16 research outputs found

    EAO-SLAM: Monocular Semi-Dense Object SLAM Based on Ensemble Data Association

    Get PDF
    Object-level data association and pose estimation play a fundamental role in semantic SLAM, which remain unsolved due to the lack of robust and accurate algorithms. In this work, we propose an ensemble data associate strategy for integrating the parametric and nonparametric statistic tests. By exploiting the nature of different statistics, our method can effectively aggregate the information of different measurements, and thus significantly improve the robustness and accuracy of data association. We then present an accurate object pose estimation framework, in which an outliers-robust centroid and scale estimation algorithm and an object pose initialization algorithm are developed to help improve the optimality of pose estimation results. Furthermore, we build a SLAM system that can generate semi-dense or lightweight object-oriented maps with a monocular camera. Extensive experiments are conducted on three publicly available datasets and a real scenario. The results show that our approach significantly outperforms state-of-the-art techniques in accuracy and robustness. The source code is available on: https://github.com/yanmin-wu/EAO-SLAM.Comment: Accepted to IROS 2020. Project Page: https://yanmin-wu.github.io/project/eaoslam/; Code: https://github.com/yanmin-wu/EAO-SLA

    CAPRICORN: Communication Aware Place Recognition using Interpretable Constellations of Objects in Robot Networks

    Full text link
    Using multiple robots for exploring and mapping environments can provide improved robustness and performance, but it can be difficult to implement. In particular, limited communication bandwidth is a considerable constraint when a robot needs to determine if it has visited a location that was previously explored by another robot, as it requires for robots to share descriptions of places they have visited. One way to compress this description is to use constellations, groups of 3D points that correspond to the estimate of a set of relative object positions. Constellations maintain the same pattern from different viewpoints and can be robust to illumination changes or dynamic elements. We present a method to extract from these constellations compact spatial and semantic descriptors of the objects in a scene. We use this representation in a 2-step decentralized loop closure verification: first, we distribute the compact semantic descriptors to determine which other robots might have seen scenes with similar objects; then we query matching robots with the full constellation to validate the match using geometric information. The proposed method requires less memory, is more interpretable than global image descriptors, and could be useful for other tasks and interactions with the environment. We validate our system's performance on a TUM RGB-D SLAM sequence and show its benefits in terms of bandwidth requirements.Comment: 8 pages, 6 figures, 1 table. 2020 IEEE International Conference on Robotics and Automation (ICRA

    Robust Estimation Framework with Semantic Measurements

    Get PDF
    Conventional simultaneous localization and mapping (SLAM) algorithms rely on geometric measurements and require loop-closure detections to correct for drift accumulated over a vehicle trajectory. Semantic measurements can add measurement redundancy and provide an alternative form of loop closure. We propose two different estimation algorithms that incorporate semantic measurements provided by vision-based object classifiers. An a priori map of regions where the objects can be detected is assumed. The first estimation framework is posed as a maximum-likelihood problem, where the likelihood function for semantic measurements is derived from the confusion matrices of the object classifiers. The second estimation framework is comprised of two parts: 1) a continuous-state estimation formulation that includes semantic measurements as a form of state constraints and 2) a discrete-state estimation formulation used to compute the certainty of object detection measurements using a Hidden Markov Model (HMM). The advantages of incorporating semantic measurements in these frameworks are demonstrated in numerical simulations. In particular, the proposed estimation algorithms improve upon the robustness and accuracy of conventional SLAM algorithms

    Robust Estimation Framework with Semantic Measurements

    Get PDF
    Conventional simultaneous localization and mapping (SLAM) algorithms rely on geometric measurements and require loop-closure detections to correct for drift accumulated over a vehicle trajectory. Semantic measurements can add measurement redundancy and provide an alternative form of loop closure. We propose two different estimation algorithms that incorporate semantic measurements provided by vision-based object classifiers. An a priori map of regions where the objects can be detected is assumed. The first estimation framework is posed as a maximum-likelihood problem, where the likelihood function for semantic measurements is derived from the confusion matrices of the object classifiers. The second estimation framework is comprised of two parts: 1) a continuous-state estimation formulation that includes semantic measurements as a form of state constraints and 2) a discrete-state estimation formulation used to compute the certainty of object detection measurements using a Hidden Markov Model (HMM). The advantages of incorporating semantic measurements in these frameworks are demonstrated in numerical simulations. In particular, the proposed estimation algorithms improve upon the robustness and accuracy of conventional SLAM algorithms

