ(x̃jk,D(Uk))

)T
KT
k P
−1
k|kKk

(
zk − µ(x̃jk,D(Uk))

)
+ 2

(
zk − µ(x̃jk,D(Uk))

)T
KT
k P
−1
k|kKk

(
µ(x̃jk,D(Uk))− hk(x̂k|k−1)

)
+
(
µ(x̃jk,D(Uk))− hk(x̂k|k−1)

)T
KT
k P
−1
k|kKk

(
µ(x̃jk,D(Uk))− hk(x̂k|k−1)

)
, (C.10)
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where µ(x̃jk,D(Uk) is defined in (3.37) and hk(x̂k|k−1;D(Uk)) is shortened to hk(x̂k|k−1).

Note that according to definition in (3.37) and (3.38), we have zk|x̃jk ∼ N (µ(x̃jk,D(Uk)), Rk),

thus,

Ep(zk|x̃jk;D(Uk))

[(
zk − µ(x̃jk,D(Uk))

)T
KT
k P
−1
k|kKk

(
zk − µ(x̃jk,D(Uk))

)]
= Ep(zk|x̃jk;D(Uk))tr

[(
zk − µ(x̃jk,D(Uk))

)T
KT
k P
−1
k|kKk

(
zk − µ(x̃jk,D(Uk))

)]
= Ep(zk|x̃jk;D(Uk))tr

[
KT
k P
−1
k|kKk

(
zk − µ(x̃jk,D(Uk))

) (
zk − µ(x̃jk,D(Uk))

)T]
= tr(KT

k P
−1
k|kKkRk), (C.11)

and

Ep(zk|x̃jk;D(Uk))

(
zk − µ(x̃jk,D(Uk))

)T
KT
k P
−1
k|kKk

(
µ(x̃jk,D(Uk))− hk(x̂k|k−1)

)
= 0. (C.12)

Substitute (C.10), (C.11), and (C.12) into (C.9), we have

Ep(zk|xk−1=x̂k−1|k−1;D(Uk))[Hcross,4]

≈ 1

2
tr(KT

k P
−1
k|kKkRk) +

1

2C

∑
j

[q(L(x̃jk)|xk−1 = x̂k−1|k−1)×

(µ(x̃jk,D(Uk))− hk(x̂k|k−1))TKT
k P
−1
k|kKk(µ(x̃jk,D(Uk))− hk(x̂k|k−1))]. (C.13)

Note that here we use the fact that C is the normalizing constant such that the summation

of q(L(x̃jk)|xk−1 = x̂k−1|k−1) is equal to 1.
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Based on (C.13) and (C.6), we have the desired expression,

f(D(Uk)) =Ep(zk|xk−1=x̂k−1|k−1;D(Uk))[Hcross]

≈1

2
log(2π)4 +

1

2
log |Pk|k|+

1

2
tr(P−1

k|kPk|k−1) +
1

2
tr(KT

k P
−1
k|kKkRk)

+
1

2C

∑
j

[q(L(x̃jk)|xk−1 = x̂k−1|k−1)×

(µ(x̃jk,D(Uk))− hk(x̂k|k−1))TKT
k P
−1
k|kKk(µ(x̃jk,D(Uk))− hk(x̂k|k−1))]. (C.14)
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