    An Object SLAM Framework for Association, Mapping, and High-Level Tasks

    Full text link
    Object SLAM is considered increasingly significant for robot high-level perception and decision-making. Existing studies fall short in terms of data association, object representation, and semantic mapping and frequently rely on additional assumptions, limiting their performance. In this paper, we present a comprehensive object SLAM framework that focuses on object-based perception and object-oriented robot tasks. First, we propose an ensemble data association approach for associating objects in complicated conditions by incorporating parametric and nonparametric statistic testing. In addition, we suggest an outlier-robust centroid and scale estimation algorithm for modeling objects based on the iForest and line alignment. Then a lightweight and object-oriented map is represented by estimated general object models. Taking into consideration the semantic invariance of objects, we convert the object map to a topological map to provide semantic descriptors to enable multi-map matching. Finally, we suggest an object-driven active exploration strategy to achieve autonomous mapping in the grasping scenario. A range of public datasets and real-world results in mapping, augmented reality, scene matching, relocalization, and robotic manipulation have been used to evaluate the proposed object SLAM framework for its efficient performance.Comment: Accepted by IEEE Transactions on Robotics(T-RO

    Towards Collaborative Simultaneous Localization and Mapping: a Survey of the Current Research Landscape

    Get PDF
    Motivated by the tremendous progress we witnessed in recent years, this paper presents a survey of the scientific literature on the topic of Collaborative Simultaneous Localization and Mapping (C-SLAM), also known as multi-robot SLAM. With fleets of self-driving cars on the horizon and the rise of multi-robot systems in industrial applications, we believe that Collaborative SLAM will soon become a cornerstone of future robotic applications. In this survey, we introduce the basic concepts of C-SLAM and present a thorough literature review. We also outline the major challenges and limitations of C-SLAM in terms of robustness, communication, and resource management. We conclude by exploring the area's current trends and promising research avenues.Comment: 44 pages, 3 figure

    WSR: A WiFi Sensor for Collaborative Robotics

    Full text link
    In this paper we derive a new capability for robots to measure relative direction, or Angle-of-Arrival (AOA), to other robots operating in non-line-of-sight and unmapped environments with occlusions, without requiring external infrastructure. We do so by capturing all of the paths that a WiFi signal traverses as it travels from a transmitting to a receiving robot, which we term an AOA profile. The key intuition is to "emulate antenna arrays in the air" as the robots move in 3D space, a method akin to Synthetic Aperture Radar (SAR). The main contributions include development of i) a framework to accommodate arbitrary 3D trajectories, as well as continuous mobility all robots, while computing AOA profiles and ii) an accompanying analysis that provides a lower bound on variance of AOA estimation as a function of robot trajectory geometry based on the Cramer Rao Bound. This is a critical distinction with previous work on SAR that restricts robot mobility to prescribed motion patterns, does not generalize to 3D space, and/or requires transmitting robots to be static during data acquisition periods. Our method results in more accurate AOA profiles and thus better AOA estimation, and formally characterizes this observation as the informativeness of the trajectory; a computable quantity for which we derive a closed form. All theoretical developments are substantiated by extensive simulation and hardware experiments. We also show that our formulation can be used with an off-the-shelf trajectory estimation sensor. Finally, we demonstrate the performance of our system on a multi-robot dynamic rendezvous task.Comment: 28 pages, 25 figures, *co-primary author

    Assessment of simulated and real-world autonomy performance with small-scale unmanned ground vehicles

    Get PDF
    Off-road autonomy is a challenging topic that requires robust systems to both understand and navigate complex environments. While on-road autonomy has seen a major expansion in recent years in the consumer space, off-road systems are mostly relegated to niche applications. However, these applications can provide safety and navigation to dangerous areas that are the most suited for autonomy tasks. Traversability analysis is at the core of many of the algorithms employed in these topics. In this thesis, a Clearpath Robotics Jackal vehicle is equipped with a 3D Ouster laser scanner to define and traverse off-road environments. The Mississippi State University Autonomous Vehicle Simulator (MAVS) and the Navigating All Terrains Using Robotic Exploration (NATURE) autonomy stack are used in conjunction with the small-scale vehicle platform to traverse uneven terrain and collect data. Additionally, the NATURE stack is used as a point of comparison between a MAVS simulated and physical Clearpath Robotics Jackal vehicle in testing
    corecore